Prediction of Carbon Steel Corrosion Rate Based on an Alternating Conditional Expectation (Ace) Algorithm

Based on dynamic corrosion experiments, we propose a new model for predicting corrosion rate that is based on an alternating conditional expectation (ACE) algorithm. This model lets us more accurately predict the corrosion rate for a broad range of temperatures, pH, and concentrations of Ca 2+ , HCO...

Full description

Saved in:
Bibliographic Details
Published inChemistry and technology of fuels and oils Vol. 51; no. 6; pp. 728 - 739
Main Authors Chen, Xing-yi, Yuan, Zong-ming, Zheng, Yun-ping, Liu, Wei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2016
Subjects
Online AccessGet full text
ISSN0009-3092
1573-8310
DOI10.1007/s10553-016-0664-7

Cover

Abstract Based on dynamic corrosion experiments, we propose a new model for predicting corrosion rate that is based on an alternating conditional expectation (ACE) algorithm. This model lets us more accurately predict the corrosion rate for a broad range of temperatures, pH, and concentrations of Ca 2+ , HCO 3 − , Mg 2+ , Cl – , SO 4 2 − ions. Based on tests performed on a testing sample group, we have confirmed the reliability of the model and have also demonstrated its high accuracy. Sensitivity analysis based on a rank correlation coefficient revealed that the major factor influencing the corrosion rate of N80 steel is the pH value. We have also carried out a comparison analysis of the results obtained when using the ACE algorithm and the results obtained when using a backpropagation neural network (BPNN) and the support vector regression (SVR) method. As a result, we found that the model based on the ACE algorithm is more accurate than other currently used models.
AbstractList Based on dynamic corrosion experiments, we propose a new model for predicting corrosion rate that is based on an alternating conditional expectation (ACE) algorithm. This model lets us more accurately predict the corrosion rate for a broad range of temperatures, pH, and concentrations of Ca 2+ , HCO 3 − , Mg 2+ , Cl – , SO 4 2 − ions. Based on tests performed on a testing sample group, we have confirmed the reliability of the model and have also demonstrated its high accuracy. Sensitivity analysis based on a rank correlation coefficient revealed that the major factor influencing the corrosion rate of N80 steel is the pH value. We have also carried out a comparison analysis of the results obtained when using the ACE algorithm and the results obtained when using a backpropagation neural network (BPNN) and the support vector regression (SVR) method. As a result, we found that the model based on the ACE algorithm is more accurate than other currently used models.
Author Zheng, Yun-ping
Yuan, Zong-ming
Liu, Wei
Chen, Xing-yi
Author_xml – sequence: 1
  givenname: Xing-yi
  surname: Chen
  fullname: Chen, Xing-yi
  email: cxy55@163.com
  organization: Oil and gas engineering Institute of Southwest Petroleum University
– sequence: 2
  givenname: Zong-ming
  surname: Yuan
  fullname: Yuan, Zong-ming
  organization: Oil and gas engineering Institute of Southwest Petroleum University
– sequence: 3
  givenname: Yun-ping
  surname: Zheng
  fullname: Zheng, Yun-ping
  organization: Oil and gas engineering Institute of Southwest Petroleum University
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: School of Energy Resource of Chengdu University of Technology, Post-Doctoral Research Center of Tarim Oilfield
BookMark eNp9kD1PwzAQhi0EEm3hB7BlhMFwjp04HktVPqRKID5my3UuxVWaVLaR4N_jECaGTvbJ97zne6bkuOs7JOSCwTUDkDeBQVFwCqykUJaCyiMyYYXktOIMjskEABTloPJTMg1hO5Qy5xPinj3WzkbXd1nfZAvj1-n2GhHbbNF734fh5cVEzG5NwDpLlemyeRvRdya6bpPautoNAabNll97tNH8xl3OLV6lzk3vXfzYnZGTxrQBz__OGXm_W74tHujq6f5xMV9Ry_MiUoG2VKoSa4VWNsLWqsqVyK1VqizBSIsFF4CiqSAtKm1uEE1T1YVYA3LF-IywMdemzwePjd57tzP-WzPQgys9utLJlR5caZkY-Y-xbtwieuPag2Q-kiFN6Tbo9bb_TGbacAD6Ae4egG4
CitedBy_id crossref_primary_10_3390_met15010027
crossref_primary_10_3390_s19010034
crossref_primary_10_1002_maco_202012120
crossref_primary_10_32604_iasc_2021_018516
Cites_doi 10.1016/j.eswa.2012.11.002
10.3390/en5103892
10.1016/j.corsci.2008.10.038
10.1016/j.commatsci.2008.05.010
10.1142/S0129183106009813
10.1023/B:STCO.0000035301.49549.88
10.1016/j.corsci.2003.09.011
10.1016/j.corsci.2010.09.013
10.1016/j.petrol.2008.12.023
10.1007/978-1-4757-2440-0
10.1021/ef401815q
10.1016/j.jhydrol.2006.02.025
10.1016/j.ces.2007.11.030
10.1016/j.jlp.2011.12.007
10.1016/j.matlet.2006.06.053
10.1016/j.autcon.2014.05.003
10.1163/156939308783122788
10.4028/www.scientific.net/AMR.652-654.1088
10.1080/01621459.1985.10478157
10.6339/JDS.2004.02(4).156
10.1179/cmq.2010.49.1.99
10.1179/1743278211Y.0000000001
10.1016/j.corsci.2009.06.004
10.1016/j.petrol.2006.12.001
10.1016/S0167-6911(82)80025-X
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
DOI 10.1007/s10553-016-0664-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Ecology
EISSN 1573-8310
EndPage 739
ExternalDocumentID 10_1007_s10553_016_0664_7
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
28-
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2XV
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEP
IHE
IJ-
IKXTQ
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOW
L8X
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7W
Z7Z
Z86
Z8M
Z8N
Z8P
Z8Q
Z8T
~8M
~A9
~EX
~KM
AAPKM
AAYXX
ABDBE
ABFSG
ABJIA
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c325t-4ec69984b9ec7f4cd982942cc99660a7ce5340e4f800667c2aeeaf8d54b0e3913
IEDL.DBID U2A
ISSN 0009-3092
IngestDate Wed Oct 01 03:16:15 EDT 2025
Thu Apr 24 22:58:09 EDT 2025
Fri Feb 21 02:36:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords corrosion rate
comparison analysis
prediction model
ACE algorithm
carbon steel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-4ec69984b9ec7f4cd982942cc99660a7ce5340e4f800667c2aeeaf8d54b0e3913
PageCount 12
ParticipantIDs crossref_primary_10_1007_s10553_016_0664_7
crossref_citationtrail_10_1007_s10553_016_0664_7
springer_journals_10_1007_s10553_016_0664_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160100
2016-1-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 1
  year: 2016
  text: 20160100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Chemistry and technology of fuels and oils
PublicationTitleAbbrev Chem Technol Fuels Oils
PublicationYear 2016
Publisher Springer US
Publisher_xml – name: Springer US
References Li, Jia (CR18) 2011; 6
Yong (CR17) 2014; 35
CR16
CR38
CR15
CR14
CR13
CR12
Wen, Cai, Liu (CR29) 2009; 51
Birbilis, Cavanaugh, Sudholz (CR24) 2011; 53
CR31
Shang, Zhu (CR21) 2007; 19
Zhu, Bai, Liu (CR35) 2008; 29
Liu, Control (CR11) 2005
Long, Zheng, Chen (CR37) 2005; 26
Yin (CR9) 2013; 40
Ma, Wang (CR10) 2007; 61
Li, Yu, Zeng (CR2) 2009; 65
Sakhanenko, Luger (CR27) 2006; 17
Chau (CR19) 2006; 329
Wang, Murphy (CR39) 2004; 2
CR5
CR8
CR7
Smola, Scholkopf (CR26) 2004; 14
CR28
Shahriar, Sadiq, Tesfamariam (CR3) 2012; 25
CR23
Zhao, Lu (CR36) 2008; 23
CR22
Chen, Yu (CR34) 2006
Lahiri, Ghanta (CR4) 2008; 63
El-Abbasy, Senouci, Zayed, Mirahadi (CR1) 2014; 45
CR40
Engelhardt, Macdonald (CR6) 2004; 46
Wang, Zhang, Zhou (CR32) 2014; 44
Li, Wang, Li (CR33) 2014; 28
Vapnik (CR25) 1995
Liao, Yao, Wu (CR20) 2012; 5
Fang, Wang, Qi (CR30) 2008; 44
S Yong (664_CR17) 2014; 35
KW Chau (664_CR19) 2006; 329
CJ Li (664_CR18) 2011; 6
664_CR28
V Vapnik (664_CR25) 1995
R-d Chen (664_CR34) 2006
A Shahriar (664_CR3) 2012; 25
J-k Liu (664_CR11) 2005
NA Sakhanenko (664_CR27) 2006; 17
MS El-Abbasy (664_CR1) 2014; 45
S-d Zhu (664_CR35) 2008; 29
G Engelhardt (664_CR6) 2004; 46
664_CR15
664_CR16
664_CR38
664_CR13
664_CR14
YF Wen (664_CR29) 2009; 51
G-x Zhao (664_CR36) 2008; 23
664_CR12
N Birbilis (664_CR24) 2011; 53
SK Lahiri (664_CR4) 2008; 63
664_CR31
F-Y Ma (664_CR10) 2007; 61
664_CR8
664_CR7
664_CR5
D Wang (664_CR39) 2004; 2
J Shang (664_CR21) 2007; 19
F-l Long (664_CR37) 2005; 26
K-X Liao (664_CR20) 2012; 5
664_CR40
SF Fang (664_CR30) 2008; 44
X-G Wang (664_CR32) 2014; 44
AJ Smola (664_CR26) 2004; 14
S-X Li (664_CR2) 2009; 65
664_CR22
664_CR23
M-S Yin (664_CR9) 2013; 40
Z-m Li (664_CR33) 2014; 28
References_xml – ident: CR22
– volume: 40
  start-page: 2767
  year: 2013
  end-page: 2775
  ident: CR9
  article-title: Fifteen years of grey system theory research: A historical review and bibliometric analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.11.002
– volume: 5
  start-page: 3892
  year: 2012
  end-page: 3907
  ident: CR20
  article-title: A numerical corrosion rate prediction method for direct assessment of wet gas gathering pipelines internal corrosion
  publication-title: Energies
  doi: 10.3390/en5103892
– volume: 51
  start-page: 349
  year: 2009
  end-page: 355
  ident: CR29
  article-title: Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2008.10.038
– ident: CR14
– volume: 44
  start-page: 647
  year: 2008
  end-page: 655
  ident: CR30
  article-title: Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2008.05.010
– ident: CR16
– volume: 17
  start-page: 1313
  year: 2006
  end-page: 1325
  ident: CR27
  article-title: Shock physics data reconstruction using support vector regression
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183106009813
– ident: CR12
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: CR26
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 46
  start-page: 1159
  year: 2004
  end-page: 1187
  ident: CR6
  article-title: Estimation of corrosion cavity growth rate for predicting system service life
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2003.09.011
– volume: 53
  start-page: 168
  year: 2011
  end-page: 176
  ident: CR24
  article-title: A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2010.09.013
– ident: CR8
– ident: CR40
– volume: 65
  start-page: 162
  year: 2009
  end-page: 166
  ident: CR2
  article-title: Predicting corrosion remaining life of underground pipelines with a mechanically-based probabilistic mode
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2008.12.023
– ident: CR23
– year: 1995
  ident: CR25
  publication-title: The Nature of Statistical Learning Theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 28
  start-page: 624
  year: 2014
  end-page: 635
  ident: CR33
  article-title: Accurate determination of the CO2-brine interfacial tension using graphical alternating conditional expectation
  publication-title: Energy & Fuels
  doi: 10.1021/ef401815q
– volume: 19
  start-page: 225
  issue: 3
  year: 2007
  end-page: 228
  ident: CR21
  article-title: Application of genetic algorithms neural networks in prediction corrosion rate of carbon steel
  publication-title: Corrosion Science and Protection Technology
– ident: CR15
– year: 2006
  ident: CR34
  publication-title: Mathematical Model and Mathematical Modeling
– ident: CR38
– volume: 329
  start-page: 3
  year: 2006
  end-page: 4
  ident: CR19
  article-title: Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.02.025
– volume: 35
  start-page: 107
  issue: 3
  year: 2014
  end-page: 110
  ident: CR17
  article-title: The research and application of genetic algorithm
  publication-title: Software
– volume: 29
  start-page: 724
  issue: 12
  year: 2008
  end-page: 726
  ident: CR35
  article-title: Influence of Ca and Mg on corrosion rate of N80
  publication-title: Corrosion & Protection
– ident: CR31
– ident: CR13
– volume: 63
  start-page: 1497
  year: 2008
  end-page: 1509
  ident: CR4
  article-title: Development of an artificial neural network correlation for prediction of slurry transport in pipeline
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2007.11.030
– volume: 6
  start-page: 452
  year: 2011
  end-page: 459
  ident: CR18
  article-title: Adaptive genetic algorithm for steady-state operation optimization in natural gas networks
  publication-title: J. Softw.
– volume: 44
  start-page: 82
  issue: 7
  year: 2014
  end-page: 87
  ident: CR32
  article-title: Grey combination forecast model for corrosion rate of pipelines based on the least squares support vector machine
  publication-title: Practice and Theory of Mathematics
– volume: 25
  start-page: 505
  year: 2012
  end-page: 523
  ident: CR3
  article-title: Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2011.12.007
– ident: CR5
– volume: 2
  start-page: 329
  year: 2004
  end-page: 346
  ident: CR39
  article-title: Estimation optimal transformations for multiple regression using the ACE algorithm
  publication-title: Journal of Data Science
– ident: CR7
– volume: 61
  start-page: 998
  year: 2007
  end-page: 1001
  ident: CR10
  article-title: Prediction of pitting corrosion behavior for stainless SUS 630 based on grey system theory
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2006.06.053
– volume: 45
  start-page: 50
  year: 2014
  end-page: 65
  ident: CR1
  article-title: Artificial neural network models for predicting condition of offshore oil and gas pipelines
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2014.05.003
– ident: CR28
– volume: 26
  start-page: 290
  issue: 7
  year: 2005
  end-page: 293
  ident: CR37
  article-title: Influence of temperature, CO2 partial pressure, flow rate and pH value on uniform corrosion rate of X65 pipeline steel
  publication-title: Corrosion & Protection
– volume: 23
  start-page: 74
  issue: 4
  year: 2008
  end-page: 78
  ident: CR36
  article-title: Effect of temperature on the corrosion rate of oil tubing and casing
  publication-title: Journal of Xi’an Shiyou University (Natural Science Edition)
– year: 2005
  ident: CR11
  publication-title: Corrosion rate prediction of pipeline based on BP artificial neural network
– volume: 6
  start-page: 452
  year: 2011
  ident: 664_CR18
  publication-title: J. Softw.
– volume: 46
  start-page: 1159
  year: 2004
  ident: 664_CR6
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2003.09.011
– ident: 664_CR13
– ident: 664_CR28
  doi: 10.1163/156939308783122788
– volume: 63
  start-page: 1497
  year: 2008
  ident: 664_CR4
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2007.11.030
– ident: 664_CR5
– volume: 65
  start-page: 162
  year: 2009
  ident: 664_CR2
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2008.12.023
– volume: 44
  start-page: 82
  issue: 7
  year: 2014
  ident: 664_CR32
  publication-title: Practice and Theory of Mathematics
– ident: 664_CR15
  doi: 10.4028/www.scientific.net/AMR.652-654.1088
– volume: 19
  start-page: 225
  issue: 3
  year: 2007
  ident: 664_CR21
  publication-title: Corrosion Science and Protection Technology
– volume: 29
  start-page: 724
  issue: 12
  year: 2008
  ident: 664_CR35
  publication-title: Corrosion & Protection
– ident: 664_CR38
  doi: 10.1080/01621459.1985.10478157
– volume: 2
  start-page: 329
  year: 2004
  ident: 664_CR39
  publication-title: Journal of Data Science
  doi: 10.6339/JDS.2004.02(4).156
– volume: 5
  start-page: 3892
  year: 2012
  ident: 664_CR20
  publication-title: Energies
  doi: 10.3390/en5103892
– ident: 664_CR22
  doi: 10.1179/cmq.2010.49.1.99
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: 664_CR25
  doi: 10.1007/978-1-4757-2440-0
– volume: 53
  start-page: 168
  year: 2011
  ident: 664_CR24
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2010.09.013
– volume-title: Mathematical Model and Mathematical Modeling
  year: 2006
  ident: 664_CR34
– ident: 664_CR8
– ident: 664_CR14
– ident: 664_CR31
– ident: 664_CR12
– volume: 26
  start-page: 290
  issue: 7
  year: 2005
  ident: 664_CR37
  publication-title: Corrosion & Protection
– ident: 664_CR16
  doi: 10.1179/1743278211Y.0000000001
– volume: 17
  start-page: 1313
  year: 2006
  ident: 664_CR27
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0129183106009813
– volume: 23
  start-page: 74
  issue: 4
  year: 2008
  ident: 664_CR36
  publication-title: Journal of Xi’an Shiyou University (Natural Science Edition)
– volume: 14
  start-page: 199
  year: 2004
  ident: 664_CR26
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 44
  start-page: 647
  year: 2008
  ident: 664_CR30
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2008.05.010
– volume: 28
  start-page: 624
  year: 2014
  ident: 664_CR33
  publication-title: Energy & Fuels
  doi: 10.1021/ef401815q
– volume-title: Corrosion rate prediction of pipeline based on BP artificial neural network
  year: 2005
  ident: 664_CR11
– volume: 25
  start-page: 505
  year: 2012
  ident: 664_CR3
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2011.12.007
– volume: 35
  start-page: 107
  issue: 3
  year: 2014
  ident: 664_CR17
  publication-title: Software
– volume: 45
  start-page: 50
  year: 2014
  ident: 664_CR1
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2014.05.003
– ident: 664_CR23
  doi: 10.1016/j.corsci.2009.06.004
– volume: 51
  start-page: 349
  year: 2009
  ident: 664_CR29
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2008.10.038
– ident: 664_CR40
  doi: 10.1016/j.petrol.2006.12.001
– volume: 40
  start-page: 2767
  year: 2013
  ident: 664_CR9
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.11.002
– ident: 664_CR7
  doi: 10.1016/S0167-6911(82)80025-X
– volume: 61
  start-page: 998
  year: 2007
  ident: 664_CR10
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2006.06.053
– volume: 329
  start-page: 3
  year: 2006
  ident: 664_CR19
  publication-title: J. Hydrol.
SSID ssj0009723
Score 2.0004795
Snippet Based on dynamic corrosion experiments, we propose a new model for predicting corrosion rate that is based on an alternating conditional expectation (ACE)...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 728
SubjectTerms Chemistry
Chemistry and Materials Science
Ecology
Geotechnical Engineering & Applied Earth Sciences
Industrial Chemistry/Chemical Engineering
Mineral Resources
Title Prediction of Carbon Steel Corrosion Rate Based on an Alternating Conditional Expectation (Ace) Algorithm
URI https://link.springer.com/article/10.1007/s10553-016-0664-7
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-8310
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009723
  issn: 0009-3092
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-8310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009723
  issn: 0009-3092
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009723
  issn: 0009-3092
  databaseCode: AFBBN
  dateStart: 19650101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009723
  issn: 0009-3092
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8310
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009723
  issn: 0009-3092
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-IOqD6FScHyMPPvhBIU3Tpn2sc3OoE3EO5lNJ0nQOZie1_v_mutZtoIJPTck1hbu0d7mP3yF0KpXtB7ZgVuITbTEWc0sm1LWM8Stsj0sec6h37j54nT67HbiDso77o8p2r0KSxZ96rtjNdSH3x4OqeWbxZbTqApqX2cR9Gs6Qdjn9bp_mkIBWocyfllhURouR0ELBtLfRVmkZ4nAqyh20pNMaWm9WDdlqaK1VIEyb0eYciuAuGj1mEG0BDuNJgpsik2bUy7Ue4-YkM2-GmSdjVOIro7NibO5EisNx6QtMh4YMIteFVxAD-LGaBujxWaj0uaEcTrJR_vq2h_rt1nOzY5UdFCzlUDe3mFaeOU8xGWjFE6biwKcBo0rBKYcIrrTrMKKZERQkuyoqtBaJH7tMEu0EtrOPVtJJqg8QDsyc7QlHJgTWi6V0hGf7RHHCpNFpdUQqVkaqhBeHLhfjaAaMDNyPIKUMuB_xOrr4fuR9iq3xF_FlJZ-o_Mw-fqc-_Bf1EdqgxaYAz8oxWsmzT31ibI1cNtBqeN2978H15uWu1Sj22hdoNcyv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAEH3ojxzIEDD3VK07Rpj2MajKcQDAlOVZKmY2J0qCsXfj1J146HAGm3VHGjJE5rO7Y_A-wJafuBzakV-1hZlEbMEjFxLa38cttjgkXM5DtfXXute3r-4D4UedyDMtq9dEnmf-ovyW6ua2J_PJM1Ty02CVNU2yekAlP108eL5ifWLiOjAmoODkjpzPxtkO_i6LsvNBcxJwvQLic3jCx5rr1loibff-A2jjn7RZgvVE5UH56RJZhQyTLMNMpKb8sw3cyhq3Vr7gs84Qp0b1LjxjGsQ_0YNXgqdOsuU6qHGv1UL8j03GptFR1rYRgh_cQTVO8Vl4xJR5MZl3h-3YgMqrIcev7Rfl2qA03Z6afd7OllFe5Pmu1GyypKM1jSIW5mUSU9bahRESjJYiqjwCcBJVIa8wlzJpXrUKyoPgEmilYSrhSP_cilAisnsJ01qCT9RK0DCnSf7XFHxNiMFwnhcM_2sWSYCi0sq4BLDoWywC035TN64Sfistnb0MSqmb0NWRUOR6-8DkE7_iM-KjkWFt_v4G_qjbGod2Gm1b66DC_Pri82YZbk7DfXN1tQydI3ta0VmkzsFAf4A_FQ6TY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDI44xPWAOMU488ADh6qladq0j6Vs4pwmYNLeqiRNx6TRoa78f-Ku5ZAAibdUcVPJdmXHx2eEjqWy_cAWzEp9oi3GEm7JlLqWcX6F7XHJEw79zvcd76rHbvpuv5pzOqmr3euU5LSnAVCasqL5mqTNL41vrgt1QB500DOLz6J5BjgJRqF7NPxE3eX0Y5SaQwJapzV_OuK7YfqeFS2NTXsNrVZeIg6nYl1HMzrbQEtRPZxtAy20SrRps1r5gii4iYbdHDIvwG08TnEkcmlWj4XWIxyNc_Nl2HkwDia-MPYrweZJZDgcVXHBbGDIIItdRggxACGrabIen4RKnxrKwTgfFs8vW6jXbj1FV1Y1TcFSDnULi2nlmbsVk4FWPGUqCXwaMKoU3HiI4Eq7DiOaGaFB4auiQmuR-onLJNFOYDvbaC4bZ3oH4cDs2Z5wZErgvERKR3i2TxQnTBr71kCkZmWsKqhxmHgxij9BkoH7MZSXAfdj3kBnH6-8TnE2_iI-r-UTV7_c5Hfq3X9RH6HF7mU7vrvu3O6hZVrqBwRc9tFckb_pA-OCFPKwVLN3ZqnQrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Carbon+Steel+Corrosion+Rate+Based+on+an+Alternating+Conditional+Expectation+%28Ace%29+Algorithm&rft.jtitle=Chemistry+and+technology+of+fuels+and+oils&rft.au=Chen%2C+Xing-yi&rft.au=Yuan%2C+Zong-ming&rft.au=Zheng%2C+Yun-ping&rft.au=Liu%2C+Wei&rft.date=2016-01-01&rft.pub=Springer+US&rft.issn=0009-3092&rft.eissn=1573-8310&rft.volume=51&rft.issue=6&rft.spage=728&rft.epage=739&rft_id=info:doi/10.1007%2Fs10553-016-0664-7&rft.externalDocID=10_1007_s10553_016_0664_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-3092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-3092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-3092&client=summon