BVI-VFI: A Video Quality Database for Video Frame Interpolation

Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how human...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 32; pp. 6004 - 6019
Main Authors Danier, Duolikun, Zhang, Fan, Bull, David R.
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2023.3327912

Cover

Abstract Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database .
AbstractList Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database .
Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database.Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database.
Author Zhang, Fan
Bull, David R.
Danier, Duolikun
Author_xml – sequence: 1
  givenname: Duolikun
  orcidid: 0000-0002-9320-7099
  surname: Danier
  fullname: Danier, Duolikun
  email: duolikun.danier@bristol.ac.uk
  organization: Bristol Vision Institute, University of Bristol, Bristol, U.K
– sequence: 2
  givenname: Fan
  orcidid: 0000-0001-6623-9936
  surname: Zhang
  fullname: Zhang, Fan
  email: fan.zhang@bristol.ac.uk
  organization: Bristol Vision Institute, University of Bristol, Bristol, U.K
– sequence: 3
  givenname: David R.
  orcidid: 0000-0001-7634-190X
  surname: Bull
  fullname: Bull, David R.
  email: dave.bull@bristol.ac.uk
  organization: Bristol Vision Institute, University of Bristol, Bristol, U.K
BookMark eNp90DtPwzAUBWALFdEH7AwMkVhYUvyI7ZgFlUIhUiVAKl0j17mRUqVxsZOh_x6XdkAdmHwlf8fyPUPUa2wDCF0TPCYEq_tF9jGmmLIxY1QqQs_QgKiExBgntBdmzGUsSaL6aOj9GmOScCIuUJ8FHAgboMenZRYvZ9lDNImWVQE2-ux0XbW76Fm3eqU9RKV1x6uZ0xuIsqYFt7W1bivbXKLzUtcero7nCH3NXhbTt3j-_ppNJ_PYMMrbmAtBsZQJNaLgZEVFoQArohhLIC2NpKtUC4ZFISiwgIBKpkpulEmBM5OyEbo7vLt19rsD3-abyhuoa92A7XxO05RzJsJ6gd6e0LXtXBN-t1eSEEJpEpQ4KOOs9w7K3FTt70qt01WdE5zvK85Dxfm-4vxYcQjik-DWVRvtdv9Fbg6RCgD-cIYTQST7ARDTgrk
CODEN IIPRE4
CitedBy_id crossref_primary_10_3390_s24010005
crossref_primary_10_1007_s11432_024_4133_3
crossref_primary_10_1109_LSP_2024_3404138
Cites_doi 10.1007/s11263-010-0390-2
10.1007/978-3-030-58568-6_7
10.1109/TIP.2003.819861
10.1016/j.patrec.2010.05.009
10.1007/978-3-030-66823-5_3
10.1109/OJSP.2021.3075879
10.1109/QoMEX48832.2020.9123096
10.1109/TIP.2014.2299154
10.1109/ICCV.2017.89
10.1109/TBC.2016.2570022
10.1109/JSTSP.2012.2215007
10.1109/TCSVT.2015.2428551
10.1109/ICIP.2016.7532796
10.1109/TMM.2018.2880603
10.1109/TIP.2015.2502725
10.1109/LSP.2012.2227726
10.1109/TCSVT.2015.2461971
10.1109/ICIP.2017.8296291
10.1109/TIP.2019.2923051
10.1109/TIP.2014.2346028
10.1109/TMM.2018.2817070
10.1109/TIP.2013.2293423
10.1109/TPAMI.2019.2941941
10.1016/j.jvcir.2015.02.012
10.1109/CVPR.2018.00194
10.1109/TPAMI.2021.3129819
10.1109/QoMEX.2019.8743221
10.1145/3478513.3480514
10.1109/TIP.2021.3072221
10.1109/TIP.2011.2109730
10.1109/ICCV48922.2021.01427
10.1109/ICIP46576.2022.9897364
10.1109/ICIP46576.2022.9897929
10.5594/j18266XY
10.2352/J.ImagingSci.Technol.2016.60.6.060402
10.1109/TIP.2012.2214050
10.1109/OJSP.2021.3090333
10.1109/TIP.2022.3181496
10.1109/TIP.2018.2825100
10.1609/aaai.v34i07.6693
10.1109/CVPR42600.2020.01402
10.1109/ICCV.2019.00098
10.1109/ICCV.2017.478
10.1109/TIP.2005.859389
10.1109/CVPR52688.2022.00352
10.1145/3386569.3392411
10.1109/TMM.2016.2537200
10.1109/ACSSC.2003.1292216
10.1145/2851581.2892449
10.1109/TCSVT.2017.2683504
10.1109/CVPR42600.2020.00536
10.1007/978-3-031-20071-7_15
10.1109/TMM.2019.2908377
10.1109/TIP.2017.2760518
10.1109/CVPR42600.2020.00548
10.1109/JSTSP.2012.2212417
10.1109/ICASSP43922.2022.9746547
10.1109/TMM.2021.3052419
10.1007/978-3-319-66185-8_41
10.1109/CVPR.2018.00068
10.1109/CVPR52688.2022.00351
10.1109/LSP.2022.3215311
10.1109/TIP.2010.2042111
10.1109/ICCV48922.2021.01422
10.1109/TIP.2021.3106801
10.1109/ICCV.2017.37
10.1109/ICIP.2017.8296928
10.1109/ACCESS.2021.3100462
10.1109/TMM.2013.2291663
10.1109/CVPR52688.2022.00354
10.1109/TCSVT.2012.2214933
10.1109/CVPR.2018.00183
10.1109/CVPR52688.2022.00201
10.1117/12.509908
10.1007/978-3-030-58595-2_29
10.1109/CVPR42600.2020.00516
10.1109/CVPR46437.2021.00791
10.1109/TPAMI.2021.3100714
10.1109/CVPR.2019.00382
10.1109/LSP.2017.2726542
10.1109/CVPR.2015.7298747
10.1109/CVPR52688.2022.00353
10.1109/TIP.2020.2988148
10.1109/CVPR52688.2022.01696
10.1109/CVPR.2018.00938
10.1109/PCS56426.2022.10018062
10.1109/CVPR52688.2022.01728
10.1109/TIP.2018.2869673
10.1109/ICASSP40776.2020.9053031
10.1007/978-3-031-20068-7_31
10.1109/TIP.2021.3137658
10.1109/CVPR52688.2022.01723
10.1109/CVPR46437.2021.00652
10.1007/BF01420984
10.1145/3339825.3394937
10.1109/CVPR46437.2021.01589
10.1109/JDT.2014.2312233
10.1117/1.JEI.23.1.013016
10.1007/s11263-018-01144-2
10.1109/TIP.2021.3136723
10.1109/TIP.2021.3112055
10.1109/QoMEX.2017.7965673
10.1145/3450626.3459831
10.1109/PCS50896.2021.9477460
10.1109/CVPR.2018.00059
10.1145/2810039
10.1109/TBC.2020.3028335
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3327912
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 6019
ExternalDocumentID 10_1109_TIP_2023_3327912
10304617
Genre orig-research
GrantInformation_xml – fundername: University of Bristol
  funderid: 10.13039/501100000883
– fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: UK Research and Innovation (UKRI) MyWorld Strength in Places Program
  funderid: 10.13039/100014013
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c325t-566207742c6d51b26d9e0919334e8fc72b8a6306d62e32c6e2739f5c9c8e53c83
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 11:22:32 EDT 2025
Mon Jun 30 08:26:23 EDT 2025
Wed Oct 01 02:58:53 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Wed Aug 27 02:35:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-566207742c6d51b26d9e0919334e8fc72b8a6306d62e32c6e2739f5c9c8e53c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6623-9936
0000-0001-7634-190X
0000-0002-9320-7099
PMID 37910423
PQID 2887111224
PQPubID 85429
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TIP_2023_3327912
crossref_primary_10_1109_TIP_2023_3327912
proquest_miscellaneous_2885536516
proquest_journals_2887111224
ieee_primary_10304617
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
(ref99) 2019
ref54
liu (ref18) 2022
zheng (ref78) 2022
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref101
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
cheng (ref65) 2022
ref39
ref38
ref24
ref25
ref20
ref21
niklaus (ref45) 2017
ref28
ref27
ref29
xu (ref13) 2019; 32
ref12
ref15
yeol lee (ref77) 2021
ref14
ref97
ref96
ref11
ref124
ref10
ref98
ref17
ref16
ref19
huang (ref36) 2020
kalluri (ref26) 2020
ref92
ref94
antkowiak (ref79) 2000
ref91
ref90
bull (ref95) 2021
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
niklaus (ref43) 2022
ref80
ref108
ref109
ref106
ref107
li (ref23) 2016; 6
ref75
ref104
ref74
ref102
ref76
ref103
ref2
ref1
zhang (ref68) 2020; 33
zhang (ref125) 2016; 26
rao (ref93) 2019
ref71
ref111
ref70
ref112
ref73
(ref100) 2022
ref72
ref110
ding (ref22) 2022; 44
(ref105) 2022
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref31
  doi: 10.1007/s11263-010-0390-2
– ident: ref32
  doi: 10.1007/978-3-030-58568-6_7
– start-page: 17
  year: 2019
  ident: ref93
  article-title: AVT-VQDB-UHD-1: A large scale video quality database for UHD-1
  publication-title: Proc IEEE Int Symp Multimedia (ISM)
– volume: 44
  start-page: 2567
  year: 2022
  ident: ref22
  article-title: Image quality assessment: Unifying structure and texture similarity
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref19
  doi: 10.1109/TIP.2003.819861
– ident: ref109
  doi: 10.1016/j.patrec.2010.05.009
– ident: ref44
  doi: 10.1007/978-3-030-66823-5_3
– ident: ref52
  doi: 10.1109/OJSP.2021.3075879
– year: 2021
  ident: ref95
  publication-title: Intelligent Image and Video Compression Communicating Pictures
– ident: ref28
  doi: 10.1109/QoMEX48832.2020.9123096
– ident: ref119
  doi: 10.1109/TIP.2014.2299154
– ident: ref55
  doi: 10.1109/ICCV.2017.89
– ident: ref91
  doi: 10.1109/TBC.2016.2570022
– year: 2022
  ident: ref18
  article-title: JNMR: Joint non-linear motion regression for video frame interpolation
  publication-title: arXiv 2206 04231
– ident: ref96
  doi: 10.1109/JSTSP.2012.2215007
– volume: 26
  start-page: 1017
  year: 2016
  ident: ref125
  article-title: A perception-based hybrid model for video quality assessment
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2015.2428551
– ident: ref106
  doi: 10.1109/ICIP.2016.7532796
– year: 2020
  ident: ref26
  article-title: FLAVR: Flow-agnostic video representations for fast frame interpolation
  publication-title: arXiv 2012 08512
– start-page: 2270
  year: 2017
  ident: ref45
  article-title: Video frame interpolation via adaptive convolution
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref7
  doi: 10.1109/TMM.2018.2880603
– ident: ref118
  doi: 10.1109/TIP.2015.2502725
– ident: ref116
  doi: 10.1109/LSP.2012.2227726
– ident: ref97
  doi: 10.1109/TCSVT.2015.2461971
– year: 2022
  ident: ref78
  article-title: FAVER: Blind quality prediction of variable frame rate videos
  publication-title: arXiv 2201 01492
– ident: ref75
  doi: 10.1109/ICIP.2017.8296291
– ident: ref123
  doi: 10.1109/TIP.2019.2923051
– volume: 6
  start-page: 1
  year: 2016
  ident: ref23
  article-title: Toward a practical perceptual video quality metric
  publication-title: Netflix Tech Blog
– ident: ref21
  doi: 10.1109/TIP.2014.2346028
– ident: ref83
  doi: 10.1109/TMM.2018.2817070
– ident: ref111
  doi: 10.1109/TIP.2013.2293423
– ident: ref57
  doi: 10.1109/TPAMI.2019.2941941
– ident: ref88
  doi: 10.1016/j.jvcir.2015.02.012
– ident: ref112
  doi: 10.1109/CVPR.2018.00194
– ident: ref66
  doi: 10.1109/TPAMI.2021.3129819
– ident: ref27
  doi: 10.1109/QoMEX.2019.8743221
– ident: ref108
  doi: 10.1145/3478513.3480514
– ident: ref120
  doi: 10.1109/TIP.2021.3072221
– ident: ref110
  doi: 10.1109/TIP.2011.2109730
– ident: ref37
  doi: 10.1109/ICCV48922.2021.01427
– ident: ref29
  doi: 10.1109/ICIP46576.2022.9897364
– ident: ref53
  doi: 10.1109/ICIP46576.2022.9897929
– ident: ref2
  doi: 10.5594/j18266XY
– ident: ref4
  doi: 10.2352/J.ImagingSci.Technol.2016.60.6.060402
– ident: ref117
  doi: 10.1109/TIP.2012.2214050
– ident: ref121
  doi: 10.1109/OJSP.2021.3090333
– ident: ref74
  doi: 10.1109/TIP.2022.3181496
– ident: ref1
  doi: 10.1109/TIP.2018.2825100
– ident: ref58
  doi: 10.1609/aaai.v34i07.6693
– ident: ref48
  doi: 10.1109/CVPR42600.2020.01402
– ident: ref64
  doi: 10.1109/ICCV.2019.00098
– ident: ref34
  doi: 10.1109/ICCV.2017.478
– ident: ref70
  doi: 10.1109/TIP.2005.859389
– ident: ref15
  doi: 10.1109/CVPR52688.2022.00352
– ident: ref107
  doi: 10.1145/3386569.3392411
– ident: ref10
  doi: 10.1109/TMM.2016.2537200
– ident: ref69
  doi: 10.1109/ACSSC.2003.1292216
– year: 2021
  ident: ref77
  article-title: Space-time video regularity and visual fidelity: Compression, resolution and frame rate adaptation
  publication-title: arXiv 2103 16771
– ident: ref6
  doi: 10.1145/2851581.2892449
– ident: ref89
  doi: 10.1109/TCSVT.2017.2683504
– ident: ref47
  doi: 10.1109/CVPR42600.2020.00536
– ident: ref41
  doi: 10.1007/978-3-031-20071-7_15
– ident: ref24
  doi: 10.1109/TMM.2019.2908377
– ident: ref113
  doi: 10.1109/TIP.2017.2760518
– ident: ref42
  doi: 10.1109/CVPR42600.2020.00548
– ident: ref81
  doi: 10.1109/JSTSP.2012.2212417
– ident: ref85
  doi: 10.1109/ICASSP43922.2022.9746547
– ident: ref49
  doi: 10.1109/TMM.2021.3052419
– ident: ref11
  doi: 10.1007/978-3-319-66185-8_41
– ident: ref20
  doi: 10.1109/CVPR.2018.00068
– ident: ref14
  doi: 10.1109/CVPR52688.2022.00351
– ident: ref72
  doi: 10.1109/LSP.2022.3215311
– ident: ref80
  doi: 10.1109/TIP.2010.2042111
– ident: ref39
  doi: 10.1109/ICCV48922.2021.01422
– year: 2022
  ident: ref105
  publication-title: Subjective video quality assessment methods for multimedia applications
– ident: ref76
  doi: 10.1109/TIP.2021.3106801
– ident: ref46
  doi: 10.1109/ICCV.2017.37
– ident: ref8
  doi: 10.1109/ICIP.2017.8296928
– year: 2022
  ident: ref43
  article-title: Splatting-based synthesis for video frame interpolation
  publication-title: arXiv 2201 10075
– ident: ref92
  doi: 10.1109/ACCESS.2021.3100462
– ident: ref104
  doi: 10.1109/TMM.2013.2291663
– ident: ref17
  doi: 10.1109/CVPR52688.2022.00354
– ident: ref73
  doi: 10.1109/TCSVT.2012.2214933
– ident: ref33
  doi: 10.1109/CVPR.2018.00183
– ident: ref40
  doi: 10.1109/CVPR52688.2022.00201
– ident: ref103
  doi: 10.1117/12.509908
– ident: ref38
  doi: 10.1007/978-3-030-58595-2_29
– ident: ref67
  doi: 10.1109/CVPR42600.2020.00516
– ident: ref50
  doi: 10.1109/CVPR46437.2021.00791
– year: 2022
  ident: ref65
  article-title: Unsupervised video interpolation by learning multilayered 2.5D motion fields
  publication-title: arXiv 2204 09900
– ident: ref51
  doi: 10.1109/TPAMI.2021.3100714
– ident: ref56
  doi: 10.1109/CVPR.2019.00382
– ident: ref71
  doi: 10.1109/LSP.2017.2726542
– ident: ref59
  doi: 10.1109/CVPR.2015.7298747
– ident: ref16
  doi: 10.1109/CVPR52688.2022.00353
– ident: ref84
  doi: 10.1109/TIP.2020.2988148
– ident: ref54
  doi: 10.1109/CVPR52688.2022.01696
– ident: ref9
  doi: 10.1109/CVPR.2018.00938
– ident: ref115
  doi: 10.1109/PCS56426.2022.10018062
– year: 2019
  ident: ref99
  publication-title: Methodologies for the subjective assessment of the quality of television images
– ident: ref63
  doi: 10.1109/CVPR52688.2022.01728
– year: 2000
  ident: ref79
  publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment march 2000
– ident: ref102
  doi: 10.1109/TIP.2018.2869673
– ident: ref25
  doi: 10.1109/ICASSP40776.2020.9053031
– ident: ref124
  doi: 10.1007/978-3-031-20068-7_31
– ident: ref94
  doi: 10.1109/TIP.2021.3137658
– ident: ref62
  doi: 10.1109/CVPR52688.2022.01723
– ident: ref12
  doi: 10.1109/CVPR46437.2021.00652
– ident: ref30
  doi: 10.1007/BF01420984
– ident: ref98
  doi: 10.1145/3339825.3394937
– ident: ref61
  doi: 10.1109/CVPR46437.2021.01589
– ident: ref3
  doi: 10.1109/JDT.2014.2312233
– year: 2022
  ident: ref100
  publication-title: Psychtoolbox-3
– ident: ref82
  doi: 10.1117/1.JEI.23.1.013016
– volume: 32
  year: 2019
  ident: ref13
  article-title: Quadratic video interpolation
  publication-title: Advances in neural information processing systems
– year: 2020
  ident: ref36
  article-title: Real-time intermediate flow estimation for video frame interpolation
  publication-title: arXiv 2011 06294
– ident: ref35
  doi: 10.1007/s11263-018-01144-2
– ident: ref87
  doi: 10.1109/TIP.2021.3136723
– ident: ref122
  doi: 10.1109/TIP.2021.3112055
– ident: ref101
  doi: 10.1109/QoMEX.2017.7965673
– ident: ref114
  doi: 10.1145/3450626.3459831
– ident: ref90
  doi: 10.1109/PCS50896.2021.9477460
– ident: ref60
  doi: 10.1109/CVPR.2018.00059
– ident: ref5
  doi: 10.1145/2810039
– ident: ref86
  doi: 10.1109/TBC.2020.3028335
– volume: 33
  start-page: 13308
  year: 2020
  ident: ref68
  article-title: Video frame interpolation without temporal priors
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014516
Score 2.4592786
Snippet Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6004
SubjectTerms Algorithms
Benchmark testing
BVI-VFI
Image processing
Image quality
Interpolation
Kernel
Measurement
perceptual quality
Quality assessment
Spatial databases
subjective quality assessment
Video
video frame interpolation
Video quality database
Title BVI-VFI: A Video Quality Database for Video Frame Interpolation
URI https://ieeexplore.ieee.org/document/10304617
https://www.proquest.com/docview/2887111224
https://www.proquest.com/docview/2885536516
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTuVQWh7qAq1cqRcOyWbttWP3UtHHiq1U1AOsuEWOM5FQqw1iswf49R0_dgVUoJ4SyZMo8Yw933heAB_diCtbGhJeZclA4aLNjGwwQ6yL2jirCueTk3-eqdOL8Y9LeZmS1UMuDCKG4DPM_W3w5TedW_qjsuEo1gcvN2Cj1Coma61dBr7jbHBtyjIrCfevfJKFGZ5Pf-W-TXguBC_NyHewEXT1ISEP1FHor_LPphw0zWQbzlbfGANMfufLvs7d3aPyjf_9E6_hVcKc7CQKyRt4gfMd2E74k6XVvdiBrXvFCXfh85fZNJtNpp_YCZtdNdixWG_jln2zvfXajxHgTUMTH-PFYgRjF8Pr9uBi8v3862mW2i1kTnDZZwTseEFokDvVyFHNVWOQ0IQRYoy6dSWvtVVkYTSKoyAiJORjWumM0yiF02IfNufdHN8CGzdkpiBZMi1pP7KoTDvW0pKlVGprndYDGK5mvXKpFrlvifGnCjZJYSpiWeVZViWWDeB4_cR1rMPxDO2en_Z7dHHGB3C04myVVuqi4rTL0n5PSGYAH9bDtMa848TOsVsGGimFIgE7eOLVh_DSf0E8mzmCzf5mie8IrfT1-yClfwG_Ld9D
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFEorlhYwEhcOyWbt2Il7qVroahfaFYftqrfIcSZSVbRBNHuAX8_4sasCAnFKJE-ixDP2fON5Aby1I65MoUl4lSEDhYs20bLBBLHOam2NyqxLTr6Yqcll_vFKXsVkdZ8Lg4g--AxTd-t9-U1nV-6obDgK9cGLe3Bf5nkuQ7rWxmnges5656YskoKQ_9ormenhfPo5dY3CUyF4oUeuh42gqwsK-UUh-Q4rf2zLXteMd2C2_soQYnKTrvo6tT9-K-D437_xBB5H1MlOgpg8hS1c7sJORKAsru_bXXh0pzzhMzg-XUyTxXh6xE7Y4rrBjoWKG9_ZB9Mbp_8YQd44NHZRXizEMHYhwG4PLsdn8_eTJDZcSKzgsk8I2vGM8CC3qpGjmqtGI-EJLUSOZWsLXpdGkY3RKI6CiJCwj26l1bZEKWwp9mF72S3xObC8IUMFyZZpSf-RTaXbvJSGbKWiNMaW5QCG61mvbKxG7ppifKm8VZLpilhWOZZVkWUDeLd54muoxPEP2j037XfowowP4HDN2Squ1duK0z5LOz5hmQG82QzTKnOuE7PEbuVppBSKBOzFX179Gh5M5hfn1fl09ukAHrqvCSc1h7Ddf1vhS8Iuff3KS-xPoBrikA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BVI-VFI%3A+A+Video+Quality+Database+for+Video+Frame+Interpolation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Danier%2C+Duolikun&rft.au=Zhang%2C+Fan&rft.au=Bull%2C+David+R.&rft.date=2023&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=32&rft.spage=6004&rft.epage=6019&rft_id=info:doi/10.1109%2FTIP.2023.3327912&rft_id=info%3Apmid%2F37910423&rft.externalDocID=10304617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon