An algorithm for finding optimal sensor placement and model uncertainty in data assimilation applied to Riemann problems
•An algorithm that optimizes the sensor location and non-Gaussian model noise parameters.•Data assimilation applied to 1D and 2D Riemann problems.•Direct search algorithm for designing particle filter. The sensor location and selection of model noise parameters play an utmost important role in the p...
        Saved in:
      
    
          | Published in | Applied Mathematical Modelling Vol. 103; pp. 649 - 673 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Inc
    
        01.03.2022
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0307-904X 1088-8691 0307-904X  | 
| DOI | 10.1016/j.apm.2021.11.006 | 
Cover
| Abstract | •An algorithm that optimizes the sensor location and non-Gaussian model noise parameters.•Data assimilation applied to 1D and 2D Riemann problems.•Direct search algorithm for designing particle filter.
The sensor location and selection of model noise parameters play an utmost important role in the performance of data assimilation methods. Suboptimal sensor placement may lead to incomplete information and incorrectly chosen noise parameters can cause filter divergence. Till now, these issues were addressed separately, but in this work, we consider both. We present an algorithm that finds the optimal sensor location and non-Gaussian model noise parameters not only separately but also simultaneously. The optimal location was determined for a fixed number of sensors and the root mean square error was used to assess the accuracy of the data assimilation scheme. A direct search method was implemented and, due to the stochastic nature of the filtering method, we used a sample average approximation approach. To prove the usefulness of the algorithm, we selected Riemann problems in one and two dimensions, where the solutions contain shock waves, rarefaction waves, and contact discontinuities. A high order finite volume weighted essentially non-oscillatory scheme was used for the numerical approximation. We used the Rusanov Riemann solver for the numerical flux and the three-stage third-order strong stability preserving Runge-Kutta scheme for the time advancing. Numerical experiments showed that optimizing both sensor location and model noise parameters gives more accurate results without suffering from filter divergence. Uniform distribution of the sensors and manually setting the noise parameters caused the filter to fail to track the truth, especially near the discontinuities. | 
    
|---|---|
| AbstractList | •An algorithm that optimizes the sensor location and non-Gaussian model noise parameters.•Data assimilation applied to 1D and 2D Riemann problems.•Direct search algorithm for designing particle filter.
The sensor location and selection of model noise parameters play an utmost important role in the performance of data assimilation methods. Suboptimal sensor placement may lead to incomplete information and incorrectly chosen noise parameters can cause filter divergence. Till now, these issues were addressed separately, but in this work, we consider both. We present an algorithm that finds the optimal sensor location and non-Gaussian model noise parameters not only separately but also simultaneously. The optimal location was determined for a fixed number of sensors and the root mean square error was used to assess the accuracy of the data assimilation scheme. A direct search method was implemented and, due to the stochastic nature of the filtering method, we used a sample average approximation approach. To prove the usefulness of the algorithm, we selected Riemann problems in one and two dimensions, where the solutions contain shock waves, rarefaction waves, and contact discontinuities. A high order finite volume weighted essentially non-oscillatory scheme was used for the numerical approximation. We used the Rusanov Riemann solver for the numerical flux and the three-stage third-order strong stability preserving Runge-Kutta scheme for the time advancing. Numerical experiments showed that optimizing both sensor location and model noise parameters gives more accurate results without suffering from filter divergence. Uniform distribution of the sensors and manually setting the noise parameters caused the filter to fail to track the truth, especially near the discontinuities. The sensor location and selection of model noise parameters play an utmost important role in the performance of data assimilation methods. Suboptimal sensor placement may lead to incomplete information and incorrectly chosen noise parameters can cause filter divergence. Till now, these issues were addressed separately, but in this work, we consider both. We present an algorithm that finds the optimal sensor location and non-Gaussian model noise parameters not only separately but also simultaneously. The optimal location was determined for a fixed number of sensors and the root mean square error was used to assess the accuracy of the data assimilation scheme. A direct search method was implemented and, due to the stochastic nature of the filtering method, we used a sample average approximation approach. To prove the usefulness of the algorithm, we selected Riemann problems in one and two dimensions, where the solutions contain shock waves, rarefaction waves, and contact discontinuities. A high order finite volume weighted essentially non-oscillatory scheme was used for the numerical approximation. We used the Rusanov Riemann solver for the numerical flux and the three-stage third-order strong stability preserving Runge-Kutta scheme for the time advancing. Numerical experiments showed that optimizing both sensor location and model noise parameters gives more accurate results without suffering from filter divergence. Uniform distribution of the sensors and manually setting the noise parameters caused the filter to fail to track the truth, especially near the discontinuities.  | 
    
| Author | Uilhoorn, F.E. | 
    
| Author_xml | – sequence: 1 givenname: F.E. orcidid: 0000-0002-9983-1546 surname: Uilhoorn fullname: Uilhoorn, F.E. email: ferdinand.uilhoorn@pw.edu.pl organization: Warsaw University of Technology, Gas Engineering Group, Nowowiejska 20, 00–653 Warsaw, Poland  | 
    
| BookMark | eNp9kE9rVTEQxYNUsK1-AHcB1--a3PQm7-GqFK1CoSAK7sLcZFLnkZtckzyx3960z0Vx0dX8YX5zOOeMnaSckLG3UgxSSP1-P8C6DKMY5SDlIIR-wU6FEmazExc_Tp70r9hZrXshxNSnU_bnMnGId7lQ-7nwkAsPlDylO57XRgtEXjHVvl4jOFwwNQ7J8yV7jPyQHJYGlNo9p8Q9NOBQKy0UoVHun9c1EnreMv9KuEBKfC15jrjU1-xlgFjxzb96zr5_-vjt6vPm5vb6y9XlzcapcWobpYNRiLN22yCDUw7mcTvORgMorXa7sN0G7c04zRfoMXghwBi9MxO4MIfJqXP27vi3C_86YG12nw8ldUk7amW0EVLofiWPV67kWgsGu5buvtxbKexDwHZve8D2IWArpRWPjPmPcdQefbcCFJ8lPxxJ7MZ_ExZbHWEP01NB16zP9Az9F-Crmt8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_jcp_2024_113224 crossref_primary_10_1016_j_conengprac_2023_105461 crossref_primary_10_1109_ACCESS_2023_3321320 crossref_primary_10_1016_j_jcp_2023_112499 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2023048277  | 
    
| Cites_doi | 10.1137/S1064827595291819 10.1109/TAC.1972.1100100 10.1016/j.ocemod.2009.01.001 10.1080/10618600.1996.10474692 10.1109/TAC.2010.2052151 10.1016/j.cam.2005.09.027 10.1006/jcph.2001.6892 10.1007/s10915-014-9825-1 10.1063/1.4804390 10.1109/TAC.1968.1099025 10.1016/0021-9991(88)90177-5 10.1023/A:1026429319405 10.1137/0914082 10.1016/j.jcp.2018.04.029 10.3402/tellusa.v64i0.17133 10.1017/jfm.2011.195 10.1137/19M1297300 10.1109/TAC.1970.1099422 10.1016/j.jcp.2019.06.060 10.1016/j.compfluid.2004.11.006 10.1006/jcph.1994.1187 10.1017/jfm.2017.313 10.2514/2.4983 10.1016/S1570-7946(07)80166-0 10.1137/S1052623400378742 10.1016/0021-9991(89)90222-2 10.1137/070679065 10.1175/2008MWR2529.1 10.1002/oca.2509 10.1002/fld.4480 10.1109/ISIC.2002.1157771 10.1016/j.compfluid.2004.11.002 10.1006/jcph.1996.0130 10.1049/ip-f-2.1993.0015 10.1016/j.ces.2006.07.027 10.1063/1.1689351 10.1017/jfm.2013.194 10.1137/040603371 10.1137/060671267 10.1002/num.10025 10.1137/S1064827502402120 10.1002/qj.3132 10.1017/jfm.2015.509  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Mar 2022  | 
    
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Mar 2022  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.apm.2021.11.006 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Psychology  | 
    
| EISSN | 0307-904X | 
    
| EndPage | 673 | 
    
| ExternalDocumentID | 10_1016_j_apm_2021_11_006 S0307904X21005357  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~  | 
    
| ID | FETCH-LOGICAL-c325t-36f73eeb6c8f1fc3cab282b76aa36399f88f6d725b4edefd00a776975acfbf5c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0307-904X 1088-8691  | 
    
| IngestDate | Mon Jul 14 07:38:27 EDT 2025 Thu Oct 09 00:18:13 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Fri Feb 23 02:40:40 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Shock and rarefaction waves Optimal sensor placement Riemann problems Model uncertainty Direct search method Data assimilation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c325t-36f73eeb6c8f1fc3cab282b76aa36399f88f6d725b4edefd00a776975acfbf5c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9983-1546 | 
    
| PQID | 2637670106 | 
    
| PQPubID | 2045280 | 
    
| PageCount | 25 | 
    
| ParticipantIDs | proquest_journals_2637670106 crossref_primary_10_1016_j_apm_2021_11_006 crossref_citationtrail_10_1016_j_apm_2021_11_006 elsevier_sciencedirect_doi_10_1016_j_apm_2021_11_006  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2022 2022-03-00 20220301  | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Applied Mathematical Modelling | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Inc Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV  | 
    
| References | Rahbari, Leach, Dillon, Silva (bib0017) 2002 Shalom, Li, Kirubarajan (bib0020) 2001 Powell (bib0014) 2002; 25 Uilhoorn (bib0023) 2019; 40 Chen, Rowley (bib0010) 2011; 681 Mons, Chassaing, Sagaut (bib0009) 2017; 823 Audet, Dennis (bib0046) 2002; 13 Kurganov, Tadmor (bib0051) 2002; 18 Clements, Tavares, Lima (bib0016) 2000 Mehra (bib0021) 1970; 15 Schulz-Rinne, Collins, Glaz (bib0049) 1993; 14 King, Kang, Xu (bib0005) 2014 Zhu, van Leeuwen, Zhang (bib0041) 2018; 144 Shu, Osher (bib0029) 1988; 77 Liu, Shen, Chen, Zeng (bib0031) 2016; 87 Ray, Hesthaven (bib0047) 2018; 367 Wilcox (bib0003) 2006; 35 Shu, Osher (bib0048) 1989; 83 Lucini, van Leeuwen, Pulido (bib0024) 2021; 9 Cohen, Siegel, McLaughlin (bib0002) 2006; 35 Liu, Osher, Chan (bib0027) 1994; 115 Mokhasi, Rempfer (bib0001) 2004; 16 Armaou, Demetriou (bib0006) 2006; 61 Coope, Price (bib0045) 2000; 107 Shi, Hu, Shu (bib0032) 2002; 175 Morris (bib0008) 2011; 56 Liska, Wendroff (bib0052) 2003; 25 Kitagawa (bib0036) 1996; 5 Ljung (bib0025) 1987 Rusanov (bib0028) 1961; 1 Kang, Xu (bib0007) 2012; 64 Audet, Custódio, Dennis (bib0044) 2008; 18 Kaipio, Somersalo (bib0030) 2007; 198 Åkesson, Jørgensen, Poulsen, Jørgensen (bib0018) 2007; 24 Shu (bib0033) 2009; 51 Korniyenko, Sharawi, Aloi (bib0015) 2005 van Leeuwen (bib0039) 2015 Lax, Liu (bib0050) 1998; 19 Audet, Dennis (bib0042) 2006; 17 Belson, Semeraro, Rowley, Henningson (bib0011) 2013; 25 Mehra (bib0022) 1972; 17 Buchmüller, Helzel (bib0034) 2014; 61 Juillet, Schmid, Huerre (bib0012) 2013; 725 Kailath (bib0019) 1968; 13 Yildirim, Chryssostomidis, Karniadakis (bib0004) 2009; 27 Gordon, Salmond, Smith (bib0035) 1993; 140 Pulido, van Leeuwen (bib0040) 2019; 396 Snyder, Bengtsson, Bickel, Anderson (bib0037) 2008; 136 Jiang, Shu (bib0026) 1996; 126 Bickel, Li, Bengtsson (bib0038) 2008 Clarke (bib0043) 1990 Akhtar, Borggaard, Burns, Imtiaz (bib0013) 2015; 781 Yildirim (10.1016/j.apm.2021.11.006_bib0004) 2009; 27 Buchmüller (10.1016/j.apm.2021.11.006_bib0034) 2014; 61 Liska (10.1016/j.apm.2021.11.006_bib0052) 2003; 25 Uilhoorn (10.1016/j.apm.2021.11.006_bib0023) 2019; 40 van Leeuwen (10.1016/j.apm.2021.11.006_bib0039) 2015 Gordon (10.1016/j.apm.2021.11.006_bib0035) 1993; 140 Armaou (10.1016/j.apm.2021.11.006_bib0006) 2006; 61 Korniyenko (10.1016/j.apm.2021.11.006_bib0015) 2005 Kitagawa (10.1016/j.apm.2021.11.006_bib0036) 1996; 5 Clements (10.1016/j.apm.2021.11.006_bib0016) 2000 Audet (10.1016/j.apm.2021.11.006_bib0042) 2006; 17 Schulz-Rinne (10.1016/j.apm.2021.11.006_bib0049) 1993; 14 Kurganov (10.1016/j.apm.2021.11.006_bib0051) 2002; 18 Chen (10.1016/j.apm.2021.11.006_bib0010) 2011; 681 Zhu (10.1016/j.apm.2021.11.006_bib0041) 2018; 144 King (10.1016/j.apm.2021.11.006_bib0005) 2014 Kailath (10.1016/j.apm.2021.11.006_bib0019) 1968; 13 Jiang (10.1016/j.apm.2021.11.006_bib0026) 1996; 126 Lucini (10.1016/j.apm.2021.11.006_bib0024) 2021; 9 Morris (10.1016/j.apm.2021.11.006_bib0008) 2011; 56 Mons (10.1016/j.apm.2021.11.006_bib0009) 2017; 823 Rahbari (10.1016/j.apm.2021.11.006_bib0017) 2002 Snyder (10.1016/j.apm.2021.11.006_bib0037) 2008; 136 Ljung (10.1016/j.apm.2021.11.006_bib0025) 1987 Belson (10.1016/j.apm.2021.11.006_bib0011) 2013; 25 Coope (10.1016/j.apm.2021.11.006_bib0045) 2000; 107 Shu (10.1016/j.apm.2021.11.006_bib0048) 1989; 83 Shi (10.1016/j.apm.2021.11.006_bib0032) 2002; 175 Audet (10.1016/j.apm.2021.11.006_bib0046) 2002; 13 Juillet (10.1016/j.apm.2021.11.006_bib0012) 2013; 725 Clarke (10.1016/j.apm.2021.11.006_bib0043) 1990 Ray (10.1016/j.apm.2021.11.006_bib0047) 2018; 367 Liu (10.1016/j.apm.2021.11.006_bib0027) 1994; 115 Kang (10.1016/j.apm.2021.11.006_bib0007) 2012; 64 Audet (10.1016/j.apm.2021.11.006_bib0044) 2008; 18 Mehra (10.1016/j.apm.2021.11.006_bib0021) 1970; 15 Lax (10.1016/j.apm.2021.11.006_bib0050) 1998; 19 Wilcox (10.1016/j.apm.2021.11.006_bib0003) 2006; 35 Akhtar (10.1016/j.apm.2021.11.006_bib0013) 2015; 781 Shu (10.1016/j.apm.2021.11.006_bib0029) 1988; 77 Powell (10.1016/j.apm.2021.11.006_bib0014) 2002; 25 Pulido (10.1016/j.apm.2021.11.006_bib0040) 2019; 396 Åkesson (10.1016/j.apm.2021.11.006_bib0018) 2007; 24 Shu (10.1016/j.apm.2021.11.006_bib0033) 2009; 51 Mehra (10.1016/j.apm.2021.11.006_bib0022) 1972; 17 Liu (10.1016/j.apm.2021.11.006_bib0031) 2016; 87 Cohen (10.1016/j.apm.2021.11.006_bib0002) 2006; 35 Bickel (10.1016/j.apm.2021.11.006_bib0038) 2008 Kaipio (10.1016/j.apm.2021.11.006_bib0030) 2007; 198 Shalom (10.1016/j.apm.2021.11.006_bib0020) 2001 Rusanov (10.1016/j.apm.2021.11.006_bib0028) 1961; 1 Mokhasi (10.1016/j.apm.2021.11.006_bib0001) 2004; 16  | 
    
| References_xml | – volume: 40 start-page: 750 year: 2019 end-page: 763 ident: bib0023 article-title: A multiobjective optimization approach to filter tuning applied to coupled hyperbolic PDEs describing gas flow dynamics publication-title: Optimal Control Applications and Methods – volume: 198 start-page: 493 year: 2007 end-page: 504 ident: bib0030 article-title: Statistical inverse problems: discretization, model reduction and inverse crimes publication-title: J. Comput. Appl. Math. – volume: 126 start-page: 202 year: 1996 end-page: 228 ident: bib0026 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. – volume: 51 start-page: 82 year: 2009 end-page: 126 ident: bib0033 article-title: High order weighted essentially nonoscillatory schemes for convection dominated problems publication-title: SIAM Rev. – volume: 13 start-page: 646 year: 1968 end-page: 655 ident: bib0019 article-title: An innovations approach to least-squares estimation--Part I: Linear filtering in additive white noise publication-title: IEEE Transactions on Automatic Control AC – volume: 367 start-page: 166 year: 2018 end-page: 191 ident: bib0047 article-title: An artificial neural network as a troubled-cell indicator publication-title: J. Comput. Phys. – volume: 781 start-page: 622 year: 2015 end-page: 656 ident: bib0013 article-title: Using functional gains for effective sensor location in flow control: a reduced-order modelling approach publication-title: J Fluid Mech – volume: 107 start-page: 261 year: 2000 end-page: 274 ident: bib0045 article-title: Frame based methods for unconstrained optimization publication-title: J. Optim. Theory Appl. – volume: 35 start-page: 103 year: 2006 end-page: 120 ident: bib0002 article-title: A heuristic approach to effective sensor placement for modeling of a cylinder wake publication-title: Computers & Fluids – year: 1987 ident: bib0025 article-title: System identification: Theory for the user – volume: 25 start-page: 054106 year: 2013 ident: bib0011 article-title: Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators publication-title: Physics of Fluids – start-page: 252 year: 2002 end-page: 257 ident: bib0017 article-title: Adaptive tuning of a Kalman filter using the fuzzy integral for an intelligent navigation system publication-title: Proceedings of IEEE International Intelligent Control Symposium – year: 1990 ident: bib0043 article-title: Optimization and nonsmooth analysis, classics in applied mathematics publication-title: Society for Industrial and Applied Mathematics – volume: 15 start-page: 175 year: 1970 end-page: 184 ident: bib0021 article-title: On the identification of variances and adaptive Kalman filtering publication-title: IEEE Trans Automat Contr – volume: 87 start-page: 51 year: 2016 end-page: 69 ident: bib0031 article-title: Novel local smoothness indicators for improving the third-order WENO scheme publication-title: Int J Numer Methods Fluids – volume: 17 start-page: 188 year: 2006 end-page: 217 ident: bib0042 article-title: Mesh Adaptive Direct Search Algorithms for Constrained Optimization publication-title: SIAM J. Optim. – volume: 144 start-page: 1310 year: 2018 end-page: 1320 ident: bib0041 article-title: Estimating model error covariances using particle filters publication-title: Quart. J. Roy. Meteor. Soc. – volume: 18 start-page: 584 year: 2002 end-page: 608 ident: bib0051 article-title: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers publication-title: Numer. Methods Partial Differ. Equ. – volume: 175 start-page: 108 year: 2002 end-page: 127 ident: bib0032 article-title: A technique of treating negative weights in WENO schemes publication-title: J. Comput. Phys. – volume: 83 start-page: 32 year: 1989 end-page: 78 ident: bib0048 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: II, J. Comput. Phys. – volume: 19 start-page: 319 year: 1998 end-page: 340 ident: bib0050 article-title: Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes publication-title: SIAM J. Sci. Comput. – volume: 725 start-page: 522 year: 2013 end-page: 565 ident: bib0012 article-title: Control of amplifier flows using subspace identification techniques publication-title: J Fluid Mech – volume: 1 start-page: 267 year: 1961 end-page: 279 ident: bib0028 article-title: Calculation of interaction of non-steady shock waves with obstacles publication-title: J. Comp. Math. Physics USSR – volume: 13 start-page: 889 year: 2002 end-page: 903 ident: bib0046 article-title: Analysis of generalized pattern searches publication-title: SIAM J. Optim. – volume: 17 start-page: 903 year: 1972 end-page: 908 ident: bib0022 article-title: Approaches to adaptive filtering publication-title: IEEE Trans Automat Contr – volume: 823 start-page: 230 year: 2017 end-page: 277 ident: bib0009 article-title: Optimal sensor placement for variational data assimilation of unsteady flows past a rotationally oscillating cylinder publication-title: J. Fluid Mech. – volume: 27 start-page: 160 year: 2009 end-page: 173 ident: bib0004 article-title: Efficient sensor placement for ocean measurements using low-dimensional concepts publication-title: Ocean Modell. – volume: 24 start-page: 859 year: 2007 end-page: 864 ident: bib0018 article-title: A tool for Kalman filter tuning publication-title: Computer Aided Chemical Engineering – volume: 5 start-page: 1 year: 1996 end-page: 25 ident: bib0036 article-title: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models publication-title: J. Comput. Graph. Stat. – volume: 9 start-page: 681 year: 2021 end-page: 707 ident: bib0024 article-title: Model error estimation using the expectation maximization algorithm and a particle flow filter publication-title: SIAM/ASA J. Uncertainty Quantification – year: 2015 ident: bib0039 article-title: Aspects of Particle Filtering in High-dimensional Spaces publication-title: Dynamic Data-Driven Environmental Systems Science – start-page: 79 year: 2000 end-page: 84 ident: bib0016 article-title: Small satellite attitude control based on a Kalman filter publication-title: Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on, Rio Patras, Greece, 19 July – volume: 14 start-page: 1394 year: 1993 end-page: 1414 ident: bib0049 article-title: Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics publication-title: SIAM J. Sci. Comput. – volume: 25 start-page: 995 year: 2003 end-page: 1017 ident: bib0052 article-title: Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations publication-title: SIAM J. Sci. Comput. – volume: 61 start-page: 343 year: 2014 end-page: 368 ident: bib0034 article-title: Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids publication-title: J. Sci. Comput. – year: 2008 ident: bib0038 article-title: Sharp Failure Rates for the Bootstrap Particle Filter in High Dimensions publication-title: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Institute of Mathematical Statistics, pp. 318–329. – volume: 16 start-page: 1758 year: 2004 end-page: 1764 ident: bib0001 article-title: Optimized sensor placement for urban flow measurement publication-title: Physics of Fluids – year: 2014 ident: bib0005 article-title: Computational Issues on Observability and Optimal Sensor Locations publication-title: 2014 American Control Conference – volume: 35 start-page: 208 year: 2006 end-page: 226 ident: bib0003 article-title: Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition publication-title: Computers & Fluids – volume: 140 start-page: 107 year: 1993 end-page: 113 ident: bib0035 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proceedings F - Radar and Signal Processing – volume: 681 start-page: 241 year: 2011 end-page: 260 ident: bib0010 article-title: H2 Optimal actuator and sensor placement in the linearised complex publication-title: J Fluid Mech – volume: 56 start-page: 113 year: 2011 end-page: 124 ident: bib0008 article-title: Linear-quadratic optimal actuator location publication-title: IEEE Trans Automat Contr – volume: 136 start-page: 4629 year: 2008 end-page: 4640 ident: bib0037 article-title: Obstacles to High-Dimensional Particle Filtering publication-title: Mon. Weather Rev. – volume: 115 start-page: 200 year: 1994 end-page: 212 ident: bib0027 article-title: Weighted essentially non-oscillatory schemes publication-title: J. Comput. Phys. – volume: 77 start-page: 439 year: 1988 end-page: 471 ident: bib0029 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. – volume: 18 start-page: 1501 year: 2008 end-page: 1503 ident: bib0044 article-title: Erratum: Mesh Adaptive Direct Search Algorithms for Constrained Optimization publication-title: SIAM J. Optim. – volume: 396 start-page: 400 year: 2019 end-page: 415 ident: bib0040 article-title: Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter publication-title: J. Comput. Phys. – volume: 61 start-page: 7351 year: 2006 end-page: 7367 ident: bib0006 article-title: Optimal actuator/sensor placement for linear parabolic PDEs using spatial H2 norm publication-title: Chem Eng Sci – year: 2001 ident: bib0020 article-title: Estimation with applications to tracking and navigation – volume: 64 start-page: 17133 year: 2012 ident: bib0007 article-title: Optimal placement of mobile sensors for data assimilations publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 25 start-page: 901 year: 2002 end-page: 908 ident: bib0014 article-title: Automated tuning of an extended Kalman filter using the downhill simplex algorithm publication-title: Journal of Guidance, Control, and Dynamics – start-page: 1 year: 2005 end-page: 5 ident: bib0015 article-title: Neural network based approach for tuning Kalman filter publication-title: 2005 IEEE International Conference on Electro Information Technology – volume: 19 start-page: 319 issue: 2 year: 1998 ident: 10.1016/j.apm.2021.11.006_bib0050 article-title: Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595291819 – volume: 17 start-page: 903 year: 1972 ident: 10.1016/j.apm.2021.11.006_bib0022 article-title: Approaches to adaptive filtering publication-title: IEEE Trans Automat Contr doi: 10.1109/TAC.1972.1100100 – volume: 27 start-page: 160 issue: 3–4 year: 2009 ident: 10.1016/j.apm.2021.11.006_bib0004 article-title: Efficient sensor placement for ocean measurements using low-dimensional concepts publication-title: Ocean Modell. doi: 10.1016/j.ocemod.2009.01.001 – volume: 5 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.apm.2021.11.006_bib0036 article-title: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1996.10474692 – volume: 56 start-page: 113 issue: 1 year: 2011 ident: 10.1016/j.apm.2021.11.006_bib0008 article-title: Linear-quadratic optimal actuator location publication-title: IEEE Trans Automat Contr doi: 10.1109/TAC.2010.2052151 – volume: 198 start-page: 493 issue: 2 year: 2007 ident: 10.1016/j.apm.2021.11.006_bib0030 article-title: Statistical inverse problems: discretization, model reduction and inverse crimes publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.09.027 – volume: 175 start-page: 108 issue: 1 year: 2002 ident: 10.1016/j.apm.2021.11.006_bib0032 article-title: A technique of treating negative weights in WENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6892 – volume: 61 start-page: 343 issue: 2 year: 2014 ident: 10.1016/j.apm.2021.11.006_bib0034 article-title: Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9825-1 – volume: 25 start-page: 054106 year: 2013 ident: 10.1016/j.apm.2021.11.006_bib0011 article-title: Feedback control of instabilities in the two-dimensional blasius boundary layer: the role of sensors and actuators publication-title: Physics of Fluids doi: 10.1063/1.4804390 – volume: 13 start-page: 646 issue: 6 year: 1968 ident: 10.1016/j.apm.2021.11.006_bib0019 article-title: An innovations approach to least-squares estimation--Part I: Linear filtering in additive white noise publication-title: IEEE Transactions on Automatic Control AC doi: 10.1109/TAC.1968.1099025 – volume: 77 start-page: 439 issue: 2 year: 1988 ident: 10.1016/j.apm.2021.11.006_bib0029 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90177-5 – volume: 107 start-page: 261 issue: 2 year: 2000 ident: 10.1016/j.apm.2021.11.006_bib0045 article-title: Frame based methods for unconstrained optimization publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1026429319405 – volume: 14 start-page: 1394 issue: 6 year: 1993 ident: 10.1016/j.apm.2021.11.006_bib0049 article-title: Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics publication-title: SIAM J. Sci. Comput. doi: 10.1137/0914082 – year: 2001 ident: 10.1016/j.apm.2021.11.006_bib0020 – volume: 367 start-page: 166 year: 2018 ident: 10.1016/j.apm.2021.11.006_bib0047 article-title: An artificial neural network as a troubled-cell indicator publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.04.029 – volume: 64 start-page: 17133 issue: 1 year: 2012 ident: 10.1016/j.apm.2021.11.006_bib0007 article-title: Optimal placement of mobile sensors for data assimilations publication-title: Tellus A: Dynamic Meteorology and Oceanography doi: 10.3402/tellusa.v64i0.17133 – volume: 1 start-page: 267 year: 1961 ident: 10.1016/j.apm.2021.11.006_bib0028 article-title: Calculation of interaction of non-steady shock waves with obstacles publication-title: J. Comp. Math. Physics USSR – volume: 681 start-page: 241 year: 2011 ident: 10.1016/j.apm.2021.11.006_bib0010 article-title: H2 Optimal actuator and sensor placement in the linearised complex publication-title: J Fluid Mech doi: 10.1017/jfm.2011.195 – start-page: 79 year: 2000 ident: 10.1016/j.apm.2021.11.006_bib0016 article-title: Small satellite attitude control based on a Kalman filter publication-title: Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on, Rio Patras, Greece, 19 July – volume: 9 start-page: 681 issue: 2 year: 2021 ident: 10.1016/j.apm.2021.11.006_bib0024 article-title: Model error estimation using the expectation maximization algorithm and a particle flow filter publication-title: SIAM/ASA J. Uncertainty Quantification doi: 10.1137/19M1297300 – year: 2008 ident: 10.1016/j.apm.2021.11.006_bib0038 article-title: Sharp Failure Rates for the Bootstrap Particle Filter in High Dimensions – year: 2015 ident: 10.1016/j.apm.2021.11.006_bib0039 article-title: Aspects of Particle Filtering in High-dimensional Spaces – volume: 15 start-page: 175 issue: 2 year: 1970 ident: 10.1016/j.apm.2021.11.006_bib0021 article-title: On the identification of variances and adaptive Kalman filtering publication-title: IEEE Trans Automat Contr doi: 10.1109/TAC.1970.1099422 – year: 1987 ident: 10.1016/j.apm.2021.11.006_bib0025 – year: 2014 ident: 10.1016/j.apm.2021.11.006_bib0005 article-title: Computational Issues on Observability and Optimal Sensor Locations – year: 1990 ident: 10.1016/j.apm.2021.11.006_bib0043 article-title: Optimization and nonsmooth analysis, classics in applied mathematics publication-title: Society for Industrial and Applied Mathematics – volume: 396 start-page: 400 year: 2019 ident: 10.1016/j.apm.2021.11.006_bib0040 article-title: Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.06.060 – volume: 35 start-page: 208 issue: 2 year: 2006 ident: 10.1016/j.apm.2021.11.006_bib0003 article-title: Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2004.11.006 – volume: 115 start-page: 200 issue: 1 year: 1994 ident: 10.1016/j.apm.2021.11.006_bib0027 article-title: Weighted essentially non-oscillatory schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1187 – volume: 823 start-page: 230 year: 2017 ident: 10.1016/j.apm.2021.11.006_bib0009 article-title: Optimal sensor placement for variational data assimilation of unsteady flows past a rotationally oscillating cylinder publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.313 – volume: 25 start-page: 901 issue: 5 year: 2002 ident: 10.1016/j.apm.2021.11.006_bib0014 article-title: Automated tuning of an extended Kalman filter using the downhill simplex algorithm publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/2.4983 – volume: 24 start-page: 859 year: 2007 ident: 10.1016/j.apm.2021.11.006_bib0018 article-title: A tool for Kalman filter tuning publication-title: Computer Aided Chemical Engineering doi: 10.1016/S1570-7946(07)80166-0 – volume: 13 start-page: 889 issue: 3 year: 2002 ident: 10.1016/j.apm.2021.11.006_bib0046 article-title: Analysis of generalized pattern searches publication-title: SIAM J. Optim. doi: 10.1137/S1052623400378742 – volume: 83 start-page: 32 issue: 1 year: 1989 ident: 10.1016/j.apm.2021.11.006_bib0048 article-title: Efficient implementation of essentially non-oscillatory shock-capturing schemes publication-title: II, J. Comput. Phys. doi: 10.1016/0021-9991(89)90222-2 – volume: 51 start-page: 82 issue: 1 year: 2009 ident: 10.1016/j.apm.2021.11.006_bib0033 article-title: High order weighted essentially nonoscillatory schemes for convection dominated problems publication-title: SIAM Rev. doi: 10.1137/070679065 – volume: 136 start-page: 4629 issue: 12 year: 2008 ident: 10.1016/j.apm.2021.11.006_bib0037 article-title: Obstacles to High-Dimensional Particle Filtering publication-title: Mon. Weather Rev. doi: 10.1175/2008MWR2529.1 – volume: 40 start-page: 750 issue: 4 year: 2019 ident: 10.1016/j.apm.2021.11.006_bib0023 article-title: A multiobjective optimization approach to filter tuning applied to coupled hyperbolic PDEs describing gas flow dynamics publication-title: Optimal Control Applications and Methods doi: 10.1002/oca.2509 – volume: 87 start-page: 51 issue: 2 year: 2016 ident: 10.1016/j.apm.2021.11.006_bib0031 article-title: Novel local smoothness indicators for improving the third-order WENO scheme publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.4480 – start-page: 252 year: 2002 ident: 10.1016/j.apm.2021.11.006_bib0017 article-title: Adaptive tuning of a Kalman filter using the fuzzy integral for an intelligent navigation system publication-title: Proceedings of IEEE International Intelligent Control Symposium doi: 10.1109/ISIC.2002.1157771 – volume: 35 start-page: 103 issue: 1 year: 2006 ident: 10.1016/j.apm.2021.11.006_bib0002 article-title: A heuristic approach to effective sensor placement for modeling of a cylinder wake publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2004.11.002 – volume: 126 start-page: 202 issue: 1 year: 1996 ident: 10.1016/j.apm.2021.11.006_bib0026 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – volume: 140 start-page: 107 issue: 2 year: 1993 ident: 10.1016/j.apm.2021.11.006_bib0035 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proceedings F - Radar and Signal Processing doi: 10.1049/ip-f-2.1993.0015 – volume: 61 start-page: 7351 issue: 22 year: 2006 ident: 10.1016/j.apm.2021.11.006_bib0006 article-title: Optimal actuator/sensor placement for linear parabolic PDEs using spatial H2 norm publication-title: Chem Eng Sci doi: 10.1016/j.ces.2006.07.027 – volume: 16 start-page: 1758 year: 2004 ident: 10.1016/j.apm.2021.11.006_bib0001 article-title: Optimized sensor placement for urban flow measurement publication-title: Physics of Fluids doi: 10.1063/1.1689351 – volume: 725 start-page: 522 year: 2013 ident: 10.1016/j.apm.2021.11.006_bib0012 article-title: Control of amplifier flows using subspace identification techniques publication-title: J Fluid Mech doi: 10.1017/jfm.2013.194 – start-page: 1 year: 2005 ident: 10.1016/j.apm.2021.11.006_bib0015 article-title: Neural network based approach for tuning Kalman filter publication-title: 2005 IEEE International Conference on Electro Information Technology – volume: 17 start-page: 188 issue: 1 year: 2006 ident: 10.1016/j.apm.2021.11.006_bib0042 article-title: Mesh Adaptive Direct Search Algorithms for Constrained Optimization publication-title: SIAM J. Optim. doi: 10.1137/040603371 – volume: 18 start-page: 1501 issue: 4 year: 2008 ident: 10.1016/j.apm.2021.11.006_bib0044 article-title: Erratum: Mesh Adaptive Direct Search Algorithms for Constrained Optimization publication-title: SIAM J. Optim. doi: 10.1137/060671267 – volume: 18 start-page: 584 issue: 5 year: 2002 ident: 10.1016/j.apm.2021.11.006_bib0051 article-title: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.10025 – volume: 25 start-page: 995 issue: 3 year: 2003 ident: 10.1016/j.apm.2021.11.006_bib0052 article-title: Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502402120 – volume: 144 start-page: 1310 issue: 713 year: 2018 ident: 10.1016/j.apm.2021.11.006_bib0041 article-title: Estimating model error covariances using particle filters publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.3132 – volume: 781 start-page: 622 year: 2015 ident: 10.1016/j.apm.2021.11.006_bib0013 article-title: Using functional gains for effective sensor location in flow control: a reduced-order modelling approach publication-title: J Fluid Mech doi: 10.1017/jfm.2015.509  | 
    
| SSID | ssj0005904 ssj0012860  | 
    
| Score | 2.3750997 | 
    
| Snippet | •An algorithm that optimizes the sensor location and non-Gaussian model noise parameters.•Data assimilation applied to 1D and 2D Riemann problems.•Direct... The sensor location and selection of model noise parameters play an utmost important role in the performance of data assimilation methods. Suboptimal sensor...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 649 | 
    
| SubjectTerms | Algorithms Approximation Cauchy problems Data assimilation Direct search method Discontinuity Mathematical models Model uncertainty Noise Optimal sensor placement Optimization Parameters Placement Rarefaction Riemann problems Riemann solver Runge-Kutta method Sensors Shock and rarefaction waves Shock waves  | 
    
| Title | An algorithm for finding optimal sensor placement and model uncertainty in data assimilation applied to Riemann problems | 
    
| URI | https://dx.doi.org/10.1016/j.apm.2021.11.006 https://www.proquest.com/docview/2637670106  | 
    
| Volume | 103 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 0307-904X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: ABDBF dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: ACRLP dateStart: 20211101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AIKHN dateStart: 20211101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 0307-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AKRWK dateStart: 19760601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Social Science and Humanities Library - DRAA customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: TRJHH dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/ providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvcChankIWlj50BNS2CR27OS4PFbbVnCgRdqb5Tg2BLHeVTdIcOG3M-MkqxYhDj1FsjxJ5HHmEX_zDSHfWOUcJh6RTjIT8cRVUSGsjpLCcAn-1-SBp_viUkyu-Y9pNl0jp30tDMIqO9vf2vRgrbuRYbeaw0VdD3_h9ixiPoWkBUlKsKKcc4ldDI6f_4J5FDHvyRBxdn-yGTBeeoHF6GlyjESe2PTobd_0ykoH1zP-RD52MSMdta_1maxZv0U2L1aEq8tt8jjyVN_fzCHVv51RCERpOIz2N3QONmEG0kvIV2E4YLDwjyDVvqKhDw4F19YCA5onWnuKoFEKMXU9q1ugHNVtqEqbOb2q4Zne064RzXKHXI_Pf59Ooq6pQmRYmjURE04ya0thcpc4w4wuIesqpdCaYbTi8tyJSqZZyW1lXRXHWkpRyEwbV7rMsF2y7ufe7hHKUw3RQSqNyTWXuih07phh0iWVsDar9kncL6cyHeM4Nr64Vz207E6BBhRqADIRBRrYJ0crkUVLt_HeZN7rSP2zZxS4g_fEDnp9qu6DXapUIK0NJshf_u-uX8lGipURAZ52QNabPw_2EOKVphyEDTkgH0YnZydjvH7_Obl8Aewp7fA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELX4OEAPCEpRKdD60BNS2CR27OSIEGhpWQ4tSHuzHMeGVLveVTeV4MJvZ8ZJEKCKA1fLdiKPMzMvfn5DyHdWOYfAI9JJZiKeuCoqhNVRUhguIf6aPOh0jy7F8Jr_GGfjJXLS34VBWmXn-1ufHrx11zLoVnMwr-vBb9yeRczHAFpQpEQuk1WepRIR2NHDM55HEfNeDRG790ebgeSl53gbPU2OUMkTqx79Pzi9ctMh9pxtko0uaaTH7XttkSXrP5IPoyfF1cU2uTv2VE9uZoD1b6cUMlEaTqP9DZ2BU5jC6AUAVmgOJCz8JUi1r2gohEMhtrXMgOae1p4ia5RCUl1P65YpR3Wbq9JmRn_V8EzvaVeJZvGJXJ-dXp0Mo66qQmRYmjURE04ya0thcpc4w4wuAXaVUmjNMF1xee5EJdOs5LayropjLaUoZKaNK11m2A5Z8TNvPxPKUw3pQSqNyTWXuih07phh0iWVsDardkncL6cyneQ4Vr6YqJ5b9keBBRRaAKCIAgvsksOnIfNWb-Otzry3kXqxaRTEg7eG7ff2VN0Xu1CpQF0bRMhf3jfrN7I2vBpdqIvzy597ZD3FaxKBq7ZPVpq__-wBJC9N-TVszkcGHu4T | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+finding+optimal+sensor+placement+and+model+uncertainty+in+data+assimilation+applied+to+Riemann+problems&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Uilhoorn%2C+F+E&rft.date=2022-03-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=103&rft.spage=649&rft_id=info:doi/10.1016%2Fj.apm.2021.11.006&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |