Efficient hot carrier injection in plasmonic semiconductor heterojunction for artificial photosynthesis of ammonia

We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott–Schottky tests, x-ray p...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 36; no. 18; pp. 185706 - 185717
Main Authors Wu, Keming, Li, Qiang, Yue, Shuai, Bai, Xiaoxia, Liu, Xinfeng, Zhao, Zhenhuan
Format Journal Article
LanguageEnglish
Published England IOP Publishing 05.05.2025
Subjects
Online AccessGet full text
ISSN0957-4484
1361-6528
1361-6528
DOI10.1088/1361-6528/adc740

Cover

Abstract We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott–Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p–n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu 3 BiS 3 to non-plasmonic Bi 2 S 3 , with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.
AbstractList We developed a plasmonic semiconductor p-n junction by growing p-type Cu BiS in n-type Bi S nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p-n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. Fourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu BiS to non-plasmonic Bi S , with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.
We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott–Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p–n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu 3 BiS 3 to non-plasmonic Bi 2 S 3 , with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.
Plasmonic semiconductors are arising as potential photocatalysts for the artificial synthesis of green ammonia. However, plasmon excitation-generated hot carriers on a single nanoparticle are easily recombined, leading to low photoconversion efficiency, and energetic defects make plasmonic semiconductors subject to unexpected changes, limiting post-engineering. Here, we developed a plasmonic semiconductor p-n junction by in situ growing p-type Cu3BiS3 in n-type Bi2S3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, valence band spectroscopy, and X-ray diffraction (XRD). Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using transient absorption spectroscopy. The plasmonic p-n junction shows strong localized surface plasmon resonance absorption in the near-infrared range and delivers a 61 times enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform infrared (FTIR) reveal that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Using ultrafast transient absorption spectroscopy, we found that localized surface plasmon resonance (LSPR) induced hot carriers can be efficiently injected from plasmonic Cu3BiS3 to non-plasmonic Bi2S3, with sufficient energy to drive water oxidation. We further confirmed that photothermal effects have little contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.&#xD.Plasmonic semiconductors are arising as potential photocatalysts for the artificial synthesis of green ammonia. However, plasmon excitation-generated hot carriers on a single nanoparticle are easily recombined, leading to low photoconversion efficiency, and energetic defects make plasmonic semiconductors subject to unexpected changes, limiting post-engineering. Here, we developed a plasmonic semiconductor p-n junction by in situ growing p-type Cu3BiS3 in n-type Bi2S3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, valence band spectroscopy, and X-ray diffraction (XRD). Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using transient absorption spectroscopy. The plasmonic p-n junction shows strong localized surface plasmon resonance absorption in the near-infrared range and delivers a 61 times enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform infrared (FTIR) reveal that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Using ultrafast transient absorption spectroscopy, we found that localized surface plasmon resonance (LSPR) induced hot carriers can be efficiently injected from plasmonic Cu3BiS3 to non-plasmonic Bi2S3, with sufficient energy to drive water oxidation. We further confirmed that photothermal effects have little contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.&#xD.
Author Li, Qiang
Liu, Xinfeng
Bai, Xiaoxia
Wu, Keming
Zhao, Zhenhuan
Yue, Shuai
Author_xml – sequence: 1
  givenname: Keming
  surname: Wu
  fullname: Wu, Keming
  organization: National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, People’s Republic of China
– sequence: 2
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  organization: Xidian Univerity School of Advanced Materials and Nanotechnology, Xi’an 710126, People’s Republic of China
– sequence: 3
  givenname: Shuai
  surname: Yue
  fullname: Yue, Shuai
  organization: National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, People’s Republic of China
– sequence: 4
  givenname: Xiaoxia
  orcidid: 0000-0003-1756-4868
  surname: Bai
  fullname: Bai, Xiaoxia
  organization: Xidian Univerity School of Advanced Materials and Nanotechnology, Xi’an 710126, People’s Republic of China
– sequence: 5
  givenname: Xinfeng
  orcidid: 0000-0002-7662-7171
  surname: Liu
  fullname: Liu, Xinfeng
  organization: National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, People’s Republic of China
– sequence: 6
  givenname: Zhenhuan
  orcidid: 0000-0001-5015-0064
  surname: Zhao
  fullname: Zhao, Zhenhuan
  organization: Tufts University Department of Chemistry, Medford, MA 01255, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40164091$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa2Kqiy0d06Vj61Eiif-iPdYIVqQkLjA2XIcW-tVYqe2c-C_x1GAEz3NaOb3njRvztBJiMEidAHkFxApr4AKaARv5ZUeTMfIJ7R7H52gHdnzrmFMslN0lvOREADZwhd0yggIRvawQ-nGOW-8DQUfYsFGp-Rtwj4crSk-htrhedR5isEbnO3kTQzDYkpM-GCLTfG4hI10daRT8aufHvFc_WJ-DuVgs884Oqyn1UV_RZ-dHrP99lrP0dOfm8fr2-b-4e_d9e_7xtCWlwZcy0QrJAhqRS8Md6LrqNU9pXTPhRbM7SVzWgiQGnpNun4YdF3Xy-xAgJ6jH5vvnOK_xeaiJp-NHUcdbFyyoiAZ7xjnoqLfX9Gln-yg5uQnnZ7VW04VIBtgUsw5WfeOAFHrK9Sau1pzV9srquTnJvFxVse4pFCPVUGHqKhQUBWSd0SoeXCVvfyA_a_1C6AMmaU
CODEN NNOTER
Cites_doi 10.1021/ja808783u
10.1021/acsenergylett.2c01615
10.1002/adma.202104226
10.1038/nmat3696
10.1021/jacs.8b11544
10.1039/D4MH00515E
10.1039/D4TA01996B
10.1021/acsenergylett.1c02816
10.1002/sus2.13
10.1016/j.mattod.2018.04.008
10.1016/j.chempr.2018.05.005
10.1038/s41893-022-00975-9
10.1021/acs.chemrev.1c00473
10.1039/D2NR05044G
10.1038/nmat3004
10.1038/s43246-024-00510-7
10.1016/j.nanoen.2019.104187
10.1002/anie.201713229
10.1021/acs.jpcc.9b10043
10.1038/s44160-023-00321-7
10.1002/adma.201806482
10.1039/C9TA13038A
10.1021/acsnano.8b02939
10.1016/S1872-2067(23)64466-3
10.1021/acsenergylett.1c02516
10.1038/s41467-018-04630-w
10.1021/jacs.8b02076
10.1021/acs.nanolett.1c00932
10.1002/anie.202316384
10.1039/D4QI02128B
10.1038/nphoton.2016.76
10.1021/acscatal.2c06397
10.1787/f6daa4a0-en
10.1126/science.1240365
10.1021/jacs.0c05097
10.1021/acs.chemmater.8b01269
10.1021/ja404851s
10.1021/acsnano.4c14556
10.1021/jacs.3c03990
10.1021/acsnano.6b00745
10.1016/S1872-2067(18)63104-3
10.1016/S1872-2067(21)63799-3
10.1039/C6CS00306K
10.1039/C9CY02511A
10.1016/j.apcatb.2018.03.073
10.1016/j.cej.2024.153754
10.1016/j.cej.2023.145381
10.1021/jacs.2c06216
10.1016/S1872-2067(21)63931-1
10.1021/ja00464a015
10.1021/ja503508g
10.1002/anie.202104001
10.1016/S1872-2067(23)64481-X
10.1016/j.cclet.2022.108022
10.1016/S1872-2067(23)64514-0
10.1088/1361-6463/ad4717
10.1021/acs.langmuir.4c01135
10.1021/cr00035a013
10.1088/1361-6528/adb6a4
10.1016/j.seppur.2024.129299
10.1007/s12274-022-4176-y
10.1021/jacs.9b01375
10.1007/s40843-024-2844-8
10.1002/adfm.202314051
10.1016/j.asems.2023.100047
10.1002/admi.202200219
10.1021/jacs.5b03105
10.1002/adma.201705221
10.1021/jacs.3c14586
10.1088/1361-6528/ad64d9
10.1021/acscatal.9b03246
10.1039/C7CS00136C
10.1016/j.mtphys.2024.101439
10.1021/jacs.6b05396
ContentType Journal Article
Copyright 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-6528/adc740
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
ExternalDocumentID 40164091
10_1088_1361_6528_adc740
nanoadc740
Genre Journal Article
GrantInformation_xml – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: http://dx.doi.org/10.13039/501100004739
– fundername: National Natural Science Foundation of China
  grantid: 22073022; 22173025; 6217032156
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Xidian University Specially Funded Project for Interdisciplinary Exploration
  grantid: TZJH2024046
– fundername: the National Science Foundation for Distinguished Young Scholars of China
  grantid: no.22325301
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
AEINN
CITATION
NPM
7X8
ID FETCH-LOGICAL-c325t-1f246268163e6b6c5f6773eab333956a64f984fa6618a1ba07bddaab3640ed013
IEDL.DBID IOP
ISSN 0957-4484
1361-6528
IngestDate Fri Sep 05 17:49:49 EDT 2025
Mon Jul 21 05:44:12 EDT 2025
Wed Sep 10 04:01:52 EDT 2025
Wed Apr 16 04:10:27 EDT 2025
Wed Apr 16 04:12:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords ammonia
p–n junction
plasmon
photosynthesis
semiconductor
Language English
License This article is available under the terms of the IOP-Standard License.
2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1f246268163e6b6c5f6773eab333956a64f984fa6618a1ba07bddaab3640ed013
Notes NANO-138748.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5015-0064
0000-0002-7662-7171
0000-0003-1756-4868
PMID 40164091
PQID 3184574556
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_40164091
crossref_primary_10_1088_1361_6528_adc740
iop_journals_10_1088_1361_6528_adc740
proquest_miscellaneous_3184574556
PublicationCentury 2000
PublicationDate 2025-05-05
PublicationDateYYYYMMDD 2025-05-05
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev Nano
PublicationTitleAlternate Nanotechnology
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Lee (nanoadc740bib63) 2017; 46
Zhang (nanoadc740bib68) 2018; 140
Hu (nanoadc740bib67) 2019; 141
Li (nanoadc740bib15) 2021; 42
Wu (nanoadc740bib9) 2022; 7
Bo (nanoadc740bib70) 2021; 60
Asif (nanoadc740bib3) 2023; 473
Jiang (nanoadc740bib24) 2017; 46
Sun (nanoadc740bib27) 2023; 34
Zhang (nanoadc740bib37) 2023; 2
Liu (nanoadc740bib62) 2016; 10
Li (nanoadc740bib31) 2022; 43
Luo (nanoadc740bib43) 2019; 66
Yang (nanoadc740bib50) 2021; 21
Wu (nanoadc740bib66) 2020; 8
Cheng (nanoadc740bib12) 2025; 354
Li (nanoadc740bib20) 2018; 39
Ghorai (nanoadc740bib73) 2019; 123
Fryzuk (nanoadc740bib4) 2013; 340
Yang (nanoadc740bib36) 2024; 11
Luther (nanoadc740bib39) 2011; 10
Guth (nanoadc740bib14) 1977; 99
Gutierrez (nanoadc740bib48) 2023; 15
Li (nanoadc740bib72) 2018; 57
Lian (nanoadc740bib49) 2022; 5
International Energy Agency (nanoadc740bib2)
Cao (nanoadc740bib58) 2022; 9
Chao (nanoadc740bib8) 2024; 35
Wakimoto (nanoadc740bib6) 2024; 496
Shi (nanoadc740bib16) 2019; 9
Linsebigler (nanoadc740bib22) 1995; 95
Qi (nanoadc740bib30) 2023; 13
Li (nanoadc740bib57) 2024; 44
Li (nanoadc740bib64) 2014; 136
Li (nanoadc740bib17) 2015; 137
Lin (nanoadc740bib33) 2025
Meng (nanoadc740bib61) 2013; 135
Liu (nanoadc740bib60) 2024; 11
Zhang (nanoadc740bib29) 2018; 4
Yin (nanoadc740bib38) 2020; 10
Zhang (nanoadc740bib28) 2016; 10
Bai (nanoadc740bib65) 2022; 34
Yang (nanoadc740bib71) 2024; 146
Ding (nanoadc740bib69) 2009; 131
Zhang (nanoadc740bib7) 2024; 57
Zhang (nanoadc740bib25) 2024; 12
International Renewable Energy Agency (nanoadc740bib1)
Lian (nanoadc740bib56) 2018; 9
Chen (nanoadc740bib21) 2021; 1
Cheng (nanoadc740bib42) 2016; 138
Xu (nanoadc740bib74) 2018; 21
Paul (nanoadc740bib59) 2018; 30
Lian (nanoadc740bib47) 2023; 145
Zhu (nanoadc740bib13) 2013; 12
Zhao (nanoadc740bib19) 2019; 31
Yang (nanoadc740bib46) 2025; 19
Choudhary (nanoadc740bib40) 2024; 5
Cushing (nanoadc740bib75) 2018; 12
Lee (nanoadc740bib11) 2022; 7
Li (nanoadc740bib34) 2024; 63
Qi (nanoadc740bib32) 2022; 15
Li (nanoadc740bib18) 2020; 142
Wu (nanoadc740bib35) 2024; 34
Ye (nanoadc740bib5) 2023; 2
Han (nanoadc740bib10) 2023; 145
Zhang (nanoadc740bib51) 2018; 30
Liu (nanoadc740bib55) 2023; 51
Wu (nanoadc740bib44) 2024; 40
Wu (nanoadc740bib53) 2023; 53
Lian (nanoadc740bib45) 2019; 141
Huang (nanoadc740bib54) 2024; 67
Sayed (nanoadc740bib41) 2022; 122
Yanagi (nanoadc740bib23) 2022; 7
Lu (nanoadc740bib52) 2018; 233
Li (nanoadc740bib26) 2023; 51
References_xml – volume: 131
  start-page: 9471
  year: 2009
  ident: nanoadc740bib69
  article-title: Cobalt−dinitrogen complexes with weakened N–N bonds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808783u
– volume: 7
  start-page: 3032
  year: 2022
  ident: nanoadc740bib11
  article-title: Pathways to a green ammonia future
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01615
– volume: 34
  year: 2022
  ident: nanoadc740bib65
  article-title: A Schottky-barrier-free plasmonic semiconductor photocatalyst for nitrogen fixation in a “One-Stone-Two-Birds” manner
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104226
– volume: 12
  start-page: 836
  year: 2013
  ident: nanoadc740bib13
  article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3696
– ident: nanoadc740bib1
  article-title: Innovation outlook: renewable ammonia
– volume: 141
  start-page: 2446
  year: 2019
  ident: nanoadc740bib45
  article-title: Plasmonic p–n junction for infrared light to chemical energy conversion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11544
– volume: 11
  start-page: 5470
  year: 2024
  ident: nanoadc740bib60
  article-title: Full-spectrum plasmonic semiconductors for photocatalysis
  publication-title: Mater. Horiz.
  doi: 10.1039/D4MH00515E
– volume: 12
  start-page: 19029
  year: 2024
  ident: nanoadc740bib25
  article-title: Engineering semiconductor quantum dots for co-upcycling of CO2 and biomass-derived alcohol
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D4TA01996B
– volume: 7
  start-page: 1021
  year: 2022
  ident: nanoadc740bib9
  article-title: Energy decarbonization via green H2 or NH3?
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02816
– volume: 1
  start-page: 174
  year: 2021
  ident: nanoadc740bib21
  article-title: Recent advances in TiO2-based catalysts for N2 reduction reaction
  publication-title: SusMat
  doi: 10.1002/sus2.13
– volume: 21
  start-page: 1042
  year: 2018
  ident: nanoadc740bib74
  article-title: Direct Z-scheme photocatalysts: principles, synthesis, and applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.008
– volume: 4
  start-page: 1832
  year: 2018
  ident: nanoadc740bib29
  article-title: Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.05.005
– volume: 5
  start-page: 1092
  year: 2022
  ident: nanoadc740bib49
  article-title: Harnessing infrared solar energy with plasmonic energy upconversion
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-00975-9
– volume: 122
  start-page: 10484
  year: 2022
  ident: nanoadc740bib41
  article-title: Non-noble plasmonic metal-based photocatalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00473
– volume: 15
  start-page: 657
  year: 2023
  ident: nanoadc740bib48
  article-title: Hot hole transfer at the plasmonic semiconductor/semiconductor interface
  publication-title: Nanoscale
  doi: 10.1039/D2NR05044G
– volume: 10
  start-page: 361
  year: 2011
  ident: nanoadc740bib39
  article-title: Localized surface plasmon resonances arising from free carriers in doped quantum dots
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3004
– volume: 5
  start-page: 69
  year: 2024
  ident: nanoadc740bib40
  article-title: Plasmonic chemistry for sustainable ammonia production
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-024-00510-7
– volume: 66
  year: 2019
  ident: nanoadc740bib43
  article-title: Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104187
– volume: 57
  start-page: 5278
  year: 2018
  ident: nanoadc740bib72
  article-title: Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201713229
– volume: 123
  start-page: 28401
  year: 2019
  ident: nanoadc740bib73
  article-title: Ultrafast plasmon dynamics and hole–phonon coupling in NIR active nonstoichiometric semiconductor plasmonic Cu2−xS nanocrystals
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10043
– volume: 2
  start-page: 612
  year: 2023
  ident: nanoadc740bib5
  article-title: Prospects and challenges of green ammonia synthesis
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-023-00321-7
– volume: 31
  year: 2019
  ident: nanoadc740bib19
  article-title: Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806482
– volume: 8
  start-page: 2827
  year: 2020
  ident: nanoadc740bib66
  article-title: Plasmon-driven N2 photofixation in pure water over MoO3−x nanosheets under visible to NIR excitation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13038A
– volume: 12
  start-page: 7117
  year: 2018
  ident: nanoadc740bib75
  article-title: Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02939
– volume: 51
  start-page: 204
  year: 2023
  ident: nanoadc740bib55
  article-title: Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64466-3
– volume: 7
  start-page: 432
  year: 2022
  ident: nanoadc740bib23
  article-title: Charge separation in photocatalysts: mechanisms, physical parameters, and design principles
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02516
– volume: 9
  start-page: 2314
  year: 2018
  ident: nanoadc740bib56
  article-title: Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04630-w
– volume: 140
  start-page: 9434
  year: 2018
  ident: nanoadc740bib68
  article-title: Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02076
– volume: 21
  start-page: 4036
  year: 2021
  ident: nanoadc740bib50
  article-title: Harvesting sub-bandgap IR photons by photothermionic hot electron transfer in a plasmonic p-n junction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00932
– volume: 63
  year: 2024
  ident: nanoadc740bib34
  article-title: Structure and defect engineering synergistically boost high solar-to-chemical conversion efficiency of cerium oxide/Au hollow nanomushrooms for nitrogen photofixation
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.202316384
– volume: 11
  start-page: 8246
  year: 2024
  ident: nanoadc740bib36
  article-title: LSPR-enhanced photocatalytic N fixation over Z-scheme POMOF-derived Cu/WO modified C-BiOBr with multiple active sites
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D4QI02128B
– volume: 10
  start-page: 473
  year: 2016
  ident: nanoadc740bib28
  article-title: Near-field dielectric scattering promotes optical absorption by platinum nanoparticles
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.76
– volume: 13
  start-page: 3971
  year: 2023
  ident: nanoadc740bib30
  article-title: Near field scattering optical model-based catalyst design for artificial photoredox transformation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c06397
– ident: nanoadc740bib2
  article-title: Ammonia technology roadmap
  doi: 10.1787/f6daa4a0-en
– volume: 340
  start-page: 1530
  year: 2013
  ident: nanoadc740bib4
  article-title: More can be better in N2 activation
  publication-title: Science
  doi: 10.1126/science.1240365
– volume: 142
  start-page: 12430
  year: 2020
  ident: nanoadc740bib18
  article-title: Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05097
– volume: 30
  start-page: 5020
  year: 2018
  ident: nanoadc740bib59
  article-title: Cation exchange mediated synthesis and tuning of bimodal plasmon in alloyed ternary Cu3BiS3−xSex nanorods
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01269
– volume: 135
  start-page: 10286
  year: 2013
  ident: nanoadc740bib61
  article-title: Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404851s
– volume: 19
  start-page: 1547
  year: 2025
  ident: nanoadc740bib46
  article-title: Direct and indirect interfacial electron transfer at a plasmonic p-Cu7S4/CdS heterojunction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c14556
– volume: 145
  start-page: 15482
  year: 2023
  ident: nanoadc740bib47
  article-title: Infrared light-induced anomalous defect-mediated plasmonic hot electron transfer for enhanced photocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c03990
– volume: 10
  start-page: 4587
  year: 2016
  ident: nanoadc740bib62
  article-title: Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00745
– volume: 39
  start-page: 1180
  year: 2018
  ident: nanoadc740bib20
  article-title: Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(18)63104-3
– volume: 42
  start-page: 1763
  year: 2021
  ident: nanoadc740bib15
  article-title: Tunable and stable localized surface plasmon resonance in SrMoO4 for enhanced visible light driven nitrogen reduction
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63799-3
– volume: 46
  start-page: 4645
  year: 2017
  ident: nanoadc740bib24
  article-title: Photoelectrochemical devices for solar water splitting—materials and challenges
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00306K
– volume: 10
  start-page: 4141
  year: 2020
  ident: nanoadc740bib38
  article-title: Properties, fabrication and applications of plasmonic semiconductor nanocrystals
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02511A
– volume: 233
  start-page: 19
  year: 2018
  ident: nanoadc740bib52
  article-title: Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.03.073
– volume: 496
  year: 2024
  ident: nanoadc740bib6
  article-title: Green ammonia production via recycle membrane reactor: experiment and process simulation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153754
– volume: 473
  year: 2023
  ident: nanoadc740bib3
  article-title: Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.145381
– volume: 145
  start-page: 1998
  year: 2023
  ident: nanoadc740bib10
  article-title: Metal-organic framework materials for production and distribution of ammonia
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06216
– volume: 43
  start-page: 1084
  year: 2022
  ident: nanoadc740bib31
  article-title: Efficient splitting of alcohols into hydrogen and C–C coupled products over ultrathin Ni-doped ZnIn2S4 nanosheet photocatalyst
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63931-1
– volume: 99
  start-page: 5
  year: 1977
  ident: nanoadc740bib14
  article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 136
  start-page: 8438
  year: 2014
  ident: nanoadc740bib64
  article-title: Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503508g
– volume: 60
  start-page: 16085
  year: 2021
  ident: nanoadc740bib70
  article-title: Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104001
– volume: 51
  start-page: 55
  year: 2023
  ident: nanoadc740bib26
  article-title: Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64481-X
– volume: 34
  year: 2023
  ident: nanoadc740bib27
  article-title: Interfacial engineering of CdS for efficient coupling photoredox
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.108022
– volume: 53
  start-page: 123
  year: 2023
  ident: nanoadc740bib53
  article-title: 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(23)64514-0
– volume: 57
  year: 2024
  ident: nanoadc740bib7
  article-title: Ammonia synthesis by nonthermal plasma catalysis: a review on recent research progress
  publication-title: J. Appl. Phys.
  doi: 10.1088/1361-6463/ad4717
– volume: 40
  start-page: 13603
  year: 2024
  ident: nanoadc740bib44
  article-title: Antimony-doped wide bandgap molybdenum trioxide with enhanced localized surface plasmon resonance for nitrogen photofixation
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.4c01135
– volume: 95
  start-page: 735
  year: 1995
  ident: nanoadc740bib22
  article-title: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a013
– year: 2025
  ident: nanoadc740bib33
  article-title: Recent advances in localized surface plasmon resonance (LSPR) sensing technologies
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/adb6a4
– volume: 354
  year: 2025
  ident: nanoadc740bib12
  article-title: Synergistic effects of CQDs and oxygen vacancies on CeO2 photocatalyst for efficient photocatalytic nitrogen fixation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.129299
– volume: 15
  start-page: 9967
  year: 2022
  ident: nanoadc740bib32
  article-title: Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4176-y
– volume: 141
  start-page: 7807
  year: 2019
  ident: nanoadc740bib67
  article-title: Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01375
– volume: 67
  start-page: 1812
  year: 2024
  ident: nanoadc740bib54
  article-title: Facile defect engineering in ZnIn2S4 nanosheets for enhanced NIR-driven H2 evolution
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-024-2844-8
– volume: 34
  year: 2024
  ident: nanoadc740bib35
  article-title: Bi/BSO heterojunctions via vacancy engineering for efficient photocatalytic nitrogen fixation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202314051
– volume: 2
  year: 2023
  ident: nanoadc740bib37
  article-title: Plasmonic semiconductors for advanced artificial photosynthesis
  publication-title: Adv. Sens. Energy Mater.
  doi: 10.1016/j.asems.2023.100047
– volume: 9
  year: 2022
  ident: nanoadc740bib58
  article-title: Intrinsic trapping and recombination dynamics in low‐dimensional bismuth sulfide nanocrystals
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202200219
– volume: 137
  start-page: 6393
  year: 2015
  ident: nanoadc740bib17
  article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03105
– volume: 30
  year: 2018
  ident: nanoadc740bib51
  article-title: IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705221
– volume: 146
  start-page: 7734
  year: 2024
  ident: nanoadc740bib71
  article-title: Construction of gold/rhodium freestanding superstructures as antenna-reactor photocatalysts for plasmon-driven nitrogen fixation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c14586
– volume: 35
  year: 2024
  ident: nanoadc740bib8
  article-title: Single‐atom catalysts for electrocatalytic nitrate reduction into ammonia
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ad64d9
– volume: 9
  start-page: 9739
  year: 2019
  ident: nanoadc740bib16
  article-title: Defect engineering in photocatalytic nitrogen fixation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03246
– volume: 46
  start-page: 4877
  year: 2017
  ident: nanoadc740bib63
  article-title: Action spectra in semiconductor photocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00136C
– volume: 44
  year: 2024
  ident: nanoadc740bib57
  article-title: Infrared light driven overall water vapor splitting on a plasmonic semiconductor p-n heterojunction photocatalyst
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2024.101439
– volume: 138
  start-page: 9316
  year: 2016
  ident: nanoadc740bib42
  article-title: Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05396
SSID ssj0011821
Score 2.4723918
Snippet We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation...
We developed a plasmonic semiconductor p-n junction by growing p-type Cu BiS in n-type Bi S nanorods by an ion exchange method. The formation of plasmonic...
Plasmonic semiconductors are arising as potential photocatalysts for the artificial synthesis of green ammonia. However, plasmon excitation-generated hot...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 185706
SubjectTerms ammonia
photosynthesis
plasmon
p–n junction
semiconductor
Title Efficient hot carrier injection in plasmonic semiconductor heterojunction for artificial photosynthesis of ammonia
URI https://iopscience.iop.org/article/10.1088/1361-6528/adc740
https://www.ncbi.nlm.nih.gov/pubmed/40164091
https://www.proquest.com/docview/3184574556
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1361-6528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011821
  issn: 0957-4484
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiR64FEeXV4yCA4cso3jR7zihFCrConHgUo9IFm2E6tbhB1tsgf49Yzj7IoiQIhbpIwcZzz2fKMZfwPwvBGtM1QmnkpZFuivy8KWpiqYt6KyTWPdmNF9916enPK3Z-JsB15t78LEbjr65_iYiYKzCqeCOHVImaSFFJU6NI2rOcbrV5nCuCLd3vvwcZtCQOBMM9FeXWAMwqcc5e9GuOSTruB3_ww3R7dzfBM-byacq02-zNeDnbvvv3A5_ucf3YIbExwlr7Pobdhpwz7s_URSuA_XxiJR19-B1dHIN4FuipzHgTizSu3uyDJcjPVcAZ9Ih2j8a6LbJX0qu48h8cnGFTlPZTfxAr3oKIlQmaT5Zf4K0uF4sf8WEI32y55ET0zaH0tzF06Pjz69OSmmng2FY5UYCuorjjGSQpjXSiud8LKuWWssYwxDMSO5XyjuDcICZag1ZY0GYfC15GXbIB69B7shhvYAyKJEO_GOiQZXr8HIR1pDK-9dbRUtF80MXm5WTXeZmkOPKXWldNKoThrVWaMzeIHK19P-7P8i9-ySXDAhaiY1RdHUCkDqrvEzeLqxDo2bMWVYTGjjutd4QHJRcyHkDO5ns9lOjScyM0RnD_5xKg_hepV6DafiSvEIdofVun2MAGiwT0ZD_wHRn_7G
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceJTX8jQIDhyyG8ePZI8Iump5lB6o1JuxnVjdIuxokz3Ar2fsZCuKACFxs5SRM7HHnm80k28AnteisZrKyFMp8wz9dZ6ZXBcZc0YUpq6NTRndDwdy74i_PRbHY5_T9C9MaMerf4rDgSh4WMKxIK6aUSZpJkVRzXRtS57P2tptwUXBRBl7N-x_PDxLIyB4pgPZXplhHMLHPOXvZjnnl7bw3X-GnMn1LK7D543SQ8XJl-m6N1P7_Rc-x__4qhtwbYSl5NUgfhMuNH4Hrv5EVrgDl1KxqO1uwWo38U6guyInoSdWr2LbO7L0p6muy-OItIjKv0baXdLF8vvgI69sWJGTWH4TTtGbJkmEzCTqOPBYkBbnC903j6i0W3YkOKLjOVnq23C02P30ei8bezdklhWiz6grOMZKFcK9RhpphZNlyRptGGMYkmnJ3bziTiM8qDQ1Oi_RMDQ-ljxvasSld2DbB9_cAzLP0V6cZaLGHawxApJG08I5W5qK5vN6Ai83O6fagaJDpdR6Vam4qiquqhpWdQIvcAPUeE67v8g9OyfntQ-KSUVRNLYEkAq3ZwJPNxai8FDGTIv2TVh3Ci9KLkouhJzA3cF0zlTjkdQMUdr9f1TlCVw-fLNQ7_cP3j2AK0VsPxzrLcVD2O5X6-YRYqLePE52_wMvSgQ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+hot+carrier+injection+in+plasmonic+semiconductor+heterojunction+for+artificial+photosynthesis+of+ammonia&rft.jtitle=Nanotechnology&rft.au=Wu%2C+Keming&rft.au=Li%2C+Qiang&rft.au=Yue%2C+Shuai&rft.au=Bai%2C+Xiaoxia&rft.date=2025-05-05&rft.issn=1361-6528&rft.eissn=1361-6528&rft_id=info:doi/10.1088%2F1361-6528%2Fadc740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon