Efficient hot carrier injection in plasmonic semiconductor heterojunction for artificial photosynthesis of ammonia
We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott–Schottky tests, x-ray p...
Saved in:
Published in | Nanotechnology Vol. 36; no. 18; pp. 185706 - 185717 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
05.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4484 1361-6528 1361-6528 |
DOI | 10.1088/1361-6528/adc740 |
Cover
Abstract | We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott–Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p–n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu 3 BiS 3 to non-plasmonic Bi 2 S 3 , with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis. |
---|---|
AbstractList | We developed a plasmonic semiconductor p-n junction by
growing p-type Cu
BiS
in n-type Bi
S
nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p-n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm.
Fourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu
BiS
to non-plasmonic Bi
S
, with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis. We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott–Schottky tests, x-ray photoelectron spectroscopy-based valence band spectra, and powder x-ray diffraction. Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using ultrafast transient absorption spectroscopy (TAS). The plasmonic p–n junction shows strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (IR) range and delivers a 61-fold enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform IR reveals that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Based on TAS measurements, we found that LSPR induced hot carriers can be efficiently injected from plasmonic Cu 3 BiS 3 to non-plasmonic Bi 2 S 3 , with sufficient energy to drive water oxidation reaction. We further confirmed that photothermal effects have negligible contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis. Plasmonic semiconductors are arising as potential photocatalysts for the artificial synthesis of green ammonia. However, plasmon excitation-generated hot carriers on a single nanoparticle are easily recombined, leading to low photoconversion efficiency, and energetic defects make plasmonic semiconductors subject to unexpected changes, limiting post-engineering. Here, we developed a plasmonic semiconductor p-n junction by in situ growing p-type Cu3BiS3 in n-type Bi2S3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, valence band spectroscopy, and X-ray diffraction (XRD). Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using transient absorption spectroscopy. The plasmonic p-n junction shows strong localized surface plasmon resonance absorption in the near-infrared range and delivers a 61 times enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform infrared (FTIR) reveal that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Using ultrafast transient absorption spectroscopy, we found that localized surface plasmon resonance (LSPR) induced hot carriers can be efficiently injected from plasmonic Cu3BiS3 to non-plasmonic Bi2S3, with sufficient energy to drive water oxidation. We further confirmed that photothermal effects have little contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.
.Plasmonic semiconductors are arising as potential photocatalysts for the artificial synthesis of green ammonia. However, plasmon excitation-generated hot carriers on a single nanoparticle are easily recombined, leading to low photoconversion efficiency, and energetic defects make plasmonic semiconductors subject to unexpected changes, limiting post-engineering. Here, we developed a plasmonic semiconductor p-n junction by in situ growing p-type Cu3BiS3 in n-type Bi2S3 nanorods by an ion exchange method. The formation of plasmonic semiconductor heterojunctions was verified through high-resolution transmission electron microscopy, Mott-Schottky tests, valence band spectroscopy, and X-ray diffraction (XRD). Additionally, the rapid transfer of hot carriers between the heterojunctions was investigated using transient absorption spectroscopy. The plasmonic p-n junction shows strong localized surface plasmon resonance absorption in the near-infrared range and delivers a 61 times enhancement of the ammonia production rate under full spectrum irradiation in pure water. It can achieve an apparent quantum efficiency of 0.45% at 400 nm and 0.16% at 1000 nm. In situ Fourier-transform infrared (FTIR) reveal that the plasmonic semiconductor heterojunction promotes the nitrogen chemisorption and activation. Using ultrafast transient absorption spectroscopy, we found that localized surface plasmon resonance (LSPR) induced hot carriers can be efficiently injected from plasmonic Cu3BiS3 to non-plasmonic Bi2S3, with sufficient energy to drive water oxidation. We further confirmed that photothermal effects have little contribution to the photocatalytic performance in the water-particle suspension system. The present study shows a potential strategy utilizing plasmonic semiconductors made of earth-abundant elements for green ammonia synthesis.
. |
Author | Li, Qiang Liu, Xinfeng Bai, Xiaoxia Wu, Keming Zhao, Zhenhuan Yue, Shuai |
Author_xml | – sequence: 1 givenname: Keming surname: Wu fullname: Wu, Keming organization: National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, People’s Republic of China – sequence: 2 givenname: Qiang surname: Li fullname: Li, Qiang organization: Xidian Univerity School of Advanced Materials and Nanotechnology, Xi’an 710126, People’s Republic of China – sequence: 3 givenname: Shuai surname: Yue fullname: Yue, Shuai organization: National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, People’s Republic of China – sequence: 4 givenname: Xiaoxia orcidid: 0000-0003-1756-4868 surname: Bai fullname: Bai, Xiaoxia organization: Xidian Univerity School of Advanced Materials and Nanotechnology, Xi’an 710126, People’s Republic of China – sequence: 5 givenname: Xinfeng orcidid: 0000-0002-7662-7171 surname: Liu fullname: Liu, Xinfeng organization: National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, People’s Republic of China – sequence: 6 givenname: Zhenhuan orcidid: 0000-0001-5015-0064 surname: Zhao fullname: Zhao, Zhenhuan organization: Tufts University Department of Chemistry, Medford, MA 01255, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40164091$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa2Kqiy0d06Vj61Eiif-iPdYIVqQkLjA2XIcW-tVYqe2c-C_x1GAEz3NaOb3njRvztBJiMEidAHkFxApr4AKaARv5ZUeTMfIJ7R7H52gHdnzrmFMslN0lvOREADZwhd0yggIRvawQ-nGOW-8DQUfYsFGp-Rtwj4crSk-htrhedR5isEbnO3kTQzDYkpM-GCLTfG4hI10daRT8aufHvFc_WJ-DuVgs884Oqyn1UV_RZ-dHrP99lrP0dOfm8fr2-b-4e_d9e_7xtCWlwZcy0QrJAhqRS8Md6LrqNU9pXTPhRbM7SVzWgiQGnpNun4YdF3Xy-xAgJ6jH5vvnOK_xeaiJp-NHUcdbFyyoiAZ7xjnoqLfX9Gln-yg5uQnnZ7VW04VIBtgUsw5WfeOAFHrK9Sau1pzV9srquTnJvFxVse4pFCPVUGHqKhQUBWSd0SoeXCVvfyA_a_1C6AMmaU |
CODEN | NNOTER |
Cites_doi | 10.1021/ja808783u 10.1021/acsenergylett.2c01615 10.1002/adma.202104226 10.1038/nmat3696 10.1021/jacs.8b11544 10.1039/D4MH00515E 10.1039/D4TA01996B 10.1021/acsenergylett.1c02816 10.1002/sus2.13 10.1016/j.mattod.2018.04.008 10.1016/j.chempr.2018.05.005 10.1038/s41893-022-00975-9 10.1021/acs.chemrev.1c00473 10.1039/D2NR05044G 10.1038/nmat3004 10.1038/s43246-024-00510-7 10.1016/j.nanoen.2019.104187 10.1002/anie.201713229 10.1021/acs.jpcc.9b10043 10.1038/s44160-023-00321-7 10.1002/adma.201806482 10.1039/C9TA13038A 10.1021/acsnano.8b02939 10.1016/S1872-2067(23)64466-3 10.1021/acsenergylett.1c02516 10.1038/s41467-018-04630-w 10.1021/jacs.8b02076 10.1021/acs.nanolett.1c00932 10.1002/anie.202316384 10.1039/D4QI02128B 10.1038/nphoton.2016.76 10.1021/acscatal.2c06397 10.1787/f6daa4a0-en 10.1126/science.1240365 10.1021/jacs.0c05097 10.1021/acs.chemmater.8b01269 10.1021/ja404851s 10.1021/acsnano.4c14556 10.1021/jacs.3c03990 10.1021/acsnano.6b00745 10.1016/S1872-2067(18)63104-3 10.1016/S1872-2067(21)63799-3 10.1039/C6CS00306K 10.1039/C9CY02511A 10.1016/j.apcatb.2018.03.073 10.1016/j.cej.2024.153754 10.1016/j.cej.2023.145381 10.1021/jacs.2c06216 10.1016/S1872-2067(21)63931-1 10.1021/ja00464a015 10.1021/ja503508g 10.1002/anie.202104001 10.1016/S1872-2067(23)64481-X 10.1016/j.cclet.2022.108022 10.1016/S1872-2067(23)64514-0 10.1088/1361-6463/ad4717 10.1021/acs.langmuir.4c01135 10.1021/cr00035a013 10.1088/1361-6528/adb6a4 10.1016/j.seppur.2024.129299 10.1007/s12274-022-4176-y 10.1021/jacs.9b01375 10.1007/s40843-024-2844-8 10.1002/adfm.202314051 10.1016/j.asems.2023.100047 10.1002/admi.202200219 10.1021/jacs.5b03105 10.1002/adma.201705221 10.1021/jacs.3c14586 10.1088/1361-6528/ad64d9 10.1021/acscatal.9b03246 10.1039/C7CS00136C 10.1016/j.mtphys.2024.101439 10.1021/jacs.6b05396 |
ContentType | Journal Article |
Copyright | 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1361-6528/adc740 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6528 |
ExternalDocumentID | 40164091 10_1088_1361_6528_adc740 nanoadc740 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: http://dx.doi.org/10.13039/501100004739 – fundername: National Natural Science Foundation of China grantid: 22073022; 22173025; 6217032156 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Xidian University Specially Funded Project for Interdisciplinary Exploration grantid: TZJH2024046 – fundername: the National Science Foundation for Distinguished Young Scholars of China grantid: no.22325301 |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX AEINN CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c325t-1f246268163e6b6c5f6773eab333956a64f984fa6618a1ba07bddaab3640ed013 |
IEDL.DBID | IOP |
ISSN | 0957-4484 1361-6528 |
IngestDate | Fri Sep 05 17:49:49 EDT 2025 Mon Jul 21 05:44:12 EDT 2025 Wed Sep 10 04:01:52 EDT 2025 Wed Apr 16 04:10:27 EDT 2025 Wed Apr 16 04:12:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | ammonia p–n junction plasmon photosynthesis semiconductor |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-1f246268163e6b6c5f6773eab333956a64f984fa6618a1ba07bddaab3640ed013 |
Notes | NANO-138748.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5015-0064 0000-0002-7662-7171 0000-0003-1756-4868 |
PMID | 40164091 |
PQID | 3184574556 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_40164091 crossref_primary_10_1088_1361_6528_adc740 iop_journals_10_1088_1361_6528_adc740 proquest_miscellaneous_3184574556 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-05 |
PublicationDateYYYYMMDD | 2025-05-05 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanotechnology |
PublicationTitleAbbrev | Nano |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Lee (nanoadc740bib63) 2017; 46 Zhang (nanoadc740bib68) 2018; 140 Hu (nanoadc740bib67) 2019; 141 Li (nanoadc740bib15) 2021; 42 Wu (nanoadc740bib9) 2022; 7 Bo (nanoadc740bib70) 2021; 60 Asif (nanoadc740bib3) 2023; 473 Jiang (nanoadc740bib24) 2017; 46 Sun (nanoadc740bib27) 2023; 34 Zhang (nanoadc740bib37) 2023; 2 Liu (nanoadc740bib62) 2016; 10 Li (nanoadc740bib31) 2022; 43 Luo (nanoadc740bib43) 2019; 66 Yang (nanoadc740bib50) 2021; 21 Wu (nanoadc740bib66) 2020; 8 Cheng (nanoadc740bib12) 2025; 354 Li (nanoadc740bib20) 2018; 39 Ghorai (nanoadc740bib73) 2019; 123 Fryzuk (nanoadc740bib4) 2013; 340 Yang (nanoadc740bib36) 2024; 11 Luther (nanoadc740bib39) 2011; 10 Guth (nanoadc740bib14) 1977; 99 Gutierrez (nanoadc740bib48) 2023; 15 Li (nanoadc740bib72) 2018; 57 Lian (nanoadc740bib49) 2022; 5 International Energy Agency (nanoadc740bib2) Cao (nanoadc740bib58) 2022; 9 Chao (nanoadc740bib8) 2024; 35 Wakimoto (nanoadc740bib6) 2024; 496 Shi (nanoadc740bib16) 2019; 9 Linsebigler (nanoadc740bib22) 1995; 95 Qi (nanoadc740bib30) 2023; 13 Li (nanoadc740bib57) 2024; 44 Li (nanoadc740bib64) 2014; 136 Li (nanoadc740bib17) 2015; 137 Lin (nanoadc740bib33) 2025 Meng (nanoadc740bib61) 2013; 135 Liu (nanoadc740bib60) 2024; 11 Zhang (nanoadc740bib29) 2018; 4 Yin (nanoadc740bib38) 2020; 10 Zhang (nanoadc740bib28) 2016; 10 Bai (nanoadc740bib65) 2022; 34 Yang (nanoadc740bib71) 2024; 146 Ding (nanoadc740bib69) 2009; 131 Zhang (nanoadc740bib7) 2024; 57 Zhang (nanoadc740bib25) 2024; 12 International Renewable Energy Agency (nanoadc740bib1) Lian (nanoadc740bib56) 2018; 9 Chen (nanoadc740bib21) 2021; 1 Cheng (nanoadc740bib42) 2016; 138 Xu (nanoadc740bib74) 2018; 21 Paul (nanoadc740bib59) 2018; 30 Lian (nanoadc740bib47) 2023; 145 Zhu (nanoadc740bib13) 2013; 12 Zhao (nanoadc740bib19) 2019; 31 Yang (nanoadc740bib46) 2025; 19 Choudhary (nanoadc740bib40) 2024; 5 Cushing (nanoadc740bib75) 2018; 12 Lee (nanoadc740bib11) 2022; 7 Li (nanoadc740bib34) 2024; 63 Qi (nanoadc740bib32) 2022; 15 Li (nanoadc740bib18) 2020; 142 Wu (nanoadc740bib35) 2024; 34 Ye (nanoadc740bib5) 2023; 2 Han (nanoadc740bib10) 2023; 145 Zhang (nanoadc740bib51) 2018; 30 Liu (nanoadc740bib55) 2023; 51 Wu (nanoadc740bib44) 2024; 40 Wu (nanoadc740bib53) 2023; 53 Lian (nanoadc740bib45) 2019; 141 Huang (nanoadc740bib54) 2024; 67 Sayed (nanoadc740bib41) 2022; 122 Yanagi (nanoadc740bib23) 2022; 7 Lu (nanoadc740bib52) 2018; 233 Li (nanoadc740bib26) 2023; 51 |
References_xml | – volume: 131 start-page: 9471 year: 2009 ident: nanoadc740bib69 article-title: Cobalt−dinitrogen complexes with weakened N–N bonds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808783u – volume: 7 start-page: 3032 year: 2022 ident: nanoadc740bib11 article-title: Pathways to a green ammonia future publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01615 – volume: 34 year: 2022 ident: nanoadc740bib65 article-title: A Schottky-barrier-free plasmonic semiconductor photocatalyst for nitrogen fixation in a “One-Stone-Two-Birds” manner publication-title: Adv. Mater. doi: 10.1002/adma.202104226 – volume: 12 start-page: 836 year: 2013 ident: nanoadc740bib13 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. doi: 10.1038/nmat3696 – ident: nanoadc740bib1 article-title: Innovation outlook: renewable ammonia – volume: 141 start-page: 2446 year: 2019 ident: nanoadc740bib45 article-title: Plasmonic p–n junction for infrared light to chemical energy conversion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11544 – volume: 11 start-page: 5470 year: 2024 ident: nanoadc740bib60 article-title: Full-spectrum plasmonic semiconductors for photocatalysis publication-title: Mater. Horiz. doi: 10.1039/D4MH00515E – volume: 12 start-page: 19029 year: 2024 ident: nanoadc740bib25 article-title: Engineering semiconductor quantum dots for co-upcycling of CO2 and biomass-derived alcohol publication-title: J. Mater. Chem. A doi: 10.1039/D4TA01996B – volume: 7 start-page: 1021 year: 2022 ident: nanoadc740bib9 article-title: Energy decarbonization via green H2 or NH3? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02816 – volume: 1 start-page: 174 year: 2021 ident: nanoadc740bib21 article-title: Recent advances in TiO2-based catalysts for N2 reduction reaction publication-title: SusMat doi: 10.1002/sus2.13 – volume: 21 start-page: 1042 year: 2018 ident: nanoadc740bib74 article-title: Direct Z-scheme photocatalysts: principles, synthesis, and applications publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.008 – volume: 4 start-page: 1832 year: 2018 ident: nanoadc740bib29 article-title: Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: exerting plasmonic effect and beyond publication-title: Chem doi: 10.1016/j.chempr.2018.05.005 – volume: 5 start-page: 1092 year: 2022 ident: nanoadc740bib49 article-title: Harnessing infrared solar energy with plasmonic energy upconversion publication-title: Nat. Sustain. doi: 10.1038/s41893-022-00975-9 – volume: 122 start-page: 10484 year: 2022 ident: nanoadc740bib41 article-title: Non-noble plasmonic metal-based photocatalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00473 – volume: 15 start-page: 657 year: 2023 ident: nanoadc740bib48 article-title: Hot hole transfer at the plasmonic semiconductor/semiconductor interface publication-title: Nanoscale doi: 10.1039/D2NR05044G – volume: 10 start-page: 361 year: 2011 ident: nanoadc740bib39 article-title: Localized surface plasmon resonances arising from free carriers in doped quantum dots publication-title: Nat. Mater. doi: 10.1038/nmat3004 – volume: 5 start-page: 69 year: 2024 ident: nanoadc740bib40 article-title: Plasmonic chemistry for sustainable ammonia production publication-title: Commun. Mater. doi: 10.1038/s43246-024-00510-7 – volume: 66 year: 2019 ident: nanoadc740bib43 article-title: Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104187 – volume: 57 start-page: 5278 year: 2018 ident: nanoadc740bib72 article-title: Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201713229 – volume: 123 start-page: 28401 year: 2019 ident: nanoadc740bib73 article-title: Ultrafast plasmon dynamics and hole–phonon coupling in NIR active nonstoichiometric semiconductor plasmonic Cu2−xS nanocrystals publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10043 – volume: 2 start-page: 612 year: 2023 ident: nanoadc740bib5 article-title: Prospects and challenges of green ammonia synthesis publication-title: Nat. Synth. doi: 10.1038/s44160-023-00321-7 – volume: 31 year: 2019 ident: nanoadc740bib19 article-title: Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm publication-title: Adv. Mater. doi: 10.1002/adma.201806482 – volume: 8 start-page: 2827 year: 2020 ident: nanoadc740bib66 article-title: Plasmon-driven N2 photofixation in pure water over MoO3−x nanosheets under visible to NIR excitation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13038A – volume: 12 start-page: 7117 year: 2018 ident: nanoadc740bib75 article-title: Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure publication-title: ACS Nano doi: 10.1021/acsnano.8b02939 – volume: 51 start-page: 204 year: 2023 ident: nanoadc740bib55 article-title: Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64466-3 – volume: 7 start-page: 432 year: 2022 ident: nanoadc740bib23 article-title: Charge separation in photocatalysts: mechanisms, physical parameters, and design principles publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02516 – volume: 9 start-page: 2314 year: 2018 ident: nanoadc740bib56 article-title: Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface publication-title: Nat. Commun. doi: 10.1038/s41467-018-04630-w – volume: 140 start-page: 9434 year: 2018 ident: nanoadc740bib68 article-title: Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02076 – volume: 21 start-page: 4036 year: 2021 ident: nanoadc740bib50 article-title: Harvesting sub-bandgap IR photons by photothermionic hot electron transfer in a plasmonic p-n junction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00932 – volume: 63 year: 2024 ident: nanoadc740bib34 article-title: Structure and defect engineering synergistically boost high solar-to-chemical conversion efficiency of cerium oxide/Au hollow nanomushrooms for nitrogen photofixation publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.202316384 – volume: 11 start-page: 8246 year: 2024 ident: nanoadc740bib36 article-title: LSPR-enhanced photocatalytic N fixation over Z-scheme POMOF-derived Cu/WO modified C-BiOBr with multiple active sites publication-title: Inorg. Chem. Front. doi: 10.1039/D4QI02128B – volume: 10 start-page: 473 year: 2016 ident: nanoadc740bib28 article-title: Near-field dielectric scattering promotes optical absorption by platinum nanoparticles publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.76 – volume: 13 start-page: 3971 year: 2023 ident: nanoadc740bib30 article-title: Near field scattering optical model-based catalyst design for artificial photoredox transformation publication-title: ACS Catal. doi: 10.1021/acscatal.2c06397 – ident: nanoadc740bib2 article-title: Ammonia technology roadmap doi: 10.1787/f6daa4a0-en – volume: 340 start-page: 1530 year: 2013 ident: nanoadc740bib4 article-title: More can be better in N2 activation publication-title: Science doi: 10.1126/science.1240365 – volume: 142 start-page: 12430 year: 2020 ident: nanoadc740bib18 article-title: Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05097 – volume: 30 start-page: 5020 year: 2018 ident: nanoadc740bib59 article-title: Cation exchange mediated synthesis and tuning of bimodal plasmon in alloyed ternary Cu3BiS3−xSex nanorods publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01269 – volume: 135 start-page: 10286 year: 2013 ident: nanoadc740bib61 article-title: Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404851s – volume: 19 start-page: 1547 year: 2025 ident: nanoadc740bib46 article-title: Direct and indirect interfacial electron transfer at a plasmonic p-Cu7S4/CdS heterojunction publication-title: ACS Nano doi: 10.1021/acsnano.4c14556 – volume: 145 start-page: 15482 year: 2023 ident: nanoadc740bib47 article-title: Infrared light-induced anomalous defect-mediated plasmonic hot electron transfer for enhanced photocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c03990 – volume: 10 start-page: 4587 year: 2016 ident: nanoadc740bib62 article-title: Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo publication-title: ACS Nano doi: 10.1021/acsnano.6b00745 – volume: 39 start-page: 1180 year: 2018 ident: nanoadc740bib20 article-title: Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(18)63104-3 – volume: 42 start-page: 1763 year: 2021 ident: nanoadc740bib15 article-title: Tunable and stable localized surface plasmon resonance in SrMoO4 for enhanced visible light driven nitrogen reduction publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63799-3 – volume: 46 start-page: 4645 year: 2017 ident: nanoadc740bib24 article-title: Photoelectrochemical devices for solar water splitting—materials and challenges publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00306K – volume: 10 start-page: 4141 year: 2020 ident: nanoadc740bib38 article-title: Properties, fabrication and applications of plasmonic semiconductor nanocrystals publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02511A – volume: 233 start-page: 19 year: 2018 ident: nanoadc740bib52 article-title: Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/Carbon heterostructures for enhanced catalytic H2 production publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.03.073 – volume: 496 year: 2024 ident: nanoadc740bib6 article-title: Green ammonia production via recycle membrane reactor: experiment and process simulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.153754 – volume: 473 year: 2023 ident: nanoadc740bib3 article-title: Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145381 – volume: 145 start-page: 1998 year: 2023 ident: nanoadc740bib10 article-title: Metal-organic framework materials for production and distribution of ammonia publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06216 – volume: 43 start-page: 1084 year: 2022 ident: nanoadc740bib31 article-title: Efficient splitting of alcohols into hydrogen and C–C coupled products over ultrathin Ni-doped ZnIn2S4 nanosheet photocatalyst publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63931-1 – volume: 99 start-page: 5 year: 1977 ident: nanoadc740bib14 article-title: Photolysis of water and photoreduction of nitrogen on titanium dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00464a015 – volume: 136 start-page: 8438 year: 2014 ident: nanoadc740bib64 article-title: Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503508g – volume: 60 start-page: 16085 year: 2021 ident: nanoadc740bib70 article-title: Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104001 – volume: 51 start-page: 55 year: 2023 ident: nanoadc740bib26 article-title: Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64481-X – volume: 34 year: 2023 ident: nanoadc740bib27 article-title: Interfacial engineering of CdS for efficient coupling photoredox publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.108022 – volume: 53 start-page: 123 year: 2023 ident: nanoadc740bib53 article-title: 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64514-0 – volume: 57 year: 2024 ident: nanoadc740bib7 article-title: Ammonia synthesis by nonthermal plasma catalysis: a review on recent research progress publication-title: J. Appl. Phys. doi: 10.1088/1361-6463/ad4717 – volume: 40 start-page: 13603 year: 2024 ident: nanoadc740bib44 article-title: Antimony-doped wide bandgap molybdenum trioxide with enhanced localized surface plasmon resonance for nitrogen photofixation publication-title: Langmuir doi: 10.1021/acs.langmuir.4c01135 – volume: 95 start-page: 735 year: 1995 ident: nanoadc740bib22 article-title: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results publication-title: Chem. Rev. doi: 10.1021/cr00035a013 – year: 2025 ident: nanoadc740bib33 article-title: Recent advances in localized surface plasmon resonance (LSPR) sensing technologies publication-title: Nanotechnology doi: 10.1088/1361-6528/adb6a4 – volume: 354 year: 2025 ident: nanoadc740bib12 article-title: Synergistic effects of CQDs and oxygen vacancies on CeO2 photocatalyst for efficient photocatalytic nitrogen fixation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.129299 – volume: 15 start-page: 9967 year: 2022 ident: nanoadc740bib32 article-title: Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light publication-title: Nano Res. doi: 10.1007/s12274-022-4176-y – volume: 141 start-page: 7807 year: 2019 ident: nanoadc740bib67 article-title: Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01375 – volume: 67 start-page: 1812 year: 2024 ident: nanoadc740bib54 article-title: Facile defect engineering in ZnIn2S4 nanosheets for enhanced NIR-driven H2 evolution publication-title: Sci. China Mater. doi: 10.1007/s40843-024-2844-8 – volume: 34 year: 2024 ident: nanoadc740bib35 article-title: Bi/BSO heterojunctions via vacancy engineering for efficient photocatalytic nitrogen fixation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202314051 – volume: 2 year: 2023 ident: nanoadc740bib37 article-title: Plasmonic semiconductors for advanced artificial photosynthesis publication-title: Adv. Sens. Energy Mater. doi: 10.1016/j.asems.2023.100047 – volume: 9 year: 2022 ident: nanoadc740bib58 article-title: Intrinsic trapping and recombination dynamics in low‐dimensional bismuth sulfide nanocrystals publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202200219 – volume: 137 start-page: 6393 year: 2015 ident: nanoadc740bib17 article-title: Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 30 year: 2018 ident: nanoadc740bib51 article-title: IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation publication-title: Adv. Mater. doi: 10.1002/adma.201705221 – volume: 146 start-page: 7734 year: 2024 ident: nanoadc740bib71 article-title: Construction of gold/rhodium freestanding superstructures as antenna-reactor photocatalysts for plasmon-driven nitrogen fixation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c14586 – volume: 35 year: 2024 ident: nanoadc740bib8 article-title: Single‐atom catalysts for electrocatalytic nitrate reduction into ammonia publication-title: Nanotechnology doi: 10.1088/1361-6528/ad64d9 – volume: 9 start-page: 9739 year: 2019 ident: nanoadc740bib16 article-title: Defect engineering in photocatalytic nitrogen fixation publication-title: ACS Catal. doi: 10.1021/acscatal.9b03246 – volume: 46 start-page: 4877 year: 2017 ident: nanoadc740bib63 article-title: Action spectra in semiconductor photocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00136C – volume: 44 year: 2024 ident: nanoadc740bib57 article-title: Infrared light driven overall water vapor splitting on a plasmonic semiconductor p-n heterojunction photocatalyst publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2024.101439 – volume: 138 start-page: 9316 year: 2016 ident: nanoadc740bib42 article-title: Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05396 |
SSID | ssj0011821 |
Score | 2.4723918 |
Snippet | We developed a plasmonic semiconductor p–n junction by in situ growing p-type Cu 3 BiS 3 in n-type Bi 2 S 3 nanorods by an ion exchange method. The formation... We developed a plasmonic semiconductor p-n junction by growing p-type Cu BiS in n-type Bi S nanorods by an ion exchange method. The formation of plasmonic... Plasmonic semiconductors are arising as potential photocatalysts for the artificial synthesis of green ammonia. However, plasmon excitation-generated hot... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 185706 |
SubjectTerms | ammonia photosynthesis plasmon p–n junction semiconductor |
Title | Efficient hot carrier injection in plasmonic semiconductor heterojunction for artificial photosynthesis of ammonia |
URI | https://iopscience.iop.org/article/10.1088/1361-6528/adc740 https://www.ncbi.nlm.nih.gov/pubmed/40164091 https://www.proquest.com/docview/3184574556 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: AUTh Library subscriptions: IOP Publishing customDbUrl: eissn: 1361-6528 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011821 issn: 0957-4484 databaseCode: IOP dateStart: 19900101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiR64FEeXV4yCA4cso3jR7zihFCrConHgUo9IFm2E6tbhB1tsgf49Yzj7IoiQIhbpIwcZzz2fKMZfwPwvBGtM1QmnkpZFuivy8KWpiqYt6KyTWPdmNF9916enPK3Z-JsB15t78LEbjr65_iYiYKzCqeCOHVImaSFFJU6NI2rOcbrV5nCuCLd3vvwcZtCQOBMM9FeXWAMwqcc5e9GuOSTruB3_ww3R7dzfBM-byacq02-zNeDnbvvv3A5_ucf3YIbExwlr7Pobdhpwz7s_URSuA_XxiJR19-B1dHIN4FuipzHgTizSu3uyDJcjPVcAZ9Ih2j8a6LbJX0qu48h8cnGFTlPZTfxAr3oKIlQmaT5Zf4K0uF4sf8WEI32y55ET0zaH0tzF06Pjz69OSmmng2FY5UYCuorjjGSQpjXSiud8LKuWWssYwxDMSO5XyjuDcICZag1ZY0GYfC15GXbIB69B7shhvYAyKJEO_GOiQZXr8HIR1pDK-9dbRUtF80MXm5WTXeZmkOPKXWldNKoThrVWaMzeIHK19P-7P8i9-ySXDAhaiY1RdHUCkDqrvEzeLqxDo2bMWVYTGjjutd4QHJRcyHkDO5ns9lOjScyM0RnD_5xKg_hepV6DafiSvEIdofVun2MAGiwT0ZD_wHRn_7G |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceJTX8jQIDhyyG8ePZI8Iump5lB6o1JuxnVjdIuxokz3Ar2fsZCuKACFxs5SRM7HHnm80k28AnteisZrKyFMp8wz9dZ6ZXBcZc0YUpq6NTRndDwdy74i_PRbHY5_T9C9MaMerf4rDgSh4WMKxIK6aUSZpJkVRzXRtS57P2tptwUXBRBl7N-x_PDxLIyB4pgPZXplhHMLHPOXvZjnnl7bw3X-GnMn1LK7D543SQ8XJl-m6N1P7_Rc-x__4qhtwbYSl5NUgfhMuNH4Hrv5EVrgDl1KxqO1uwWo38U6guyInoSdWr2LbO7L0p6muy-OItIjKv0baXdLF8vvgI69sWJGTWH4TTtGbJkmEzCTqOPBYkBbnC903j6i0W3YkOKLjOVnq23C02P30ei8bezdklhWiz6grOMZKFcK9RhpphZNlyRptGGMYkmnJ3bziTiM8qDQ1Oi_RMDQ-ljxvasSld2DbB9_cAzLP0V6cZaLGHawxApJG08I5W5qK5vN6Ai83O6fagaJDpdR6Vam4qiquqhpWdQIvcAPUeE67v8g9OyfntQ-KSUVRNLYEkAq3ZwJPNxai8FDGTIv2TVh3Ci9KLkouhJzA3cF0zlTjkdQMUdr9f1TlCVw-fLNQ7_cP3j2AK0VsPxzrLcVD2O5X6-YRYqLePE52_wMvSgQ_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+hot+carrier+injection+in+plasmonic+semiconductor+heterojunction+for+artificial+photosynthesis+of+ammonia&rft.jtitle=Nanotechnology&rft.au=Wu%2C+Keming&rft.au=Li%2C+Qiang&rft.au=Yue%2C+Shuai&rft.au=Bai%2C+Xiaoxia&rft.date=2025-05-05&rft.issn=1361-6528&rft.eissn=1361-6528&rft_id=info:doi/10.1088%2F1361-6528%2Fadc740&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |