On the minimal Dα− spectral radius of graphs subject to fixed connectivity
For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n,s fixed, n>s, let Gp=Ks∨(Kp∪Kn−s−p) be the graph obtained from Ks a...
Saved in:
Published in | Linear algebra and its applications Vol. 584; pp. 353 - 370 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.01.2020
American Elsevier Company, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0024-3795 1873-1856 |
DOI | 10.1016/j.laa.2019.09.027 |
Cover
Abstract | For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n,s fixed, n>s, let Gp=Ks∨(Kp∪Kn−s−p) be the graph obtained from Ks and Kp∪Kn−s−p and the edges connecting each vertex of Ks with every vertex of Kp∪Kn−s−p. This paper presents some extremal results on the spectral radius of Dα(G) that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that1.there exists a unique α_∈(34,3n−s4n−2s) such that if α∈[0,α_) then the minimal spectral radius of Dα(G) is uniquely attained by G=G1,2.there exists a unique α‾∈(34,3n−s4n−2s), α‾≥α_, such that if α∈(α‾,1) then the minimal spectral radius of Dα(G) is uniquely attained by G=G⌊n−s2⌋, and3.if α=1 then the minimal spectral radius of Tr(G) is n−1+⌈n−s2⌉ and it is uniquely attained by G=G⌊n−s2⌋. Furthermore, in terms of n and s, a tight lower bound l(n,s) of α_ and a tight upper bound u(n,s) of α‾ are obtained. Finally, for s fixed, it is observed that limn→∞l(n,s)=limn→∞α_=limn→∞u(n,s)=limn→∞α‾=34. |
---|---|
AbstractList | For a connected graph G and α ∈ [0, 1], let Dα(G) be the matrix Dα(G) = αTr(G) + (1 - α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n, s fixed, n > s, let Gp = Ks ∨ (Kp ∪ Kn-s-p) be the graph obtained from Ks and Kp ∪ Kn-s-p and the edges connecting each vertex of Ks with every vertex of Kp ∪ Kn-s-p. This paper presents some extremal results on the spectral radius of Dα(G) that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that 1. there exists a unique ... such that if α ∈ [0, α) then the minimal spectral radius of Dα(G) is uniquely attained by G = G1, 2. there exists a unique ... , such that if α ∈ (α, 1) then the minimal spectral radius of Dα(G) is uniquely attained by ... , and 3. if α = 1 then the minimal spectral radius of Tr(G) is ... and it is uniquely attained by ... . Furthermore, in terms of n and s, a tight lower bound l(n, s) of α and a tight upper bound u(n, s) of α are obtained. Finally, for s fixed, it is observed that ... . (ProQuest: ... denotes formula omitted.) For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of its vertex transmissions. Let Km be a complete graph of order m. For n,s fixed, n>s, let Gp=Ks∨(Kp∪Kn−s−p) be the graph obtained from Ks and Kp∪Kn−s−p and the edges connecting each vertex of Ks with every vertex of Kp∪Kn−s−p. This paper presents some extremal results on the spectral radius of Dα(G) that generalize previous results on the spectral radii of the distance matrix and distance signless Laplacian matrix. Among all connected graphs G on n vertices with a vertex/edge connectivity at most s, it is proved that1.there exists a unique α_∈(34,3n−s4n−2s) such that if α∈[0,α_) then the minimal spectral radius of Dα(G) is uniquely attained by G=G1,2.there exists a unique α‾∈(34,3n−s4n−2s), α‾≥α_, such that if α∈(α‾,1) then the minimal spectral radius of Dα(G) is uniquely attained by G=G⌊n−s2⌋, and3.if α=1 then the minimal spectral radius of Tr(G) is n−1+⌈n−s2⌉ and it is uniquely attained by G=G⌊n−s2⌋. Furthermore, in terms of n and s, a tight lower bound l(n,s) of α_ and a tight upper bound u(n,s) of α‾ are obtained. Finally, for s fixed, it is observed that limn→∞l(n,s)=limn→∞α_=limn→∞u(n,s)=limn→∞α‾=34. |
Author | Rojo, Oscar Pastén, Germain Díaz, Roberto C. |
Author_xml | – sequence: 1 givenname: Roberto C. surname: Díaz fullname: Díaz, Roberto C. email: rdiaz01@ucn.cl – sequence: 2 givenname: Germain surname: Pastén fullname: Pastén, Germain email: gpastentabilo@gmail.com – sequence: 3 givenname: Oscar orcidid: 0000-0003-1530-6697 surname: Rojo fullname: Rojo, Oscar email: orojo@ucn.cl |
BookMark | eNp9kElOwzAUhi1UJNrCAdhZYp3iIYkdsUJllIq6gbXlOA51lNrBTip6A9bchItwCE6Cq7JiUelJT2_43_BNwMg6qwE4x2iGEc4vm1kr5YwgXMxQNMKOwBhzRhPMs3wExgiRNKGsyE7AJIQGIZQyRMbgaWlhv9JwbaxZyxbefH_9fHzC0GnV-xh7WZkhQFfDVy-7VYBhKJtYg72DtXnXFVTO2pgwG9NvT8FxLdugz_78FLzc3T7PH5LF8v5xfr1IFCVZn2QyU7gmkqq8TFFZIprTQiLMOMt4kTKlZLy95CmmpE5RkZeYVzJjjPCcFwWjU3Cxn9t59zbo0IvGDd7GlYJQQjjjBBexC--7lHcheF2Lzscn_VZgJHbURCMiNbGjJlA0spvM_mmU6WVvnI04THtQebVX6vj4xmgvgjLaKl0ZH_mIypkD6l8Lzoj9 |
CitedBy_id | crossref_primary_10_1007_s13226_022_00317_7 crossref_primary_10_1016_j_laa_2020_05_022 crossref_primary_10_1051_ro_2024181 crossref_primary_10_3390_math8030426 crossref_primary_10_47745_ausm_2024_0002 crossref_primary_10_1007_s11587_024_00874_5 crossref_primary_10_3390_math8101668 |
Cites_doi | 10.1016/j.laa.2010.04.041 10.2298/AADM100428020L 10.2298/AADM1701081N 10.1016/j.cplett.2007.09.048 10.1016/j.laa.2018.10.014 10.1016/j.laa.2018.03.036 10.1016/j.laa.2013.02.030 10.1007/s10910-008-9465-5 10.1016/j.laa.2019.04.030 10.1016/j.laa.2017.01.029 10.1006/jctb.2001.2052 10.1016/j.laa.2018.08.008 10.1016/j.laa.2019.04.013 10.1080/03081087.2013.828720 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright American Elsevier Company, Inc. Jan 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright American Elsevier Company, Inc. Jan 1, 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.laa.2019.09.027 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-1856 |
EndPage | 370 |
ExternalDocumentID | 10_1016_j_laa_2019_09_027 S0024379519304161 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CITATION FA8 FGOYB G-2 HZ~ MVM OHT R2- RIG SEW SSH T9H WUQ 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c325t-5a5c1f2a3c6b40bb03639a0178758947cca187b84132f4096b18da57728689973 |
IEDL.DBID | IXB |
ISSN | 0024-3795 |
IngestDate | Fri Jul 25 07:36:07 EDT 2025 Tue Jul 01 03:18:07 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Fri Feb 23 02:32:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 05E30 Convex combination of matrices 05C50 Spectral radius Vertex transmission Connectivity 15A18 Distance matrix Distance spectral radius |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-5a5c1f2a3c6b40bb03639a0178758947cca187b84132f4096b18da57728689973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1530-6697 |
PQID | 2322878219 |
PQPubID | 2047554 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2322878219 crossref_primary_10_1016_j_laa_2019_09_027 crossref_citationtrail_10_1016_j_laa_2019_09_027 elsevier_sciencedirect_doi_10_1016_j_laa_2019_09_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2020 |
Publisher | Elsevier Inc American Elsevier Company, Inc |
Publisher_xml | – name: Elsevier Inc – name: American Elsevier Company, Inc |
References | Zhou, Trinajstić (br0210) 2007; 6 Aouchiche, Hansen (br0010) 2013; 439 Berman, Zhang (br0020) 2001; 83 Lin, Huang, Xue (br0110) Zhou, Trinajstić (br0200) 2007; 447 Das (br0040) 2009; 62 Liu (br0120) 2010; 4 Lin, Huang, Xue (br0100) 2018; 557 Nikiforov, Pastén, Rojo, Soto (br0140) 2017; 520 Zhu (br0220) 2010; 433 Cui, He, Tian (br0030) 2019; 563 Gutman, Medeleanu (br0070) 1998; 37 Wang, Wang (br0160) 2019; 7 Zhou (br0190) 2007; 58 Horn, Johnson (br0080) 1985 Díaz, Pastén, Rojo (br0050) 2019; 577 Li, Shiu, Chan, Chang (br0090) 2009; 46 You, Yang, So, Xi (br0180) 2019; 577 Nikiforov (br0130) 2017; 11 Guo, Zhou (br0060) 2019 Nikiforov, Rojo (br0150) 2018; 550 Xing, Zhou, Li (br0170) 2014; 62 Zhou (10.1016/j.laa.2019.09.027_br0210) 2007; 6 Cui (10.1016/j.laa.2019.09.027_br0030) 2019; 563 Zhu (10.1016/j.laa.2019.09.027_br0220) 2010; 433 Nikiforov (10.1016/j.laa.2019.09.027_br0150) 2018; 550 Wang (10.1016/j.laa.2019.09.027_br0160) 2019; 7 Das (10.1016/j.laa.2019.09.027_br0040) 2009; 62 Lin (10.1016/j.laa.2019.09.027_br0110) Gutman (10.1016/j.laa.2019.09.027_br0070) 1998; 37 Xing (10.1016/j.laa.2019.09.027_br0170) 2014; 62 Berman (10.1016/j.laa.2019.09.027_br0020) 2001; 83 Horn (10.1016/j.laa.2019.09.027_br0080) 1985 Aouchiche (10.1016/j.laa.2019.09.027_br0010) 2013; 439 Lin (10.1016/j.laa.2019.09.027_br0100) 2018; 557 You (10.1016/j.laa.2019.09.027_br0180) 2019; 577 Díaz (10.1016/j.laa.2019.09.027_br0050) 2019; 577 Liu (10.1016/j.laa.2019.09.027_br0120) 2010; 4 Nikiforov (10.1016/j.laa.2019.09.027_br0130) 2017; 11 Zhou (10.1016/j.laa.2019.09.027_br0190) 2007; 58 Nikiforov (10.1016/j.laa.2019.09.027_br0140) 2017; 520 Zhou (10.1016/j.laa.2019.09.027_br0200) 2007; 447 Guo (10.1016/j.laa.2019.09.027_br0060) Li (10.1016/j.laa.2019.09.027_br0090) 2009; 46 |
References_xml | – volume: 439 start-page: 21 year: 2013 end-page: 33 ident: br0010 article-title: Two Laplacians for the distance matrix of a graph publication-title: Linear Algebra Appl. – volume: 83 start-page: 233 year: 2001 end-page: 240 ident: br0020 article-title: On the spectral radius of graphs with cut vertices publication-title: J. Combin. Theory Ser. B – volume: 62 start-page: 1377 year: 2014 end-page: 1387 ident: br0170 article-title: On the distance signless Laplacian spectral radius of graphs publication-title: Linear Multilinear Algebra – year: 1985 ident: br0080 article-title: Matrix Analysis – volume: 577 start-page: 21 year: 2019 end-page: 40 ident: br0180 article-title: On the spectrum of an equitable quotient matrix publication-title: Linear Algebra Appl. – volume: 4 start-page: 269 year: 2010 end-page: 277 ident: br0120 article-title: On spectral radius of the distance matrix publication-title: Appl. Anal. Discrete Math. – volume: 62 start-page: 667 year: 2009 end-page: 672 ident: br0040 article-title: On the largest eigenvalue of the distance matrix of a bipartite graph publication-title: MATCH Commun. Math. Comput. Chem. – ident: br0110 article-title: On the – volume: 577 start-page: 168 year: 2019 end-page: 185 ident: br0050 article-title: New results on the publication-title: Linear Algebra Appl. – volume: 447 start-page: 384 year: 2007 end-page: 387 ident: br0200 article-title: On the largest eigenvalue of the distance matrix of a connected graph publication-title: Chem. Phys. Lett. – volume: 6 start-page: 375 year: 2007 end-page: 384 ident: br0210 article-title: Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs publication-title: Internet Electron. J. Mol. Des. – volume: 37 start-page: 569 year: 1998 end-page: 573 ident: br0070 article-title: On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane publication-title: Indian J. Chem., Sect. A – volume: 520 start-page: 286 year: 2017 end-page: 305 ident: br0140 article-title: On the publication-title: Linear Algebra Appl. – volume: 563 start-page: 1 year: 2019 end-page: 23 ident: br0030 article-title: The generalized distance matrix publication-title: Linear Algebra Appl. – volume: 7 year: 2019 ident: br0160 article-title: The publication-title: Mathematics – volume: 557 start-page: 430 year: 2018 end-page: 437 ident: br0100 article-title: A note on the publication-title: Linear Algebra Appl. – volume: 11 start-page: 81 year: 2017 end-page: 107 ident: br0130 article-title: Merging the publication-title: Appl. Anal. Discrete Math. – volume: 433 start-page: 928 year: 2010 end-page: 933 ident: br0220 article-title: On the signless Laplacian spectral radius of graphs with cut vertices publication-title: Linear Algebra Appl. – volume: 550 start-page: 87 year: 2018 end-page: 104 ident: br0150 article-title: On the publication-title: Linear Algebra Appl. – year: 2019 ident: br0060 article-title: On the distance – volume: 46 start-page: 340 year: 2009 end-page: 346 ident: br0090 article-title: On the spectral radius of graphs with connectivity at most publication-title: J. Math. Chem. – volume: 58 start-page: 657 year: 2007 end-page: 662 ident: br0190 article-title: On the largest eigenvalue of the distance matrix of a tree publication-title: MATCH Commun. Math. Comput. Chem. – year: 1985 ident: 10.1016/j.laa.2019.09.027_br0080 – volume: 433 start-page: 928 year: 2010 ident: 10.1016/j.laa.2019.09.027_br0220 article-title: On the signless Laplacian spectral radius of graphs with cut vertices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.04.041 – volume: 4 start-page: 269 year: 2010 ident: 10.1016/j.laa.2019.09.027_br0120 article-title: On spectral radius of the distance matrix publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM100428020L – volume: 37 start-page: 569 year: 1998 ident: 10.1016/j.laa.2019.09.027_br0070 article-title: On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane publication-title: Indian J. Chem., Sect. A – volume: 11 start-page: 81 year: 2017 ident: 10.1016/j.laa.2019.09.027_br0130 article-title: Merging the A- and Q-spectral theories publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM1701081N – volume: 62 start-page: 667 year: 2009 ident: 10.1016/j.laa.2019.09.027_br0040 article-title: On the largest eigenvalue of the distance matrix of a bipartite graph publication-title: MATCH Commun. Math. Comput. Chem. – volume: 6 start-page: 375 year: 2007 ident: 10.1016/j.laa.2019.09.027_br0210 article-title: Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs publication-title: Internet Electron. J. Mol. Des. – volume: 7 year: 2019 ident: 10.1016/j.laa.2019.09.027_br0160 article-title: The Aα−spectral radii of graphs with given connectivity publication-title: Mathematics – volume: 447 start-page: 384 year: 2007 ident: 10.1016/j.laa.2019.09.027_br0200 article-title: On the largest eigenvalue of the distance matrix of a connected graph publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.09.048 – ident: 10.1016/j.laa.2019.09.027_br0060 – volume: 563 start-page: 1 year: 2019 ident: 10.1016/j.laa.2019.09.027_br0030 article-title: The generalized distance matrix publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.10.014 – volume: 550 start-page: 87 year: 2018 ident: 10.1016/j.laa.2019.09.027_br0150 article-title: On the α−index of graphs with pendent paths publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.03.036 – volume: 58 start-page: 657 year: 2007 ident: 10.1016/j.laa.2019.09.027_br0190 article-title: On the largest eigenvalue of the distance matrix of a tree publication-title: MATCH Commun. Math. Comput. Chem. – volume: 439 start-page: 21 year: 2013 ident: 10.1016/j.laa.2019.09.027_br0010 article-title: Two Laplacians for the distance matrix of a graph publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2013.02.030 – volume: 46 start-page: 340 year: 2009 ident: 10.1016/j.laa.2019.09.027_br0090 article-title: On the spectral radius of graphs with connectivity at most k publication-title: J. Math. Chem. doi: 10.1007/s10910-008-9465-5 – ident: 10.1016/j.laa.2019.09.027_br0110 – volume: 577 start-page: 168 year: 2019 ident: 10.1016/j.laa.2019.09.027_br0050 article-title: New results on the Dα− matrix of connected graph publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2019.04.030 – volume: 520 start-page: 286 year: 2017 ident: 10.1016/j.laa.2019.09.027_br0140 article-title: On the Aα−spectra of trees publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2017.01.029 – volume: 83 start-page: 233 year: 2001 ident: 10.1016/j.laa.2019.09.027_br0020 article-title: On the spectral radius of graphs with cut vertices publication-title: J. Combin. Theory Ser. B doi: 10.1006/jctb.2001.2052 – volume: 557 start-page: 430 year: 2018 ident: 10.1016/j.laa.2019.09.027_br0100 article-title: A note on the Aα−spectral radius of graphs publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.08.008 – volume: 577 start-page: 21 year: 2019 ident: 10.1016/j.laa.2019.09.027_br0180 article-title: On the spectrum of an equitable quotient matrix publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2019.04.013 – volume: 62 start-page: 1377 issue: 10 year: 2014 ident: 10.1016/j.laa.2019.09.027_br0170 article-title: On the distance signless Laplacian spectral radius of graphs publication-title: Linear Multilinear Algebra doi: 10.1080/03081087.2013.828720 |
SSID | ssj0004702 |
Score | 2.2995937 |
Snippet | For a connected graph G and α∈[0,1], let Dα(G) be the matrixDα(G)=αTr(G)+(1−α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal matrix of... For a connected graph G and α ∈ [0, 1], let Dα(G) be the matrix Dα(G) = αTr(G) + (1 - α)D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 353 |
SubjectTerms | Apexes Connectivity Convex combination of matrices Distance matrix Distance spectral radius Graph theory Graphs Linear algebra Lower bounds Spectra Spectral radius Upper bounds Vertex transmission |
Title | On the minimal Dα− spectral radius of graphs subject to fixed connectivity |
URI | https://dx.doi.org/10.1016/j.laa.2019.09.027 https://www.proquest.com/docview/2322878219 |
Volume | 584 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELYKLDAgfkX5qTwwIQWS1I6TsfypgFoWkLpZtuNIRdBWTSoxMTPzJrwID8GTcOckIBBiQMri6BxFZ_vznX33HSH7gdVcWGU9nVrfY4ILTwmbee0Uyc3TLDOuTGevH3Vv2eWADxrkpM6FwbDKCvtLTHdoXb05qrR5NBkOMcfXkemhCeKjmQ44jFmlmMQ3OP7KjRR-xRjOPJSubzZdjNe9QuqhIHFUp1hY5ve96QdKu63nfIUsVzYj7ZS_tUoadrRGlnqfhKv5Ouldjyg0KTKFPIDs6dvr-_MLdXmUU2hPVTqc5XScUcdQndN8pvEEhhZjmg0fbUoNRryYspbEBrk9P7s56XpVpQTPtENeeFxxE2ShaptIM19rvJ1NFCw28EbihAkYpiAWOoYdK8zAo4t0EKeKg2UdR-BwifYmmR-NR3aLUKYst2Eo_DRKmIlYnAjLUxv5oYHe1jSJX-tImopGHKtZ3Ms6XuxOglolqlX68ISiSQ4-u0xKDo2_hFmtePltIkjA-L-67daDJKtVmEuwFsEhjAGUt__31R2yGKJ_7Y5cdsl8MZ3ZPTBCCt0ic4dPQYssdC6uuv2Wm3Mf6fzcKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTgIxEG4QD-rB-BtR1B48mWzYn3a7e1SUoAJeIOHWtN1ugkEgLCQ-gmffxBfxIXwSp2UXozEcTPbSzXSzmbbTb9qZbxC68LSkTAvtyES7DmGUOYLp1AkSQ26epKmyZTrbnbDZI_d92i-hepELY8Iqc9u_sOnWWudvark2a5PBwOT4WjI9A0FcA9PX0DqggdBm8fWvv5MjmZtThhPHiBdXmzbIaygM95AXW65TU1nm783pl5m2e09jB23noBFfLf5rF5X0aA9ttZeMq9k-aj-OMDSxoQp5Btmbj_fP1zdsEymn0J6KZDDP8DjFlqI6w9lcmiMYPBvjdPCiE6xMyItaFJM4QL3GbbfedPJSCY4KfDpzqKDKS30RqFASV0pzPRsLWG3gjkQxYTBOXsRkBFuWn4JLF0ovSgQFaB2F4HGx4BCVR-ORPkKYCE217zM3CWOiQhLFTNNEh66voLdWFeQWOuIq5xE35SyGvAgYe-KgVm7Uyl14fFZBl8sukwWJxiphUiie_5gJHIz8qm7VYpB4vgwzDnARPMIIrPLx_756jjaa3XaLt-46Dydo0zfOtj1_qaLybDrXp4BIZvLMzrgv-Lncwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+minimal+D%CE%B1%E2%88%92+spectral+radius+of+graphs+subject+to+fixed+connectivity&rft.jtitle=Linear+algebra+and+its+applications&rft.au=D%C3%ADaz%2C+Roberto+C.&rft.au=Past%C3%A9n%2C+Germain&rft.au=Rojo%2C+Oscar&rft.date=2020-01-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=584&rft.spage=353&rft.epage=370&rft_id=info:doi/10.1016%2Fj.laa.2019.09.027&rft.externalDocID=S0024379519304161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |