Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes

Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected...

Full description

Saved in:
Bibliographic Details
Published inFree radical biology & medicine Vol. 223; pp. 212 - 223
Main Authors Zatloukalova, Martina, Hanyk, Jiri, Papouskova, Barbora, Kabelac, Martin, Vostalova, Jitka, Vacek, Jan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2024
Subjects
Online AccessGet full text
ISSN0891-5849
1873-4596
1873-4596
DOI10.1016/j.freeradbiomed.2024.07.032

Cover

Abstract Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4′-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315–399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides. [Display omitted] •Tapinarof, also benvitimod, is redox active moderate electron-donor.•Structure-activity relationship study is presented here with resveratrol analogues.•Tapinarof undergoing irreversible adsorption-driven electrochemical anodic reaction.•The instability of tapinarof could be accelerated by higher temperature or UVA irradiation.•Tapinarof is phototoxic in uM concentration range after UVA irradiation of keratinocytes.
AbstractList Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.
Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4′-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315–399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides. [Display omitted] •Tapinarof, also benvitimod, is redox active moderate electron-donor.•Structure-activity relationship study is presented here with resveratrol analogues.•Tapinarof undergoing irreversible adsorption-driven electrochemical anodic reaction.•The instability of tapinarof could be accelerated by higher temperature or UVA irradiation.•Tapinarof is phototoxic in uM concentration range after UVA irradiation of keratinocytes.
Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pK value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.
Author Papouskova, Barbora
Hanyk, Jiri
Vacek, Jan
Zatloukalova, Martina
Kabelac, Martin
Vostalova, Jitka
Author_xml – sequence: 1
  givenname: Martina
  surname: Zatloukalova
  fullname: Zatloukalova, Martina
  organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
– sequence: 2
  givenname: Jiri
  surname: Hanyk
  fullname: Hanyk, Jiri
  organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
– sequence: 3
  givenname: Barbora
  surname: Papouskova
  fullname: Papouskova, Barbora
  organization: Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
– sequence: 4
  givenname: Martin
  surname: Kabelac
  fullname: Kabelac, Martin
  organization: Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
– sequence: 5
  givenname: Jitka
  surname: Vostalova
  fullname: Vostalova, Jitka
  organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
– sequence: 6
  givenname: Jan
  surname: Vacek
  fullname: Vacek, Jan
  email: jan.vacek@upol.cz
  organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39067626$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFLJDEQhcOirKO7f2EJeNlLt5VOd7oHT4u4Kghe3HNIJxUm40zSm6TF-feb2VHBm9ShoPheUfXeKTnywSMh5wxqBkxcrGsbEaMyowtbNHUDTVtDXwNvvpAFG3petd1SHJEFDEtWdUO7PCGnKa0BoO348JWc8CWIXjRiQdKjmpxXMViqvKEuJ5pynHWeI1ZKZ_fs8o5G3Kjsgk8rN1EbYhmY8EL1Creu4Lv_2mkVcqkXp_eS4Olq3ipP05Pz9Kncm50PepcxfSPHVm0Sfn_tZ-TP7-vHq9vq_uHm7urXfaV50-WKoeKiN6MWfaeFtdh1BtAy0D1yBi1X1gzCcmN7xprWoG1hhGYceaPUyA0_Iz8Pe6cY_s6YsizXatxslMcwJ8lh6MRQvBgK-uMVncfiqZyi26q4k29GFeDyAOgYUopo3xEGch-LXMsPsch9LBJ6WWIp6uuDGsu7zw6jTNqh12hcRJ2lCe5Te_4B-4KhZw
Cites_doi 10.1016/j.redox.2017.05.007
10.1016/j.ejmech.2022.114962
10.1021/jo9007095
10.1007/s40257-021-00641-4
10.1006/abbi.2001.2388
10.1016/j.freeradbiomed.2006.09.007
10.3390/antiox10101552
10.1111/jdv.18925
10.1002/ardp.201300081
10.1021/ja010534f
10.1021/jo0497860
10.1016/j.foodchem.2022.134641
10.3389/fphar.2022.823881
10.1016/j.jaad.2020.10.085
10.1016/j.freeradbiomed.2019.08.001
10.1007/s00894-013-1770-7
10.1016/j.jelechem.2020.113950
10.1016/j.freeradbiomed.2015.03.027
10.1016/j.redox.2021.102007
10.3390/biom9090468
10.1039/b109063c
10.36849/JDD.6627
10.1016/j.bioelechem.2011.06.005
10.1016/j.ejmech.2016.12.051
10.1016/j.freeradbiomed.2021.01.012
10.13005/bpj/2290
10.1021/acs.jpca.0c04792
10.1016/S0887-2333(98)00006-X
10.1002/cpdd.439
10.2174/1385272053544380
10.5487/TR.2015.31.2.097
10.1016/j.jid.2023.07.027
10.1038/d41573-022-00123-0
10.1016/j.jid.2017.05.004
10.1016/j.cbi.2013.07.006
10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S
10.1016/j.toxlet.2018.04.011
10.1021/tx7003008
10.1021/jp810292n
10.1007/s40267-023-01014-z
10.1063/1.3359469
10.1016/j.freeradbiomed.2015.11.014
10.1016/S0022-0728(00)00265-5
10.1111/1523-1747.ep12523279
10.1128/aem.61.12.4329-4333.1995
10.1016/S0009-2614(02)01686-X
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.freeradbiomed.2024.07.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 223
ExternalDocumentID 39067626
10_1016_j_freeradbiomed_2024_07_032
S0891584924005781
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c325t-1ea367dbc675c6ffe55d0ef10c7e31043afd86f3df71124def40b02bb32aab3d3
IEDL.DBID AIKHN
ISSN 0891-5849
1873-4596
IngestDate Fri Sep 05 08:38:51 EDT 2025
Wed Feb 19 02:09:22 EST 2025
Tue Jul 01 01:11:56 EDT 2025
Sat Oct 26 15:44:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Stability
(Photo)stability
Hydroxystilbene
Keratinocytes
(Photo)toxicity
Antioxidant effects
Pterostilbene
UVA-Irradiation
Isopropylstilbene
Resveratrol
Tapinarof
Phenolic stilbene
Oxidation
Skin
Pinosylvin
Benvitimod
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1ea367dbc675c6ffe55d0ef10c7e31043afd86f3df71124def40b02bb32aab3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39067626
PQID 3085683908
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3085683908
pubmed_primary_39067626
crossref_primary_10_1016_j_freeradbiomed_2024_07_032
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2024_07_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Larkin (bib2) 2022; 328
Grau, Soucek, Pujol (bib1) 2023; 246
Vacek, Vostalova, Papouskova, Skarupova, Kos, Kabelac, Storch (bib11) 2021; 164
Vavříková, Křen, Jezova-Kalachova, Biler, Chantemargue, Pyszková, Riva, Kuzma, Valentová, Ulrichová, Vrba, Trouillas, Vacek (bib43) 2017; 127
Jett, McLaughlin, Lee, Parish, DuBois, Raoof, Tabolt, Wilson, Somerville, DellaMaestra, Piscitelli (bib52) 2022; 23
Deng, Li, Ho, Dai, Chen, Li, Liang, Zhu (bib45) 2018; 73
Vacek, Zatloukalova, Desmier, Nezhodova, Hrbac, Kubala, Kren, Ulrichova, Trouillas (bib28) 2013; 205
Li, Chen, Wu, Webster (bib6) 1995; 61
Shirley (bib53) 2023; 39
Zatloukalova, Kren, Gazak, Kubala, Trouillas, Ulrichova, Vacek (bib29) 2011; 82
Avogadro:, an open-source molecular builder and visualization tool. Version 1.20.
Bissonnette, Stein Gold, Rubenstein, Tallman, Armstrong (bib4) 2021; 84
Wang, Mao, Jia, Zhang (bib40) 2024; 144
Heřmánková, Zatloukalová, Biler, Sokolová, Bancířová, Tzakos, Křen, Kuzma, Trouillas, Vacek (bib9) 2019; 143
Treml, Leláková, Šmejkal, Paulíčková, Labuda, Granica, Havlík, Jankovská, Padrtová, Hošek (bib14) 2019; 9
Vacek, Zatloukalová, Vrba, De Vleeschouwer, De Proft, Obluková, Sokolová, Pospíšil (bib42) 2020; 869
Teng, Huang, Wang, Tseng, Yen (bib47) 2021; 10
Kim, Park, Lim (bib38) 2015; 31
Zimányi, Thekkan, Eckert, Condren, Dmitrenko, Kuhn, Alabugin, Saltiel (bib41) 2020; 124
Spriggs, Cubberley, Loadman, Sheffield, Wierzbicki (bib50) 2018; 292
.
Pliego (bib34) 2003; 367
Spielmann, Balls, Dupuis, Pape, Pechovitch, de Silva, Holzhütter, Clothier, Desolle, Gerberick, Liebsch, Lovell, Maurer, Pfannenbecker, Potthast, Csato, Sladowski, Steiling, Brantom (bib36) 1998; 12
Urquhart (bib3) 2022; 21
Choiri, Fitriastuti, Faradiva, Rahayu (bib13) 2022; 28
Ljunggren, Cohen, Carter, Wayne (bib37) 1980; 75
Fukuhara, Nakanishi, Matsuoka, Matsumura, Honda, Hayashi, Ozawa, Miyata, Saito, Ikota, Okuda (bib21) 2008; 21
Marenich, Cramer, Truhlar (bib35) 2009; 113
Smith, Jayawickreme, Rickard, Nicodeme, Bui, Simmons, Coquery, Neil, Pryor, Mayhew, Rajpal, Creech, Furst, Lee, Wu, Rastinejad, Willson, Viviani, Morris, Moore, Cote-Sierra (bib8) 2017; 137
Vacek, Zatloukalova, Kabelac (bib12) 2022; 36
Egea, Fabregat, Frapart, Ghezzi, Görlach, Kietzmann, Kubaichuk, Knaus, Lopez, Olaso-Gonzalez, Petry, Schulz, Vina, Winyard, Abbas, Ademowo, Afonso, Andreadou, Antelmann, Antunes, Aslan, Bachschmid, Barbosa, Belousov, Berndt, Bernlohr, Bertrán, Bindoli, Bottari, Brito, Carrara, Casas, Chatzi, Chondrogianni, Conrad, Cooke, Costa, Cuadrado, My-Chan Dang, De Smet, Debelec–Butuner, Dias, Dunn, Edson, El Assar, El-Benna, Ferdinandy, Fernandes, Fladmark, Förstermann, Giniatullin, Giricz, Görbe, Griffiths, Hampl, Hanf, Herget, Hernansanz-Agustín, Hillion, Huang, Ilikay, Jansen-Dürr, Jaquet, Joles, Kalyanaraman, Kaminskyy, Karbaschi, Kleanthous, Klotz, Korac, Korkmaz, Koziel, Kračun, Krause, Křen, Krieg, Laranjinha, Lazou, Li, Martínez-Ruiz, Matsui, McBean, Meredith, Messens, Miguel, Mikhed, Milisav, Milković, Miranda-Vizuete, Mojović, Monsalve, Mouthuy, Mulvey, Münzel, Muzykantov, Nguyen, Oelze, Oliveira, Palmeira, Papaevgeniou, Pavićević, Pedre, Peyrot, Phylactides, Pircalabioru, Pitt, Poulsen, Prieto, Rigobello, Robledinos-Antón, Rodríguez-Mañas, Rolo, Rousset, Ruskovska, Saraiva, Sasson, Schröder, Semen, Seredenina, Shakirzyanova, Smith, Soldati, Sousa, Spickett, Stancic, Stasia, Steinbrenner, Stepanić, Steven, Tokatlidis, Tuncay, Turan, Ursini, Vacek, Vajnerova, Valentová, Van Breusegem, Varisli, Veal, Yalçın, Yelisyeyeva, Žarković, Zatloukalová, Zielonka, Touyz, Papapetropoulos, Grune, Lamas, Schmidt, Di Lisa, Daiber (bib39) 2017; 13
Runeberg, Ryabukhin, Lagerquist, Rahkila, Eklund (bib15) 2023; 404
Ghazali, Rajab, Zainuddin, Ahmat, Surien (bib48) 2021; 14
Benayahoum, Amira-Guebailia, Houache (bib23) 2013; 19
Squella, Bollo, Núñez-Vergara (bib25) 2005; 9
Zheng, Wei, Cai, Fang, Zhou, Yang, Liu (bib27) 2006; 41
Stojanović, Sprinz, Brede (bib17) 2001; 391
Csuk, Albert, Siewert (bib20) 2013; 346
Chaiprasongsuk, Panich (bib44) 2022; 13
Fang, Lu, Chen, Zhu, Li, Yang, Wu, Liu (bib18) 2002; 8
Shang, Qian, Liu, Dai, Shang, Jia, Liu, Fang, Zhou (bib19) 2009; 74
Scalmani, Frisch (bib32) 2010; 132
Bollo, Soto-Bustamante, Núñez-Vergara, Squella (bib24) 2000; 492
Bozhüyük, Zhou, Engel, Heinrich, Pérez, Bode (bib5) 2017; 402
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov, Sonnenberg, Williams-Young, Ding, Lipparini, Egidi, Goings, Peng, Petrone, Henderson, Ranasinghe, Zakrzewski, Gao, Rega, Zheng, Liang, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Throssell, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Keith, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Millam, Klene, Adamo, Cammi, Ochterski, Martin, Morokuma, Farkas, Foresman, Fox (bib30) 2016
Sirerol, Feddi, Mena, Rodriguez, Sirera, Aupí, Pérez, Asensi, Ortega, Estrela (bib26) 2015; 85
Jett, McLaughlin, Wilson, Somerville, DellaMaestra, Rubenstein, Piscitelli (bib49) 2022; 21
Amorati, Lucarini, Mugnaini, Pedulli, Roberti, Pizzirani (bib22) 2004; 69
Hseu, Vudhya Gowrisankar, Wang, Zhang, Chen, Huang, Yen, Yang (bib46) 2021; 44
Stojanović, Brede (bib16) 2002; 4
Liptak, Shields (bib33) 2001; 123
Bissonnette, Saint-Cyr Proulx, Jack, Maari (bib7) 2023; 37
Bissonnette, Vasist, Bullman, Collingwood, Chen, Maeda-Chubachi (bib51) 2018; 7
Pyszková, Biler, Biedermann, Valentová, Kuzma, Vrba, Ulrichová, Sokolová, Mojović, Popović-Bijelić, Kubala, Trouillas, Křen, Vacek (bib10) 2016; 90
Pliego (10.1016/j.freeradbiomed.2024.07.032_bib34) 2003; 367
Hseu (10.1016/j.freeradbiomed.2024.07.032_bib46) 2021; 44
Teng (10.1016/j.freeradbiomed.2024.07.032_bib47) 2021; 10
Vacek (10.1016/j.freeradbiomed.2024.07.032_bib42) 2020; 869
Liptak (10.1016/j.freeradbiomed.2024.07.032_bib33) 2001; 123
Heřmánková (10.1016/j.freeradbiomed.2024.07.032_bib9) 2019; 143
Grau (10.1016/j.freeradbiomed.2024.07.032_bib1) 2023; 246
Larkin (10.1016/j.freeradbiomed.2024.07.032_bib2) 2022; 328
Smith (10.1016/j.freeradbiomed.2024.07.032_bib8) 2017; 137
Treml (10.1016/j.freeradbiomed.2024.07.032_bib14) 2019; 9
Runeberg (10.1016/j.freeradbiomed.2024.07.032_bib15) 2023; 404
Stojanović (10.1016/j.freeradbiomed.2024.07.032_bib16) 2002; 4
Zatloukalova (10.1016/j.freeradbiomed.2024.07.032_bib29) 2011; 82
Bollo (10.1016/j.freeradbiomed.2024.07.032_bib24) 2000; 492
Jett (10.1016/j.freeradbiomed.2024.07.032_bib52) 2022; 23
Squella (10.1016/j.freeradbiomed.2024.07.032_bib25) 2005; 9
Spielmann (10.1016/j.freeradbiomed.2024.07.032_bib36) 1998; 12
Bozhüyük (10.1016/j.freeradbiomed.2024.07.032_bib5) 2017; 402
Vacek (10.1016/j.freeradbiomed.2024.07.032_bib11) 2021; 164
Li (10.1016/j.freeradbiomed.2024.07.032_bib6) 1995; 61
Kim (10.1016/j.freeradbiomed.2024.07.032_bib38) 2015; 31
Egea (10.1016/j.freeradbiomed.2024.07.032_bib39) 2017; 13
Bissonnette (10.1016/j.freeradbiomed.2024.07.032_bib51) 2018; 7
Chaiprasongsuk (10.1016/j.freeradbiomed.2024.07.032_bib44) 2022; 13
Fang (10.1016/j.freeradbiomed.2024.07.032_bib18) 2002; 8
Ghazali (10.1016/j.freeradbiomed.2024.07.032_bib48) 2021; 14
10.1016/j.freeradbiomed.2024.07.032_bib31
Shirley (10.1016/j.freeradbiomed.2024.07.032_bib53) 2023; 39
Vacek (10.1016/j.freeradbiomed.2024.07.032_bib12) 2022; 36
Jett (10.1016/j.freeradbiomed.2024.07.032_bib49) 2022; 21
Bissonnette (10.1016/j.freeradbiomed.2024.07.032_bib7) 2023; 37
Amorati (10.1016/j.freeradbiomed.2024.07.032_bib22) 2004; 69
Marenich (10.1016/j.freeradbiomed.2024.07.032_bib35) 2009; 113
Scalmani (10.1016/j.freeradbiomed.2024.07.032_bib32) 2010; 132
Vavříková (10.1016/j.freeradbiomed.2024.07.032_bib43) 2017; 127
Stojanović (10.1016/j.freeradbiomed.2024.07.032_bib17) 2001; 391
Csuk (10.1016/j.freeradbiomed.2024.07.032_bib20) 2013; 346
Sirerol (10.1016/j.freeradbiomed.2024.07.032_bib26) 2015; 85
Fukuhara (10.1016/j.freeradbiomed.2024.07.032_bib21) 2008; 21
Vacek (10.1016/j.freeradbiomed.2024.07.032_bib28) 2013; 205
Ljunggren (10.1016/j.freeradbiomed.2024.07.032_bib37) 1980; 75
Spriggs (10.1016/j.freeradbiomed.2024.07.032_bib50) 2018; 292
Shang (10.1016/j.freeradbiomed.2024.07.032_bib19) 2009; 74
Bissonnette (10.1016/j.freeradbiomed.2024.07.032_bib4) 2021; 84
Benayahoum (10.1016/j.freeradbiomed.2024.07.032_bib23) 2013; 19
Pyszková (10.1016/j.freeradbiomed.2024.07.032_bib10) 2016; 90
Deng (10.1016/j.freeradbiomed.2024.07.032_bib45) 2018; 73
Wang (10.1016/j.freeradbiomed.2024.07.032_bib40) 2024; 144
Zimányi (10.1016/j.freeradbiomed.2024.07.032_bib41) 2020; 124
Zheng (10.1016/j.freeradbiomed.2024.07.032_bib27) 2006; 41
Urquhart (10.1016/j.freeradbiomed.2024.07.032_bib3) 2022; 21
Choiri (10.1016/j.freeradbiomed.2024.07.032_bib13) 2022; 28
Frisch (10.1016/j.freeradbiomed.2024.07.032_bib30) 2016
References_xml – volume: 61
  start-page: 4329
  year: 1995
  end-page: 4333
  ident: bib6
  article-title: Identification of two pigments and a hydroxystilbene antibiotic from
  publication-title: Appl. Environ. Microbiol.
– volume: 74
  start-page: 5025
  year: 2009
  end-page: 5031
  ident: bib19
  article-title: Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution
  publication-title: J. Org. Chem.
– volume: 14
  start-page: 1917
  year: 2021
  end-page: 1927
  ident: bib48
  article-title: Assessment of skin irritation and sensitisation effects by topical pterostilbene
  publication-title: Biomed. Pharmacol. J.
– volume: 9
  start-page: 565
  year: 2005
  end-page: 581
  ident: bib25
  article-title: Recent developments in the electrochemistry of some nitro compounds of biological significance
  publication-title: Curr. Org. Chem.
– volume: 123
  start-page: 7314
  year: 2001
  end-page: 7319
  ident: bib33
  article-title: Accurate p
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 305
  year: 1998
  end-page: 327
  ident: bib36
  article-title: The international EU/COLIPA
  publication-title: Toxicol. Vitro
– volume: 90
  start-page: 114
  year: 2016
  end-page: 125
  ident: bib10
  article-title: Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity
  publication-title: Free Radic. Biol. Med.
– volume: 31
  start-page: 97
  year: 2015
  end-page: 104
  ident: bib38
  article-title: Phototoxicity: its mechanism and animal alternative test methods
  publication-title: Toxicol. Res.
– volume: 367
  start-page: 145
  year: 2003
  end-page: 149
  ident: bib34
  article-title: Thermodynamic cycles and the calculation of p
  publication-title: Chem. Phys. Lett.
– volume: 246
  year: 2023
  ident: bib1
  article-title: Resveratrol derivatives: synthesis and their biological activities
  publication-title: Eur. J. Med. Chem.
– volume: 19
  start-page: 2285
  year: 2013
  end-page: 2298
  ident: bib23
  article-title: A DFT method for the study of the antioxidant action mechanism of resveratrol derivatives
  publication-title: J. Mol. Model.
– volume: 73
  start-page: 651
  year: 2018
  end-page: 658
  ident: bib45
  article-title: Pterostilbene's protective effects against photodamage caused by UVA/UVB irradiation
  publication-title: Pharmazie
– volume: 82
  start-page: 117
  year: 2011
  end-page: 124
  ident: bib29
  article-title: Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II)
  publication-title: Bioelectrochemistry
– volume: 164
  start-page: 258
  year: 2021
  end-page: 270
  ident: bib11
  article-title: Antioxidant function of phytocannabinoids: molecular basis of their stability and cytoprotective properties under UV-irradiation
  publication-title: Free Radic. Biol. Med.
– volume: 44
  year: 2021
  ident: bib46
  article-title: The
  publication-title: Redox Biol.
– volume: 84
  start-page: 1059
  year: 2021
  end-page: 1067
  ident: bib4
  article-title: Tapinarof in the treatment of psoriasis: a review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent
  publication-title: J. Am. Acad. Dermatol.
– volume: 13
  start-page: 94
  year: 2017
  end-page: 162
  ident: bib39
  article-title: European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)
  publication-title: Redox Biol.
– volume: 124
  start-page: 6294
  year: 2020
  end-page: 6302
  ident: bib41
  article-title: Determination of the p
  publication-title: J. Phys. Chem. A
– volume: 69
  start-page: 7101
  year: 2004
  end-page: 7107
  ident: bib22
  article-title: Antioxidant activity of hydroxystilbene derivatives in homogeneous solution
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 1552
  year: 2021
  ident: bib47
  article-title: Pterostilbene attenuates particulate matter-induced oxidative stress, inflammation and aging in keratinocytes
  publication-title: Antioxidants
– volume: 402
  start-page: 55
  year: 2017
  end-page: 79
  ident: bib5
  article-title: Natural products from
  publication-title: Curr. Top. Microbiol. Immunol.
– year: 2016
  ident: bib30
  article-title: Gaussian 16, Revision B.01
– volume: 36
  year: 2022
  ident: bib12
  article-title: Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors
  publication-title: Curr. Opin. Electrochem.
– volume: 391
  start-page: 79
  year: 2001
  end-page: 89
  ident: bib17
  article-title: Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation
  publication-title: Arch. Biochem. Biophys.
– volume: 8
  start-page: 4191
  year: 2002
  end-page: 4198
  ident: bib18
  article-title: Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles
  publication-title: Chem. Eur J.
– volume: 85
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib26
  article-title: Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis
  publication-title: Free Radic. Biol. Med.
– volume: 346
  start-page: 504
  year: 2013
  end-page: 510
  ident: bib20
  article-title: Synthesis and radical scavenging activities of resveratrol analogs
  publication-title: Arch. Pharmazie
– volume: 23
  start-page: 83
  year: 2022
  end-page: 91
  ident: bib52
  article-title: Tapinarof cream 1% for extensive plaque psoriasis: a maximal use trial on safety, tolerability, and pharmacokinetics
  publication-title: Am. J. Clin. Dermatol.
– volume: 7
  start-page: 524
  year: 2018
  end-page: 531
  ident: bib51
  article-title: Systemic pharmacokinetics, safety, and preliminary efficacy of topical AhR agonist tapinarof: results of a phase 1 study
  publication-title: Clin. Pharmacol. Drug Dev.
– volume: 28
  start-page: 365
  year: 2022
  end-page: 375
  ident: bib13
  article-title: Antioxidant activity and nano delivery of the most frequently applied stilbene derivates: a brief and recent review
  publication-title: Pharmaceut. Sci.
– volume: 328
  start-page: 11
  year: 2022
  ident: bib2
  article-title: Nonsteroidal topical treatment for plaque psoriasis is approved
  publication-title: JAMA
– volume: 869
  year: 2020
  ident: bib42
  article-title: Diferulate: a highly effective electron donor
  publication-title: J. Electroanal. Chem.
– volume: 37
  start-page: 1168
  year: 2023
  end-page: 1174
  ident: bib7
  article-title: Tapinarof for psoriasis and atopic dermatitis: 15 years of clinical research
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 21
  start-page: 282
  year: 2008
  end-page: 287
  ident: bib21
  article-title: Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol
  publication-title: Chem. Res. Toxicol.
– reference: Avogadro:, an open-source molecular builder and visualization tool. Version 1.20.
– volume: 205
  start-page: 173
  year: 2013
  end-page: 180
  ident: bib28
  article-title: Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin
  publication-title: Chem. Biol. Interact.
– volume: 144
  start-page: 509
  year: 2024
  end-page: 519.e7
  ident: bib40
  article-title: Benvitimod inhibits IL-4– and IL-13–induced tight junction impairment by activating AHR/ARNT pathway and inhibiting STAT6 phosphorylation in human keratinocytes
  publication-title: J. Invest. Dermatol.
– volume: 404
  year: 2023
  ident: bib15
  article-title: Transformations and antioxidative activities of lignans and stilbenes at high temperatures
  publication-title: Food Chem.
– volume: 137
  start-page: 2110
  year: 2017
  end-page: 2119
  ident: bib8
  article-title: Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans
  publication-title: J. Invest. Dermatol.
– volume: 113
  start-page: 6378
  year: 2009
  end-page: 6396
  ident: bib35
  article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
  publication-title: J. Phys. Chem. B
– volume: 21
  start-page: 1084
  year: 2022
  end-page: 1090
  ident: bib49
  article-title: Dermal safety of tapinarof cream 1%: results from 4 phase 1 trials
  publication-title: J. Drugs Dermatol. JDD
– volume: 132
  year: 2010
  ident: bib32
  article-title: Continuous surface charge polarizable continuum models of solvation. I. General formalism
  publication-title: J. Chem. Phys.
– volume: 143
  start-page: 240
  year: 2019
  end-page: 251
  ident: bib9
  article-title: Redox properties of individual quercetin moieties
  publication-title: Free Radic. Biol. Med.
– volume: 127
  start-page: 263
  year: 2017
  end-page: 274
  ident: bib43
  article-title: Novel flavonolignan hybrid antioxidants: from enzymatic preparation to molecular rationalization
  publication-title: Eur. J. Med. Chem.
– volume: 75
  start-page: 253
  year: 1980
  end-page: 256
  ident: bib37
  article-title: Chlorpromazine phototoxicity: growth inhibition and DNA-interaction in normal human fibroblasts
  publication-title: J. Invest. Dermatol.
– volume: 39
  start-page: 303
  year: 2023
  end-page: 308
  ident: bib53
  article-title: Tapinarof cream 1% in plaque psoriasis: a profile of its use
  publication-title: Drugs Ther. Perspect.
– volume: 21
  start-page: 550
  year: 2022
  ident: bib3
  article-title: FDA new drug approvals in Q2 2022
  publication-title: Nat. Rev. Drug Discov.
– volume: 41
  start-page: 1807
  year: 2006
  end-page: 1816
  ident: bib27
  article-title: DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship
  publication-title: Free Radic. Biol. Med.
– reference: .
– volume: 492
  start-page: 54
  year: 2000
  end-page: 62
  ident: bib24
  article-title: Electrochemical study of nitrostilbene derivatives: nitro group as a probe of the push-pull effect
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 468
  year: 2019
  ident: bib14
  article-title: Antioxidant activity of selected stilbenoid derivatives in a cellular model system
  publication-title: Biomolecules
– volume: 13
  year: 2022
  ident: bib44
  article-title: Role of phytochemicals in skin photoprotection
  publication-title: Front. Pharmacol.
– volume: 4
  start-page: 757
  year: 2002
  end-page: 764
  ident: bib16
  article-title: Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene
  publication-title: Phys. Chem. Chem. Phys.
– volume: 292
  start-page: 63
  year: 2018
  end-page: 72
  ident: bib50
  article-title: A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin
  publication-title: Toxicol. Lett.
– volume: 13
  start-page: 94
  year: 2017
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib39
  article-title: European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.05.007
– volume: 246
  year: 2023
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib1
  article-title: Resveratrol derivatives: synthesis and their biological activities
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2022.114962
– volume: 74
  start-page: 5025
  year: 2009
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib19
  article-title: Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution
  publication-title: J. Org. Chem.
  doi: 10.1021/jo9007095
– ident: 10.1016/j.freeradbiomed.2024.07.032_bib31
– volume: 23
  start-page: 83
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib52
  article-title: Tapinarof cream 1% for extensive plaque psoriasis: a maximal use trial on safety, tolerability, and pharmacokinetics
  publication-title: Am. J. Clin. Dermatol.
  doi: 10.1007/s40257-021-00641-4
– volume: 391
  start-page: 79
  year: 2001
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib17
  article-title: Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2001.2388
– volume: 41
  start-page: 1807
  year: 2006
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib27
  article-title: DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.09.007
– volume: 10
  start-page: 1552
  year: 2021
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib47
  article-title: Pterostilbene attenuates particulate matter-induced oxidative stress, inflammation and aging in keratinocytes
  publication-title: Antioxidants
  doi: 10.3390/antiox10101552
– volume: 37
  start-page: 1168
  year: 2023
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib7
  article-title: Tapinarof for psoriasis and atopic dermatitis: 15 years of clinical research
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.18925
– volume: 346
  start-page: 504
  year: 2013
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib20
  article-title: Synthesis and radical scavenging activities of resveratrol analogs
  publication-title: Arch. Pharmazie
  doi: 10.1002/ardp.201300081
– volume: 123
  start-page: 7314
  year: 2001
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib33
  article-title: Accurate pKa calculations for carboxylic acids using Complete Basis Set and Gaussian-n models combined with CPCM continuum solvation methods
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010534f
– volume: 69
  start-page: 7101
  year: 2004
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib22
  article-title: Antioxidant activity of hydroxystilbene derivatives in homogeneous solution
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0497860
– volume: 404
  year: 2023
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib15
  article-title: Transformations and antioxidative activities of lignans and stilbenes at high temperatures
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134641
– volume: 13
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib44
  article-title: Role of phytochemicals in skin photoprotection via regulation of Nrf2
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.823881
– volume: 84
  start-page: 1059
  year: 2021
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib4
  article-title: Tapinarof in the treatment of psoriasis: a review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2020.10.085
– volume: 143
  start-page: 240
  year: 2019
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib9
  article-title: Redox properties of individual quercetin moieties
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.08.001
– volume: 19
  start-page: 2285
  year: 2013
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib23
  article-title: A DFT method for the study of the antioxidant action mechanism of resveratrol derivatives
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-013-1770-7
– volume: 869
  year: 2020
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib42
  article-title: Diferulate: a highly effective electron donor
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.113950
– volume: 85
  start-page: 1
  year: 2015
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib26
  article-title: Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.03.027
– year: 2016
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib30
– volume: 44
  year: 2021
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib46
  article-title: The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.102007
– volume: 328
  start-page: 11
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib2
  article-title: Nonsteroidal topical treatment for plaque psoriasis is approved
  publication-title: JAMA
– volume: 9
  start-page: 468
  year: 2019
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib14
  article-title: Antioxidant activity of selected stilbenoid derivatives in a cellular model system
  publication-title: Biomolecules
  doi: 10.3390/biom9090468
– volume: 4
  start-page: 757
  year: 2002
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib16
  article-title: Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b109063c
– volume: 73
  start-page: 651
  year: 2018
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib45
  article-title: Pterostilbene's protective effects against photodamage caused by UVA/UVB irradiation
  publication-title: Pharmazie
– volume: 402
  start-page: 55
  year: 2017
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib5
  article-title: Natural products from Photorhabdus and other entomopathogenic bacteria
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 21
  start-page: 1084
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib49
  article-title: Dermal safety of tapinarof cream 1%: results from 4 phase 1 trials
  publication-title: J. Drugs Dermatol. JDD
  doi: 10.36849/JDD.6627
– volume: 82
  start-page: 117
  year: 2011
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib29
  article-title: Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II)
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2011.06.005
– volume: 127
  start-page: 263
  year: 2017
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib43
  article-title: Novel flavonolignan hybrid antioxidants: from enzymatic preparation to molecular rationalization
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2016.12.051
– volume: 164
  start-page: 258
  year: 2021
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib11
  article-title: Antioxidant function of phytocannabinoids: molecular basis of their stability and cytoprotective properties under UV-irradiation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.01.012
– volume: 14
  start-page: 1917
  year: 2021
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib48
  article-title: Assessment of skin irritation and sensitisation effects by topical pterostilbene
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/2290
– volume: 124
  start-page: 6294
  year: 2020
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib41
  article-title: Determination of the pKa values of trans-resveratrol, a triphenolic stilbene, by singular value decomposition. Comparison with theory
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c04792
– volume: 12
  start-page: 305
  year: 1998
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib36
  article-title: The international EU/COLIPA in vitro phototoxicity validation study: results of phase II (blind trial). Part 1: the 3T3 NRU phototoxicity test
  publication-title: Toxicol. Vitro
  doi: 10.1016/S0887-2333(98)00006-X
– volume: 7
  start-page: 524
  year: 2018
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib51
  article-title: Systemic pharmacokinetics, safety, and preliminary efficacy of topical AhR agonist tapinarof: results of a phase 1 study
  publication-title: Clin. Pharmacol. Drug Dev.
  doi: 10.1002/cpdd.439
– volume: 9
  start-page: 565
  year: 2005
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib25
  article-title: Recent developments in the electrochemistry of some nitro compounds of biological significance
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272053544380
– volume: 31
  start-page: 97
  year: 2015
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib38
  article-title: Phototoxicity: its mechanism and animal alternative test methods
  publication-title: Toxicol. Res.
  doi: 10.5487/TR.2015.31.2.097
– volume: 144
  start-page: 509
  year: 2024
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib40
  article-title: Benvitimod inhibits IL-4– and IL-13–induced tight junction impairment by activating AHR/ARNT pathway and inhibiting STAT6 phosphorylation in human keratinocytes
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2023.07.027
– volume: 21
  start-page: 550
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib3
  article-title: FDA new drug approvals in Q2 2022
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/d41573-022-00123-0
– volume: 137
  start-page: 2110
  year: 2017
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib8
  article-title: Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2017.05.004
– volume: 205
  start-page: 173
  year: 2013
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib28
  article-title: Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2013.07.006
– volume: 8
  start-page: 4191
  year: 2002
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib18
  article-title: Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles
  publication-title: Chem. Eur J.
  doi: 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S
– volume: 292
  start-page: 63
  year: 2018
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib50
  article-title: A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2018.04.011
– volume: 21
  start-page: 282
  year: 2008
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib21
  article-title: Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx7003008
– volume: 28
  start-page: 365
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib13
  article-title: Antioxidant activity and nano delivery of the most frequently applied stilbene derivates: a brief and recent review
  publication-title: Pharmaceut. Sci.
– volume: 113
  start-page: 6378
  year: 2009
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib35
  article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810292n
– volume: 39
  start-page: 303
  year: 2023
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib53
  article-title: Tapinarof cream 1% in plaque psoriasis: a profile of its use
  publication-title: Drugs Ther. Perspect.
  doi: 10.1007/s40267-023-01014-z
– volume: 132
  year: 2010
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib32
  article-title: Continuous surface charge polarizable continuum models of solvation. I. General formalism
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3359469
– volume: 36
  year: 2022
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib12
  article-title: Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors
  publication-title: Curr. Opin. Electrochem.
– volume: 90
  start-page: 114
  year: 2016
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib10
  article-title: Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.11.014
– volume: 492
  start-page: 54
  year: 2000
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib24
  article-title: Electrochemical study of nitrostilbene derivatives: nitro group as a probe of the push-pull effect
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00265-5
– volume: 75
  start-page: 253
  year: 1980
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib37
  article-title: Chlorpromazine phototoxicity: growth inhibition and DNA-interaction in normal human fibroblasts
  publication-title: J. Invest. Dermatol.
  doi: 10.1111/1523-1747.ep12523279
– volume: 61
  start-page: 4329
  year: 1995
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib6
  article-title: Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.61.12.4329-4333.1995
– volume: 367
  start-page: 145
  year: 2003
  ident: 10.1016/j.freeradbiomed.2024.07.032_bib34
  article-title: Thermodynamic cycles and the calculation of pKa
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01686-X
SSID ssj0004538
Score 2.464268
Snippet Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 212
SubjectTerms (Photo)stability
(Photo)toxicity
Antioxidant effects
Antioxidants - chemistry
Antioxidants - pharmacology
Benvitimod
Dermatitis, Phototoxic
HaCaT Cells
Humans
Hydroxystilbene
Isopropylstilbene
Keratinocytes
Keratinocytes - drug effects
Keratinocytes - metabolism
Keratinocytes - radiation effects
Oxidation
Oxidation-Reduction
Phenolic stilbene
Pinosylvin
Pterostilbene
Resveratrol
Resveratrol - analogs & derivatives
Resveratrol - chemistry
Resveratrol - pharmacology
Skin
Skin - drug effects
Skin - metabolism
Skin - pathology
Skin - radiation effects
Stability
Stilbenes - chemistry
Stilbenes - pharmacology
Structure-Activity Relationship
Tapinarof
Ultraviolet Rays
UVA-Irradiation
Title Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes
URI https://dx.doi.org/10.1016/j.freeradbiomed.2024.07.032
https://www.ncbi.nlm.nih.gov/pubmed/39067626
https://www.proquest.com/docview/3085683908
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRa24oAJ9bCnIFVVv6Sa2491ckFYItG1VLoDEzXL8ECmqE-0uEnvht3fsJAUOSEgoJ1uxY804M9_Y8wD4qnhhbGZR-uFfjQYK10lhREiEXBQGm9TEo4vfp2J2wX9e5pdrcNTHwgS3yk72tzI9SuuuZ9RRc9RU1egMp8tQfRbBCxL3HZpA65QVIh_A-vTHr9npg6ThsaB1eD8JA97Awb2bl5tbG26tY7A72ouUx2SejD6lqJ4ColEhnbyFzQ5Jkmm72C1Ys34bdqYerei_K_KNRN_OeGi-Da_bkpOrHVicqyaE4NaOKG9ItVyQNoXszdwmIcgh1JIg895F7qpqCMJaEtKK3hLdV4eLY5ureonPbaXDkNqTWO-PLK4rT65DrubK13qFUPYdXJwcnx_Nkq7wQqIZzZdJZhUTY1NqtCa0cM7muUmty1I9tggHOVPOTIRjxo0RrnFjHU_LlJYlo0qVzLD3MPC1tx-BWG5znWlFNUcjXCmEo5NSG1OyTFNtxBB4T2XZtPk1ZO949kc-Yo4MzJHpWCJzhnDYc0Q-2i4SNcHzJvjS81Ei5cItifK2vllIhiBUIGxMJ0P40DL4_8qwV6D2EJ9e-vld2Ait1ivwMwyQ0XYP0c2y3IdX3--y_W4P_wPBov9K
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKlouFY-2LE9XrXpLN4kdZ3NBQgi0tMCli8TNcvwQKcKJdheJvfS3d-wkBQ5IlVBOcezE8jieb-xvZgC-SlZokxhc_fCvRgOFqajQ3AdCLgqNt6kOWxcXl3x8xX5cZ9dLcNz7wnhaZbf2t2t6WK27kmE3msOmqoa_8HUJqs_CsyBx3qEJ9IZlNPe8vu9_kichw0M6a1878tXfwpdHkpedGuPPrIOrO1qLKQuhPGn6kpp6CYYGdXS6Bu87HEmO2q6uw5JxG7B55NCGvluQbyQwO8OW-QastAknF5swm8jGO-DWlkinSTWfkTaA7P3URN7FwWeSINOeIHdTNQRBLfFBRR-I6nPDhbbNTT3H66FSvkntSMj2R2a3lSO3PlJz5Wq1QCD7Aa5OTybH46hLuxApmmbzKDGS8lyXCm0Jxa01WaZjY5NY5QbBIKPS6hG3VNscwRrTxrK4jNOypKmUJdX0Iyy72pktIIaZTCVKpoqhCS4lgtFRqbQuaaJSpfkAWD_Kommja4iedvZbPBOO8MIRcS5QOAM47CUink0WgXrg_17wuZejwJHzZyTSmfp-JihCUI6gMR4N4FMr4H89w1KOuoNvv_bzB_BuPLk4F-dnlz93YNU_afmBu7CMQjd7iHPm5X6Yx38B9mMAJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tapinarof+and+its+structure-activity+relationship+for+redox+chemistry+and+phototoxicity+on+human+skin+keratinocytes&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Zatloukalova%2C+Martina&rft.au=Hanyk%2C+Jiri&rft.au=Papouskova%2C+Barbora&rft.au=Kabelac%2C+Martin&rft.date=2024-10-01&rft.eissn=1873-4596&rft.volume=223&rft.spage=212&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2024.07.032&rft_id=info%3Apmid%2F39067626&rft.externalDocID=39067626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon