On the minimal Dα− spectral radius of graphs subject to fixed connectivity

For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n,s fixed, n>s, let Gp=Ks∨(Kp∪Kn−s−p) be the graph obtained from Ks a...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 584; pp. 353 - 370
Main Authors Díaz, Roberto C., Pastén, Germain, Rojo, Oscar
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.01.2020
American Elsevier Company, Inc
Subjects
Online AccessGet full text
ISSN0024-3795
1873-1856
DOI10.1016/j.laa.2019.09.027

Cover

Abstract For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n,s fixed, n>s, let Gp=Ks∨(Kp∪Kn−s−p) be the graph obtained from Ks and Kp∪Kn−s−p and the edges connecting each vertex of Ks with every vertex of Kp∪Kn−s−p. This paper presents some extremal results on the spectral radius of Dα(G) that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that1.there exists a unique α_∈(34,3n−s4n−2s) such that if α∈[0,α_) then the minimal spectral radius of Dα(G) is uniquely attained by G=G1,2.there exists a unique α‾∈(34,3n−s4n−2s), α‾≥α_, such that if α∈(α‾,1) then the minimal spectral radius of Dα(G) is uniquely attained by G=G⌊n−s2⌋, and3.if α=1 then the minimal spectral radius of Tr(G) is n−1+⌈n−s2⌉ and it is uniquely attained by G=G⌊n−s2⌋. Furthermore, in terms of n and s, a tight lower bound l(n,s) of α_ and a tight upper bound u(n,s) of α‾ are obtained. Finally, for s fixed, it is observed that limn→∞⁡l(n,s)=limn→∞⁡α_=limn→∞⁡u(n,s)=limn→∞⁡α‾=34.
AbstractList For a connected graph G and α ∈ [0, 1], let Dα(G) be the matrix Dα(G) = αTr(G) + (1 - α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n, s fixed, n > s, let Gp = Ks ∨ (Kp ∪ Kn-s-p) be the graph obtained from Ks and Kp ∪ Kn-s-p and the edges connecting each vertex of Ks with every vertex of Kp ∪ Kn-s-p. This paper presents some extremal results on the spectral radius of Dα(G) that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that 1. there exists a unique ... such that if α ∈ [0, α) then the minimal spectral radius of Dα(G) is uniquely attained by G = G1, 2. there exists a unique ... , such that if α ∈ (α, 1) then the minimal spectral radius of Dα(G) is uniquely attained by ... , and 3. if α = 1 then the minimal spectral radius of Tr(G) is ... and it is uniquely attained by ... . Furthermore, in terms of n and s, a tight lower bound l(n, s) of α and a tight upper bound u(n, s) of α are obtained. Finally, for s fixed, it is observed that ... . (ProQuest: ... denotes formula omitted.)
For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n,s fixed, n>s, let Gp=Ks∨(Kp∪Kn−s−p) be the graph obtained from Ks and Kp∪Kn−s−p and the edges connecting each vertex of Ks with every vertex of Kp∪Kn−s−p. This paper presents some extremal results on the spectral radius of Dα(G) that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that1.there exists a unique α_∈(34,3n−s4n−2s) such that if α∈[0,α_) then the minimal spectral radius of Dα(G) is uniquely attained by G=G1,2.there exists a unique α‾∈(34,3n−s4n−2s), α‾≥α_, such that if α∈(α‾,1) then the minimal spectral radius of Dα(G) is uniquely attained by G=G⌊n−s2⌋, and3.if α=1 then the minimal spectral radius of Tr(G) is n−1+⌈n−s2⌉ and it is uniquely attained by G=G⌊n−s2⌋. Furthermore, in terms of n and s, a tight lower bound l(n,s) of α_ and a tight upper bound u(n,s) of α‾ are obtained. Finally, for s fixed, it is observed that limn→∞⁡l(n,s)=limn→∞⁡α_=limn→∞⁡u(n,s)=limn→∞⁡α‾=34.
Author Rojo, Oscar
Pastén, Germain
Díaz, Roberto C.
Author_xml – sequence: 1
  givenname: Roberto C.
  surname: Díaz
  fullname: Díaz, Roberto C.
  email: rdiaz01@ucn.cl
– sequence: 2
  givenname: Germain
  surname: Pastén
  fullname: Pastén, Germain
  email: gpastentabilo@gmail.com
– sequence: 3
  givenname: Oscar
  orcidid: 0000-0003-1530-6697
  surname: Rojo
  fullname: Rojo, Oscar
  email: orojo@ucn.cl
BookMark eNp9kElOwzAUhi1UJNrCAdhZYp3iIYkdsUJllIq6gbXlOA51lNrBTip6A9bchItwCE6Cq7JiUelJT2_43_BNwMg6qwE4x2iGEc4vm1kr5YwgXMxQNMKOwBhzRhPMs3wExgiRNKGsyE7AJIQGIZQyRMbgaWlhv9JwbaxZyxbefH_9fHzC0GnV-xh7WZkhQFfDVy-7VYBhKJtYg72DtXnXFVTO2pgwG9NvT8FxLdugz_78FLzc3T7PH5LF8v5xfr1IFCVZn2QyU7gmkqq8TFFZIprTQiLMOMt4kTKlZLy95CmmpE5RkZeYVzJjjPCcFwWjU3Cxn9t59zbo0IvGDd7GlYJQQjjjBBexC--7lHcheF2Lzscn_VZgJHbURCMiNbGjJlA0spvM_mmU6WVvnI04THtQebVX6vj4xmgvgjLaKl0ZH_mIypkD6l8Lzoj9
CitedBy_id crossref_primary_10_1007_s13226_022_00317_7
crossref_primary_10_1016_j_laa_2020_05_022
crossref_primary_10_1051_ro_2024181
crossref_primary_10_3390_math8030426
crossref_primary_10_47745_ausm_2024_0002
crossref_primary_10_1007_s11587_024_00874_5
crossref_primary_10_3390_math8101668
Cites_doi 10.1016/j.laa.2010.04.041
10.2298/AADM100428020L
10.2298/AADM1701081N
10.1016/j.cplett.2007.09.048
10.1016/j.laa.2018.10.014
10.1016/j.laa.2018.03.036
10.1016/j.laa.2013.02.030
10.1007/s10910-008-9465-5
10.1016/j.laa.2019.04.030
10.1016/j.laa.2017.01.029
10.1006/jctb.2001.2052
10.1016/j.laa.2018.08.008
10.1016/j.laa.2019.04.013
10.1080/03081087.2013.828720
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright American Elsevier Company, Inc. Jan 1, 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright American Elsevier Company, Inc. Jan 1, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.laa.2019.09.027
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 370
ExternalDocumentID 10_1016_j_laa_2019_09_027
S0024379519304161
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CITATION
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
RIG
SEW
SSH
T9H
WUQ
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-5a5c1f2a3c6b40bb03639a0178758947cca187b84132f4096b18da57728689973
IEDL.DBID IXB
ISSN 0024-3795
IngestDate Fri Jul 25 07:36:07 EDT 2025
Tue Jul 01 03:18:07 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Fri Feb 23 02:32:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 05E30
Convex combination of matrices
05C50
Spectral radius
Vertex transmission
Connectivity
15A18
Distance matrix
Distance spectral radius
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-5a5c1f2a3c6b40bb03639a0178758947cca187b84132f4096b18da57728689973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1530-6697
PQID 2322878219
PQPubID 2047554
PageCount 18
ParticipantIDs proquest_journals_2322878219
crossref_primary_10_1016_j_laa_2019_09_027
crossref_citationtrail_10_1016_j_laa_2019_09_027
elsevier_sciencedirect_doi_10_1016_j_laa_2019_09_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2020
Publisher Elsevier Inc
American Elsevier Company, Inc
Publisher_xml – name: Elsevier Inc
– name: American Elsevier Company, Inc
References Zhou, Trinajstić (br0210) 2007; 6
Aouchiche, Hansen (br0010) 2013; 439
Berman, Zhang (br0020) 2001; 83
Lin, Huang, Xue (br0110)
Zhou, Trinajstić (br0200) 2007; 447
Das (br0040) 2009; 62
Liu (br0120) 2010; 4
Lin, Huang, Xue (br0100) 2018; 557
Nikiforov, Pastén, Rojo, Soto (br0140) 2017; 520
Zhu (br0220) 2010; 433
Cui, He, Tian (br0030) 2019; 563
Gutman, Medeleanu (br0070) 1998; 37
Wang, Wang (br0160) 2019; 7
Zhou (br0190) 2007; 58
Horn, Johnson (br0080) 1985
Díaz, Pastén, Rojo (br0050) 2019; 577
Li, Shiu, Chan, Chang (br0090) 2009; 46
You, Yang, So, Xi (br0180) 2019; 577
Nikiforov (br0130) 2017; 11
Guo, Zhou (br0060) 2019
Nikiforov, Rojo (br0150) 2018; 550
Xing, Zhou, Li (br0170) 2014; 62
Zhou (10.1016/j.laa.2019.09.027_br0210) 2007; 6
Cui (10.1016/j.laa.2019.09.027_br0030) 2019; 563
Zhu (10.1016/j.laa.2019.09.027_br0220) 2010; 433
Nikiforov (10.1016/j.laa.2019.09.027_br0150) 2018; 550
Wang (10.1016/j.laa.2019.09.027_br0160) 2019; 7
Das (10.1016/j.laa.2019.09.027_br0040) 2009; 62
Lin (10.1016/j.laa.2019.09.027_br0110)
Gutman (10.1016/j.laa.2019.09.027_br0070) 1998; 37
Xing (10.1016/j.laa.2019.09.027_br0170) 2014; 62
Berman (10.1016/j.laa.2019.09.027_br0020) 2001; 83
Horn (10.1016/j.laa.2019.09.027_br0080) 1985
Aouchiche (10.1016/j.laa.2019.09.027_br0010) 2013; 439
Lin (10.1016/j.laa.2019.09.027_br0100) 2018; 557
You (10.1016/j.laa.2019.09.027_br0180) 2019; 577
Díaz (10.1016/j.laa.2019.09.027_br0050) 2019; 577
Liu (10.1016/j.laa.2019.09.027_br0120) 2010; 4
Nikiforov (10.1016/j.laa.2019.09.027_br0130) 2017; 11
Zhou (10.1016/j.laa.2019.09.027_br0190) 2007; 58
Nikiforov (10.1016/j.laa.2019.09.027_br0140) 2017; 520
Zhou (10.1016/j.laa.2019.09.027_br0200) 2007; 447
Guo (10.1016/j.laa.2019.09.027_br0060)
Li (10.1016/j.laa.2019.09.027_br0090) 2009; 46
References_xml – volume: 439
  start-page: 21
  year: 2013
  end-page: 33
  ident: br0010
  article-title: Two Laplacians for the distance matrix of a graph
  publication-title: Linear Algebra Appl.
– volume: 83
  start-page: 233
  year: 2001
  end-page: 240
  ident: br0020
  article-title: On the spectral radius of graphs with cut vertices
  publication-title: J. Combin. Theory Ser. B
– volume: 62
  start-page: 1377
  year: 2014
  end-page: 1387
  ident: br0170
  article-title: On the distance signless Laplacian spectral radius of graphs
  publication-title: Linear Multilinear Algebra
– year: 1985
  ident: br0080
  article-title: Matrix Analysis
– volume: 577
  start-page: 21
  year: 2019
  end-page: 40
  ident: br0180
  article-title: On the spectrum of an equitable quotient matrix
  publication-title: Linear Algebra Appl.
– volume: 4
  start-page: 269
  year: 2010
  end-page: 277
  ident: br0120
  article-title: On spectral radius of the distance matrix
  publication-title: Appl. Anal. Discrete Math.
– volume: 62
  start-page: 667
  year: 2009
  end-page: 672
  ident: br0040
  article-title: On the largest eigenvalue of the distance matrix of a bipartite graph
  publication-title: MATCH Commun. Math. Comput. Chem.
– ident: br0110
  article-title: On the
– volume: 577
  start-page: 168
  year: 2019
  end-page: 185
  ident: br0050
  article-title: New results on the
  publication-title: Linear Algebra Appl.
– volume: 447
  start-page: 384
  year: 2007
  end-page: 387
  ident: br0200
  article-title: On the largest eigenvalue of the distance matrix of a connected graph
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 375
  year: 2007
  end-page: 384
  ident: br0210
  article-title: Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs
  publication-title: Internet Electron. J. Mol. Des.
– volume: 37
  start-page: 569
  year: 1998
  end-page: 573
  ident: br0070
  article-title: On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane
  publication-title: Indian J. Chem., Sect. A
– volume: 520
  start-page: 286
  year: 2017
  end-page: 305
  ident: br0140
  article-title: On the
  publication-title: Linear Algebra Appl.
– volume: 563
  start-page: 1
  year: 2019
  end-page: 23
  ident: br0030
  article-title: The generalized distance matrix
  publication-title: Linear Algebra Appl.
– volume: 7
  year: 2019
  ident: br0160
  article-title: The
  publication-title: Mathematics
– volume: 557
  start-page: 430
  year: 2018
  end-page: 437
  ident: br0100
  article-title: A note on the
  publication-title: Linear Algebra Appl.
– volume: 11
  start-page: 81
  year: 2017
  end-page: 107
  ident: br0130
  article-title: Merging the
  publication-title: Appl. Anal. Discrete Math.
– volume: 433
  start-page: 928
  year: 2010
  end-page: 933
  ident: br0220
  article-title: On the signless Laplacian spectral radius of graphs with cut vertices
  publication-title: Linear Algebra Appl.
– volume: 550
  start-page: 87
  year: 2018
  end-page: 104
  ident: br0150
  article-title: On the
  publication-title: Linear Algebra Appl.
– year: 2019
  ident: br0060
  article-title: On the distance
– volume: 46
  start-page: 340
  year: 2009
  end-page: 346
  ident: br0090
  article-title: On the spectral radius of graphs with connectivity at most
  publication-title: J. Math. Chem.
– volume: 58
  start-page: 657
  year: 2007
  end-page: 662
  ident: br0190
  article-title: On the largest eigenvalue of the distance matrix of a tree
  publication-title: MATCH Commun. Math. Comput. Chem.
– year: 1985
  ident: 10.1016/j.laa.2019.09.027_br0080
– volume: 433
  start-page: 928
  year: 2010
  ident: 10.1016/j.laa.2019.09.027_br0220
  article-title: On the signless Laplacian spectral radius of graphs with cut vertices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.04.041
– volume: 4
  start-page: 269
  year: 2010
  ident: 10.1016/j.laa.2019.09.027_br0120
  article-title: On spectral radius of the distance matrix
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM100428020L
– volume: 37
  start-page: 569
  year: 1998
  ident: 10.1016/j.laa.2019.09.027_br0070
  article-title: On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane
  publication-title: Indian J. Chem., Sect. A
– volume: 11
  start-page: 81
  year: 2017
  ident: 10.1016/j.laa.2019.09.027_br0130
  article-title: Merging the A- and Q-spectral theories
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM1701081N
– volume: 62
  start-page: 667
  year: 2009
  ident: 10.1016/j.laa.2019.09.027_br0040
  article-title: On the largest eigenvalue of the distance matrix of a bipartite graph
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 6
  start-page: 375
  year: 2007
  ident: 10.1016/j.laa.2019.09.027_br0210
  article-title: Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs
  publication-title: Internet Electron. J. Mol. Des.
– volume: 7
  year: 2019
  ident: 10.1016/j.laa.2019.09.027_br0160
  article-title: The Aα−spectral radii of graphs with given connectivity
  publication-title: Mathematics
– volume: 447
  start-page: 384
  year: 2007
  ident: 10.1016/j.laa.2019.09.027_br0200
  article-title: On the largest eigenvalue of the distance matrix of a connected graph
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.09.048
– ident: 10.1016/j.laa.2019.09.027_br0060
– volume: 563
  start-page: 1
  year: 2019
  ident: 10.1016/j.laa.2019.09.027_br0030
  article-title: The generalized distance matrix
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.10.014
– volume: 550
  start-page: 87
  year: 2018
  ident: 10.1016/j.laa.2019.09.027_br0150
  article-title: On the α−index of graphs with pendent paths
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.03.036
– volume: 58
  start-page: 657
  year: 2007
  ident: 10.1016/j.laa.2019.09.027_br0190
  article-title: On the largest eigenvalue of the distance matrix of a tree
  publication-title: MATCH Commun. Math. Comput. Chem.
– volume: 439
  start-page: 21
  year: 2013
  ident: 10.1016/j.laa.2019.09.027_br0010
  article-title: Two Laplacians for the distance matrix of a graph
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2013.02.030
– volume: 46
  start-page: 340
  year: 2009
  ident: 10.1016/j.laa.2019.09.027_br0090
  article-title: On the spectral radius of graphs with connectivity at most k
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-008-9465-5
– ident: 10.1016/j.laa.2019.09.027_br0110
– volume: 577
  start-page: 168
  year: 2019
  ident: 10.1016/j.laa.2019.09.027_br0050
  article-title: New results on the Dα− matrix of connected graph
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2019.04.030
– volume: 520
  start-page: 286
  year: 2017
  ident: 10.1016/j.laa.2019.09.027_br0140
  article-title: On the Aα−spectra of trees
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2017.01.029
– volume: 83
  start-page: 233
  year: 2001
  ident: 10.1016/j.laa.2019.09.027_br0020
  article-title: On the spectral radius of graphs with cut vertices
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.2001.2052
– volume: 557
  start-page: 430
  year: 2018
  ident: 10.1016/j.laa.2019.09.027_br0100
  article-title: A note on the Aα−spectral radius of graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.08.008
– volume: 577
  start-page: 21
  year: 2019
  ident: 10.1016/j.laa.2019.09.027_br0180
  article-title: On the spectrum of an equitable quotient matrix
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2019.04.013
– volume: 62
  start-page: 1377
  issue: 10
  year: 2014
  ident: 10.1016/j.laa.2019.09.027_br0170
  article-title: On the distance signless Laplacian spectral radius of graphs
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2013.828720
SSID ssj0004702
Score 2.2995937
Snippet For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of...
For a connected graph G and α ∈ [0, 1], let Dα(G) be the matrix Dα(G) = αTr(G) + (1 - α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 353
SubjectTerms Apexes
Connectivity
Convex combination of matrices
Distance matrix
Distance spectral radius
Graph theory
Graphs
Linear algebra
Lower bounds
Spectra
Spectral radius
Upper bounds
Vertex transmission
Title On the minimal Dα− spectral radius of graphs subject to fixed connectivity
URI https://dx.doi.org/10.1016/j.laa.2019.09.027
https://www.proquest.com/docview/2322878219
Volume 584
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELYKLDAgfkX5qTwwIQWS1I6TsfypgFoWkLpZtuNIRdBWTSoxMTPzJrwID8GTcOckIBBiQMri6BxFZ_vznX33HSH7gdVcWGU9nVrfY4ILTwmbee0Uyc3TLDOuTGevH3Vv2eWADxrkpM6FwbDKCvtLTHdoXb05qrR5NBkOMcfXkemhCeKjmQ44jFmlmMQ3OP7KjRR-xRjOPJSubzZdjNe9QuqhIHFUp1hY5ve96QdKu63nfIUsVzYj7ZS_tUoadrRGlnqfhKv5Ouldjyg0KTKFPIDs6dvr-_MLdXmUU2hPVTqc5XScUcdQndN8pvEEhhZjmg0fbUoNRryYspbEBrk9P7s56XpVpQTPtENeeFxxE2ShaptIM19rvJ1NFCw28EbihAkYpiAWOoYdK8zAo4t0EKeKg2UdR-BwifYmmR-NR3aLUKYst2Eo_DRKmIlYnAjLUxv5oYHe1jSJX-tImopGHKtZ3Ms6XuxOglolqlX68ISiSQ4-u0xKDo2_hFmtePltIkjA-L-67daDJKtVmEuwFsEhjAGUt__31R2yGKJ_7Y5cdsl8MZ3ZPTBCCt0ic4dPQYssdC6uuv2Wm3Mf6fzcKw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTgIxEG4QD-rB-BtR1B48mWzYn3a7e1SUoAJeIOHWtN1ugkEgLCQ-gmffxBfxIXwSp2UXozEcTPbSzXSzmbbTb9qZbxC68LSkTAvtyES7DmGUOYLp1AkSQ26epKmyZTrbnbDZI_d92i-hepELY8Iqc9u_sOnWWudvark2a5PBwOT4WjI9A0FcA9PX0DqggdBm8fWvv5MjmZtThhPHiBdXmzbIaygM95AXW65TU1nm783pl5m2e09jB23noBFfLf5rF5X0aA9ttZeMq9k-aj-OMDSxoQp5Btmbj_fP1zdsEymn0J6KZDDP8DjFlqI6w9lcmiMYPBvjdPCiE6xMyItaFJM4QL3GbbfedPJSCY4KfDpzqKDKS30RqFASV0pzPRsLWG3gjkQxYTBOXsRkBFuWn4JLF0ovSgQFaB2F4HGx4BCVR-ORPkKYCE217zM3CWOiQhLFTNNEh66voLdWFeQWOuIq5xE35SyGvAgYe-KgVm7Uyl14fFZBl8sukwWJxiphUiie_5gJHIz8qm7VYpB4vgwzDnARPMIIrPLx_756jjaa3XaLt-46Dydo0zfOtj1_qaLybDrXp4BIZvLMzrgv-Lncwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+minimal+D%CE%B1%E2%88%92+spectral+radius+of+graphs+subject+to+fixed+connectivity&rft.jtitle=Linear+algebra+and+its+applications&rft.au=D%C3%ADaz%2C+Roberto+C.&rft.au=Past%C3%A9n%2C+Germain&rft.au=Rojo%2C+Oscar&rft.date=2020-01-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=584&rft.spage=353&rft.epage=370&rft_id=info:doi/10.1016%2Fj.laa.2019.09.027&rft.externalDocID=S0024379519304161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon