BVI-VFI: A Video Quality Database for Video Frame Interpolation
Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how human...
        Saved in:
      
    
          | Published in | IEEE transactions on image processing Vol. 32; pp. 6004 - 6019 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1057-7149 1941-0042 1941-0042  | 
| DOI | 10.1109/TIP.2023.3327912 | 
Cover
| Abstract | Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database . | 
    
|---|---|
| AbstractList | Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database . Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database.Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research community. While the development of more advanced VFI algorithms has been extensively researched, there remains little understanding of how humans perceive the quality of interpolated content and how well existing objective quality assessment methods perform when measuring the perceived quality. In order to narrow this research gap, we have developed a new video quality database named BVI-VFI, which contains 540 distorted sequences generated by applying five commonly used VFI algorithms to 36 diverse source videos with various spatial resolutions and frame rates. We collected more than 10,800 quality ratings for these videos through a large scale subjective study involving 189 human subjects. Based on the collected subjective scores, we further analysed the influence of VFI algorithms and frame rates on the perceptual quality of interpolated videos. Moreover, we benchmarked the performance of 33 classic and state-of-the-art objective image/video quality metrics on the new database, and demonstrated the urgent requirement for more accurate bespoke quality assessment methods for VFI. To facilitate further research in this area, we have made BVI-VFI publicly available at https://github.com/danier97/BVI-VFI-database.  | 
    
| Author | Zhang, Fan Bull, David R. Danier, Duolikun  | 
    
| Author_xml | – sequence: 1 givenname: Duolikun orcidid: 0000-0002-9320-7099 surname: Danier fullname: Danier, Duolikun email: duolikun.danier@bristol.ac.uk organization: Bristol Vision Institute, University of Bristol, Bristol, U.K – sequence: 2 givenname: Fan orcidid: 0000-0001-6623-9936 surname: Zhang fullname: Zhang, Fan email: fan.zhang@bristol.ac.uk organization: Bristol Vision Institute, University of Bristol, Bristol, U.K – sequence: 3 givenname: David R. orcidid: 0000-0001-7634-190X surname: Bull fullname: Bull, David R. email: dave.bull@bristol.ac.uk organization: Bristol Vision Institute, University of Bristol, Bristol, U.K  | 
    
| BookMark | eNp90DtPwzAUBWALFdEH7AwMkVhYUvyI7ZgFlUIhUiVAKl0j17mRUqVxsZOh_x6XdkAdmHwlf8fyPUPUa2wDCF0TPCYEq_tF9jGmmLIxY1QqQs_QgKiExBgntBdmzGUsSaL6aOj9GmOScCIuUJ8FHAgboMenZRYvZ9lDNImWVQE2-ux0XbW76Fm3eqU9RKV1x6uZ0xuIsqYFt7W1bivbXKLzUtcero7nCH3NXhbTt3j-_ppNJ_PYMMrbmAtBsZQJNaLgZEVFoQArohhLIC2NpKtUC4ZFISiwgIBKpkpulEmBM5OyEbo7vLt19rsD3-abyhuoa92A7XxO05RzJsJ6gd6e0LXtXBN-t1eSEEJpEpQ4KOOs9w7K3FTt70qt01WdE5zvK85Dxfm-4vxYcQjik-DWVRvtdv9Fbg6RCgD-cIYTQST7ARDTgrk | 
    
| CODEN | IIPRE4 | 
    
| CitedBy_id | crossref_primary_10_3390_s24010005 crossref_primary_10_1007_s11432_024_4133_3 crossref_primary_10_1109_LSP_2024_3404138  | 
    
| Cites_doi | 10.1007/s11263-010-0390-2 10.1007/978-3-030-58568-6_7 10.1109/TIP.2003.819861 10.1016/j.patrec.2010.05.009 10.1007/978-3-030-66823-5_3 10.1109/OJSP.2021.3075879 10.1109/QoMEX48832.2020.9123096 10.1109/TIP.2014.2299154 10.1109/ICCV.2017.89 10.1109/TBC.2016.2570022 10.1109/JSTSP.2012.2215007 10.1109/TCSVT.2015.2428551 10.1109/ICIP.2016.7532796 10.1109/TMM.2018.2880603 10.1109/TIP.2015.2502725 10.1109/LSP.2012.2227726 10.1109/TCSVT.2015.2461971 10.1109/ICIP.2017.8296291 10.1109/TIP.2019.2923051 10.1109/TIP.2014.2346028 10.1109/TMM.2018.2817070 10.1109/TIP.2013.2293423 10.1109/TPAMI.2019.2941941 10.1016/j.jvcir.2015.02.012 10.1109/CVPR.2018.00194 10.1109/TPAMI.2021.3129819 10.1109/QoMEX.2019.8743221 10.1145/3478513.3480514 10.1109/TIP.2021.3072221 10.1109/TIP.2011.2109730 10.1109/ICCV48922.2021.01427 10.1109/ICIP46576.2022.9897364 10.1109/ICIP46576.2022.9897929 10.5594/j18266XY 10.2352/J.ImagingSci.Technol.2016.60.6.060402 10.1109/TIP.2012.2214050 10.1109/OJSP.2021.3090333 10.1109/TIP.2022.3181496 10.1109/TIP.2018.2825100 10.1609/aaai.v34i07.6693 10.1109/CVPR42600.2020.01402 10.1109/ICCV.2019.00098 10.1109/ICCV.2017.478 10.1109/TIP.2005.859389 10.1109/CVPR52688.2022.00352 10.1145/3386569.3392411 10.1109/TMM.2016.2537200 10.1109/ACSSC.2003.1292216 10.1145/2851581.2892449 10.1109/TCSVT.2017.2683504 10.1109/CVPR42600.2020.00536 10.1007/978-3-031-20071-7_15 10.1109/TMM.2019.2908377 10.1109/TIP.2017.2760518 10.1109/CVPR42600.2020.00548 10.1109/JSTSP.2012.2212417 10.1109/ICASSP43922.2022.9746547 10.1109/TMM.2021.3052419 10.1007/978-3-319-66185-8_41 10.1109/CVPR.2018.00068 10.1109/CVPR52688.2022.00351 10.1109/LSP.2022.3215311 10.1109/TIP.2010.2042111 10.1109/ICCV48922.2021.01422 10.1109/TIP.2021.3106801 10.1109/ICCV.2017.37 10.1109/ICIP.2017.8296928 10.1109/ACCESS.2021.3100462 10.1109/TMM.2013.2291663 10.1109/CVPR52688.2022.00354 10.1109/TCSVT.2012.2214933 10.1109/CVPR.2018.00183 10.1109/CVPR52688.2022.00201 10.1117/12.509908 10.1007/978-3-030-58595-2_29 10.1109/CVPR42600.2020.00516 10.1109/CVPR46437.2021.00791 10.1109/TPAMI.2021.3100714 10.1109/CVPR.2019.00382 10.1109/LSP.2017.2726542 10.1109/CVPR.2015.7298747 10.1109/CVPR52688.2022.00353 10.1109/TIP.2020.2988148 10.1109/CVPR52688.2022.01696 10.1109/CVPR.2018.00938 10.1109/PCS56426.2022.10018062 10.1109/CVPR52688.2022.01728 10.1109/TIP.2018.2869673 10.1109/ICASSP40776.2020.9053031 10.1007/978-3-031-20068-7_31 10.1109/TIP.2021.3137658 10.1109/CVPR52688.2022.01723 10.1109/CVPR46437.2021.00652 10.1007/BF01420984 10.1145/3339825.3394937 10.1109/CVPR46437.2021.01589 10.1109/JDT.2014.2312233 10.1117/1.JEI.23.1.013016 10.1007/s11263-018-01144-2 10.1109/TIP.2021.3136723 10.1109/TIP.2021.3112055 10.1109/QoMEX.2017.7965673 10.1145/3450626.3459831 10.1109/PCS50896.2021.9477460 10.1109/CVPR.2018.00059 10.1145/2810039 10.1109/TBC.2020.3028335  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1109/TIP.2023.3327912 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1941-0042 | 
    
| EndPage | 6019 | 
    
| ExternalDocumentID | 10_1109_TIP_2023_3327912 10304617  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: University of Bristol funderid: 10.13039/501100000883 – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: UK Research and Innovation (UKRI) MyWorld Strength in Places Program funderid: 10.13039/100014013  | 
    
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c325t-566207742c6d51b26d9e0919334e8fc72b8a6306d62e32c6e2739f5c9c8e53c83 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1057-7149 1941-0042  | 
    
| IngestDate | Thu Oct 02 11:22:32 EDT 2025 Mon Jun 30 08:26:23 EDT 2025 Wed Oct 01 02:58:53 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Wed Aug 27 02:35:05 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c325t-566207742c6d51b26d9e0919334e8fc72b8a6306d62e32c6e2739f5c9c8e53c83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-6623-9936 0000-0001-7634-190X 0000-0002-9320-7099  | 
    
| PMID | 37910423 | 
    
| PQID | 2887111224 | 
    
| PQPubID | 85429 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TIP_2023_3327912 crossref_primary_10_1109_TIP_2023_3327912 proquest_miscellaneous_2885536516 proquest_journals_2887111224 ieee_primary_10304617  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230000 2023-00-00 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 20230000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on image processing | 
    
| PublicationTitleAbbrev | TIP | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 (ref99) 2019 ref54 liu (ref18) 2022 zheng (ref78) 2022 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref101 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 cheng (ref65) 2022 ref39 ref38 ref24 ref25 ref20 ref21 niklaus (ref45) 2017 ref28 ref27 ref29 xu (ref13) 2019; 32 ref12 ref15 yeol lee (ref77) 2021 ref14 ref97 ref96 ref11 ref124 ref10 ref98 ref17 ref16 ref19 huang (ref36) 2020 kalluri (ref26) 2020 ref92 ref94 antkowiak (ref79) 2000 ref91 ref90 bull (ref95) 2021 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 niklaus (ref43) 2022 ref80 ref108 ref109 ref106 ref107 li (ref23) 2016; 6 ref75 ref104 ref74 ref102 ref76 ref103 ref2 ref1 zhang (ref68) 2020; 33 zhang (ref125) 2016; 26 rao (ref93) 2019 ref71 ref111 ref70 ref112 ref73 (ref100) 2022 ref72 ref110 ding (ref22) 2022; 44 (ref105) 2022 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121  | 
    
| References_xml | – ident: ref31 doi: 10.1007/s11263-010-0390-2 – ident: ref32 doi: 10.1007/978-3-030-58568-6_7 – start-page: 17 year: 2019 ident: ref93 article-title: AVT-VQDB-UHD-1: A large scale video quality database for UHD-1 publication-title: Proc IEEE Int Symp Multimedia (ISM) – volume: 44 start-page: 2567 year: 2022 ident: ref22 article-title: Image quality assessment: Unifying structure and texture similarity publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref19 doi: 10.1109/TIP.2003.819861 – ident: ref109 doi: 10.1016/j.patrec.2010.05.009 – ident: ref44 doi: 10.1007/978-3-030-66823-5_3 – ident: ref52 doi: 10.1109/OJSP.2021.3075879 – year: 2021 ident: ref95 publication-title: Intelligent Image and Video Compression Communicating Pictures – ident: ref28 doi: 10.1109/QoMEX48832.2020.9123096 – ident: ref119 doi: 10.1109/TIP.2014.2299154 – ident: ref55 doi: 10.1109/ICCV.2017.89 – ident: ref91 doi: 10.1109/TBC.2016.2570022 – year: 2022 ident: ref18 article-title: JNMR: Joint non-linear motion regression for video frame interpolation publication-title: arXiv 2206 04231 – ident: ref96 doi: 10.1109/JSTSP.2012.2215007 – volume: 26 start-page: 1017 year: 2016 ident: ref125 article-title: A perception-based hybrid model for video quality assessment publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2015.2428551 – ident: ref106 doi: 10.1109/ICIP.2016.7532796 – year: 2020 ident: ref26 article-title: FLAVR: Flow-agnostic video representations for fast frame interpolation publication-title: arXiv 2012 08512 – start-page: 2270 year: 2017 ident: ref45 article-title: Video frame interpolation via adaptive convolution publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref7 doi: 10.1109/TMM.2018.2880603 – ident: ref118 doi: 10.1109/TIP.2015.2502725 – ident: ref116 doi: 10.1109/LSP.2012.2227726 – ident: ref97 doi: 10.1109/TCSVT.2015.2461971 – year: 2022 ident: ref78 article-title: FAVER: Blind quality prediction of variable frame rate videos publication-title: arXiv 2201 01492 – ident: ref75 doi: 10.1109/ICIP.2017.8296291 – ident: ref123 doi: 10.1109/TIP.2019.2923051 – volume: 6 start-page: 1 year: 2016 ident: ref23 article-title: Toward a practical perceptual video quality metric publication-title: Netflix Tech Blog – ident: ref21 doi: 10.1109/TIP.2014.2346028 – ident: ref83 doi: 10.1109/TMM.2018.2817070 – ident: ref111 doi: 10.1109/TIP.2013.2293423 – ident: ref57 doi: 10.1109/TPAMI.2019.2941941 – ident: ref88 doi: 10.1016/j.jvcir.2015.02.012 – ident: ref112 doi: 10.1109/CVPR.2018.00194 – ident: ref66 doi: 10.1109/TPAMI.2021.3129819 – ident: ref27 doi: 10.1109/QoMEX.2019.8743221 – ident: ref108 doi: 10.1145/3478513.3480514 – ident: ref120 doi: 10.1109/TIP.2021.3072221 – ident: ref110 doi: 10.1109/TIP.2011.2109730 – ident: ref37 doi: 10.1109/ICCV48922.2021.01427 – ident: ref29 doi: 10.1109/ICIP46576.2022.9897364 – ident: ref53 doi: 10.1109/ICIP46576.2022.9897929 – ident: ref2 doi: 10.5594/j18266XY – ident: ref4 doi: 10.2352/J.ImagingSci.Technol.2016.60.6.060402 – ident: ref117 doi: 10.1109/TIP.2012.2214050 – ident: ref121 doi: 10.1109/OJSP.2021.3090333 – ident: ref74 doi: 10.1109/TIP.2022.3181496 – ident: ref1 doi: 10.1109/TIP.2018.2825100 – ident: ref58 doi: 10.1609/aaai.v34i07.6693 – ident: ref48 doi: 10.1109/CVPR42600.2020.01402 – ident: ref64 doi: 10.1109/ICCV.2019.00098 – ident: ref34 doi: 10.1109/ICCV.2017.478 – ident: ref70 doi: 10.1109/TIP.2005.859389 – ident: ref15 doi: 10.1109/CVPR52688.2022.00352 – ident: ref107 doi: 10.1145/3386569.3392411 – ident: ref10 doi: 10.1109/TMM.2016.2537200 – ident: ref69 doi: 10.1109/ACSSC.2003.1292216 – year: 2021 ident: ref77 article-title: Space-time video regularity and visual fidelity: Compression, resolution and frame rate adaptation publication-title: arXiv 2103 16771 – ident: ref6 doi: 10.1145/2851581.2892449 – ident: ref89 doi: 10.1109/TCSVT.2017.2683504 – ident: ref47 doi: 10.1109/CVPR42600.2020.00536 – ident: ref41 doi: 10.1007/978-3-031-20071-7_15 – ident: ref24 doi: 10.1109/TMM.2019.2908377 – ident: ref113 doi: 10.1109/TIP.2017.2760518 – ident: ref42 doi: 10.1109/CVPR42600.2020.00548 – ident: ref81 doi: 10.1109/JSTSP.2012.2212417 – ident: ref85 doi: 10.1109/ICASSP43922.2022.9746547 – ident: ref49 doi: 10.1109/TMM.2021.3052419 – ident: ref11 doi: 10.1007/978-3-319-66185-8_41 – ident: ref20 doi: 10.1109/CVPR.2018.00068 – ident: ref14 doi: 10.1109/CVPR52688.2022.00351 – ident: ref72 doi: 10.1109/LSP.2022.3215311 – ident: ref80 doi: 10.1109/TIP.2010.2042111 – ident: ref39 doi: 10.1109/ICCV48922.2021.01422 – year: 2022 ident: ref105 publication-title: Subjective video quality assessment methods for multimedia applications – ident: ref76 doi: 10.1109/TIP.2021.3106801 – ident: ref46 doi: 10.1109/ICCV.2017.37 – ident: ref8 doi: 10.1109/ICIP.2017.8296928 – year: 2022 ident: ref43 article-title: Splatting-based synthesis for video frame interpolation publication-title: arXiv 2201 10075 – ident: ref92 doi: 10.1109/ACCESS.2021.3100462 – ident: ref104 doi: 10.1109/TMM.2013.2291663 – ident: ref17 doi: 10.1109/CVPR52688.2022.00354 – ident: ref73 doi: 10.1109/TCSVT.2012.2214933 – ident: ref33 doi: 10.1109/CVPR.2018.00183 – ident: ref40 doi: 10.1109/CVPR52688.2022.00201 – ident: ref103 doi: 10.1117/12.509908 – ident: ref38 doi: 10.1007/978-3-030-58595-2_29 – ident: ref67 doi: 10.1109/CVPR42600.2020.00516 – ident: ref50 doi: 10.1109/CVPR46437.2021.00791 – year: 2022 ident: ref65 article-title: Unsupervised video interpolation by learning multilayered 2.5D motion fields publication-title: arXiv 2204 09900 – ident: ref51 doi: 10.1109/TPAMI.2021.3100714 – ident: ref56 doi: 10.1109/CVPR.2019.00382 – ident: ref71 doi: 10.1109/LSP.2017.2726542 – ident: ref59 doi: 10.1109/CVPR.2015.7298747 – ident: ref16 doi: 10.1109/CVPR52688.2022.00353 – ident: ref84 doi: 10.1109/TIP.2020.2988148 – ident: ref54 doi: 10.1109/CVPR52688.2022.01696 – ident: ref9 doi: 10.1109/CVPR.2018.00938 – ident: ref115 doi: 10.1109/PCS56426.2022.10018062 – year: 2019 ident: ref99 publication-title: Methodologies for the subjective assessment of the quality of television images – ident: ref63 doi: 10.1109/CVPR52688.2022.01728 – year: 2000 ident: ref79 publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment march 2000 – ident: ref102 doi: 10.1109/TIP.2018.2869673 – ident: ref25 doi: 10.1109/ICASSP40776.2020.9053031 – ident: ref124 doi: 10.1007/978-3-031-20068-7_31 – ident: ref94 doi: 10.1109/TIP.2021.3137658 – ident: ref62 doi: 10.1109/CVPR52688.2022.01723 – ident: ref12 doi: 10.1109/CVPR46437.2021.00652 – ident: ref30 doi: 10.1007/BF01420984 – ident: ref98 doi: 10.1145/3339825.3394937 – ident: ref61 doi: 10.1109/CVPR46437.2021.01589 – ident: ref3 doi: 10.1109/JDT.2014.2312233 – year: 2022 ident: ref100 publication-title: Psychtoolbox-3 – ident: ref82 doi: 10.1117/1.JEI.23.1.013016 – volume: 32 year: 2019 ident: ref13 article-title: Quadratic video interpolation publication-title: Advances in neural information processing systems – year: 2020 ident: ref36 article-title: Real-time intermediate flow estimation for video frame interpolation publication-title: arXiv 2011 06294 – ident: ref35 doi: 10.1007/s11263-018-01144-2 – ident: ref87 doi: 10.1109/TIP.2021.3136723 – ident: ref122 doi: 10.1109/TIP.2021.3112055 – ident: ref101 doi: 10.1109/QoMEX.2017.7965673 – ident: ref114 doi: 10.1145/3450626.3459831 – ident: ref90 doi: 10.1109/PCS50896.2021.9477460 – ident: ref60 doi: 10.1109/CVPR.2018.00059 – ident: ref5 doi: 10.1145/2810039 – ident: ref86 doi: 10.1109/TBC.2020.3028335 – volume: 33 start-page: 13308 year: 2020 ident: ref68 article-title: Video frame interpolation without temporal priors publication-title: Proc Adv Neural Inf Process Syst  | 
    
| SSID | ssj0014516 | 
    
| Score | 2.4592786 | 
    
| Snippet | Video frame interpolation (VFI) is a fundamental research topic in video processing, which is currently attracting increased attention across the research... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 6004 | 
    
| SubjectTerms | Algorithms Benchmark testing BVI-VFI Image processing Image quality Interpolation Kernel Measurement perceptual quality Quality assessment Spatial databases subjective quality assessment Video video frame interpolation Video quality database  | 
    
| Title | BVI-VFI: A Video Quality Database for Video Frame Interpolation | 
    
| URI | https://ieeexplore.ieee.org/document/10304617 https://www.proquest.com/docview/2887111224 https://www.proquest.com/docview/2885536516  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTuVQWh7qAq1cqRcOyWbttWP3UtHHiq1U1AOsuEWOM5FQqw1iswf49R0_dgVUoJ4SyZMo8Yw933heAB_diCtbGhJeZclA4aLNjGwwQ6yL2jirCueTk3-eqdOL8Y9LeZmS1UMuDCKG4DPM_W3w5TedW_qjsuEo1gcvN2Cj1Coma61dBr7jbHBtyjIrCfevfJKFGZ5Pf-W-TXguBC_NyHewEXT1ISEP1FHor_LPphw0zWQbzlbfGANMfufLvs7d3aPyjf_9E6_hVcKc7CQKyRt4gfMd2E74k6XVvdiBrXvFCXfh85fZNJtNpp_YCZtdNdixWG_jln2zvfXajxHgTUMTH-PFYgRjF8Pr9uBi8v3862mW2i1kTnDZZwTseEFokDvVyFHNVWOQ0IQRYoy6dSWvtVVkYTSKoyAiJORjWumM0yiF02IfNufdHN8CGzdkpiBZMi1pP7KoTDvW0pKlVGprndYDGK5mvXKpFrlvifGnCjZJYSpiWeVZViWWDeB4_cR1rMPxDO2en_Z7dHHGB3C04myVVuqi4rTL0n5PSGYAH9bDtMa848TOsVsGGimFIgE7eOLVh_DSf0E8mzmCzf5mie8IrfT1-yClfwG_Ld9D | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFEorlhYwEhcOyWbt2Il7qVroahfaFYftqrfIcSZSVbRBNHuAX8_4sasCAnFKJE-ixDP2fON5Aby1I65MoUl4lSEDhYs20bLBBLHOam2NyqxLTr6Yqcll_vFKXsVkdZ8Lg4g--AxTd-t9-U1nV-6obDgK9cGLe3Bf5nkuQ7rWxmnges5656YskoKQ_9ormenhfPo5dY3CUyF4oUeuh42gqwsK-UUh-Q4rf2zLXteMd2C2_soQYnKTrvo6tT9-K-D437_xBB5H1MlOgpg8hS1c7sJORKAsru_bXXh0pzzhMzg-XUyTxXh6xE7Y4rrBjoWKG9_ZB9Mbp_8YQd44NHZRXizEMHYhwG4PLsdn8_eTJDZcSKzgsk8I2vGM8CC3qpGjmqtGI-EJLUSOZWsLXpdGkY3RKI6CiJCwj26l1bZEKWwp9mF72S3xObC8IUMFyZZpSf-RTaXbvJSGbKWiNMaW5QCG61mvbKxG7ppifKm8VZLpilhWOZZVkWUDeLd54muoxPEP2j037XfowowP4HDN2Squ1duK0z5LOz5hmQG82QzTKnOuE7PEbuVppBSKBOzFX179Gh5M5hfn1fl09ukAHrqvCSc1h7Ddf1vhS8Iuff3KS-xPoBrikA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BVI-VFI%3A+A+Video+Quality+Database+for+Video+Frame+Interpolation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Danier%2C+Duolikun&rft.au=Zhang%2C+Fan&rft.au=Bull%2C+David+R.&rft.date=2023&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=32&rft.spage=6004&rft.epage=6019&rft_id=info:doi/10.1109%2FTIP.2023.3327912&rft_id=info%3Apmid%2F37910423&rft.externalDocID=10304617 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |