Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes
Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected...
Saved in:
Published in | Free radical biology & medicine Vol. 223; pp. 212 - 223 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0891-5849 1873-4596 1873-4596 |
DOI | 10.1016/j.freeradbiomed.2024.07.032 |
Cover
Abstract | Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4′-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315–399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.
[Display omitted]
•Tapinarof, also benvitimod, is redox active moderate electron-donor.•Structure-activity relationship study is presented here with resveratrol analogues.•Tapinarof undergoing irreversible adsorption-driven electrochemical anodic reaction.•The instability of tapinarof could be accelerated by higher temperature or UVA irradiation.•Tapinarof is phototoxic in uM concentration range after UVA irradiation of keratinocytes. |
---|---|
AbstractList | Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides. Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4′-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315–399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides. [Display omitted] •Tapinarof, also benvitimod, is redox active moderate electron-donor.•Structure-activity relationship study is presented here with resveratrol analogues.•Tapinarof undergoing irreversible adsorption-driven electrochemical anodic reaction.•The instability of tapinarof could be accelerated by higher temperature or UVA irradiation.•Tapinarof is phototoxic in uM concentration range after UVA irradiation of keratinocytes. Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pK value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides. |
Author | Papouskova, Barbora Hanyk, Jiri Vacek, Jan Zatloukalova, Martina Kabelac, Martin Vostalova, Jitka |
Author_xml | – sequence: 1 givenname: Martina surname: Zatloukalova fullname: Zatloukalova, Martina organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic – sequence: 2 givenname: Jiri surname: Hanyk fullname: Hanyk, Jiri organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic – sequence: 3 givenname: Barbora surname: Papouskova fullname: Papouskova, Barbora organization: Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic – sequence: 4 givenname: Martin surname: Kabelac fullname: Kabelac, Martin organization: Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic – sequence: 5 givenname: Jitka surname: Vostalova fullname: Vostalova, Jitka organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic – sequence: 6 givenname: Jan surname: Vacek fullname: Vacek, Jan email: jan.vacek@upol.cz organization: Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39067626$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFLJDEQhcOirKO7f2EJeNlLt5VOd7oHT4u4Kghe3HNIJxUm40zSm6TF-feb2VHBm9ShoPheUfXeKTnywSMh5wxqBkxcrGsbEaMyowtbNHUDTVtDXwNvvpAFG3petd1SHJEFDEtWdUO7PCGnKa0BoO348JWc8CWIXjRiQdKjmpxXMViqvKEuJ5pynHWeI1ZKZ_fs8o5G3Kjsgk8rN1EbYhmY8EL1Creu4Lv_2mkVcqkXp_eS4Olq3ipP05Pz9Kncm50PepcxfSPHVm0Sfn_tZ-TP7-vHq9vq_uHm7urXfaV50-WKoeKiN6MWfaeFtdh1BtAy0D1yBi1X1gzCcmN7xprWoG1hhGYceaPUyA0_Iz8Pe6cY_s6YsizXatxslMcwJ8lh6MRQvBgK-uMVncfiqZyi26q4k29GFeDyAOgYUopo3xEGch-LXMsPsch9LBJ6WWIp6uuDGsu7zw6jTNqh12hcRJ2lCe5Te_4B-4KhZw |
Cites_doi | 10.1016/j.redox.2017.05.007 10.1016/j.ejmech.2022.114962 10.1021/jo9007095 10.1007/s40257-021-00641-4 10.1006/abbi.2001.2388 10.1016/j.freeradbiomed.2006.09.007 10.3390/antiox10101552 10.1111/jdv.18925 10.1002/ardp.201300081 10.1021/ja010534f 10.1021/jo0497860 10.1016/j.foodchem.2022.134641 10.3389/fphar.2022.823881 10.1016/j.jaad.2020.10.085 10.1016/j.freeradbiomed.2019.08.001 10.1007/s00894-013-1770-7 10.1016/j.jelechem.2020.113950 10.1016/j.freeradbiomed.2015.03.027 10.1016/j.redox.2021.102007 10.3390/biom9090468 10.1039/b109063c 10.36849/JDD.6627 10.1016/j.bioelechem.2011.06.005 10.1016/j.ejmech.2016.12.051 10.1016/j.freeradbiomed.2021.01.012 10.13005/bpj/2290 10.1021/acs.jpca.0c04792 10.1016/S0887-2333(98)00006-X 10.1002/cpdd.439 10.2174/1385272053544380 10.5487/TR.2015.31.2.097 10.1016/j.jid.2023.07.027 10.1038/d41573-022-00123-0 10.1016/j.jid.2017.05.004 10.1016/j.cbi.2013.07.006 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S 10.1016/j.toxlet.2018.04.011 10.1021/tx7003008 10.1021/jp810292n 10.1007/s40267-023-01014-z 10.1063/1.3359469 10.1016/j.freeradbiomed.2015.11.014 10.1016/S0022-0728(00)00265-5 10.1111/1523-1747.ep12523279 10.1128/aem.61.12.4329-4333.1995 10.1016/S0009-2614(02)01686-X |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.freeradbiomed.2024.07.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 223 |
ExternalDocumentID | 39067626 10_1016_j_freeradbiomed_2024_07_032 S0891584924005781 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS EFLBG |
ID | FETCH-LOGICAL-c325t-1ea367dbc675c6ffe55d0ef10c7e31043afd86f3df71124def40b02bb32aab3d3 |
IEDL.DBID | AIKHN |
ISSN | 0891-5849 1873-4596 |
IngestDate | Fri Sep 05 08:38:51 EDT 2025 Wed Feb 19 02:09:22 EST 2025 Tue Jul 01 01:11:56 EDT 2025 Sat Oct 26 15:44:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stability (Photo)stability Hydroxystilbene Keratinocytes (Photo)toxicity Antioxidant effects Pterostilbene UVA-Irradiation Isopropylstilbene Resveratrol Tapinarof Phenolic stilbene Oxidation Skin Pinosylvin Benvitimod |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-1ea367dbc675c6ffe55d0ef10c7e31043afd86f3df71124def40b02bb32aab3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39067626 |
PQID | 3085683908 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3085683908 pubmed_primary_39067626 crossref_primary_10_1016_j_freeradbiomed_2024_07_032 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2024_07_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 2024-Oct 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Larkin (bib2) 2022; 328 Grau, Soucek, Pujol (bib1) 2023; 246 Vacek, Vostalova, Papouskova, Skarupova, Kos, Kabelac, Storch (bib11) 2021; 164 Vavříková, Křen, Jezova-Kalachova, Biler, Chantemargue, Pyszková, Riva, Kuzma, Valentová, Ulrichová, Vrba, Trouillas, Vacek (bib43) 2017; 127 Jett, McLaughlin, Lee, Parish, DuBois, Raoof, Tabolt, Wilson, Somerville, DellaMaestra, Piscitelli (bib52) 2022; 23 Deng, Li, Ho, Dai, Chen, Li, Liang, Zhu (bib45) 2018; 73 Vacek, Zatloukalova, Desmier, Nezhodova, Hrbac, Kubala, Kren, Ulrichova, Trouillas (bib28) 2013; 205 Li, Chen, Wu, Webster (bib6) 1995; 61 Shirley (bib53) 2023; 39 Zatloukalova, Kren, Gazak, Kubala, Trouillas, Ulrichova, Vacek (bib29) 2011; 82 Avogadro:, an open-source molecular builder and visualization tool. Version 1.20. Bissonnette, Stein Gold, Rubenstein, Tallman, Armstrong (bib4) 2021; 84 Wang, Mao, Jia, Zhang (bib40) 2024; 144 Heřmánková, Zatloukalová, Biler, Sokolová, Bancířová, Tzakos, Křen, Kuzma, Trouillas, Vacek (bib9) 2019; 143 Treml, Leláková, Šmejkal, Paulíčková, Labuda, Granica, Havlík, Jankovská, Padrtová, Hošek (bib14) 2019; 9 Vacek, Zatloukalová, Vrba, De Vleeschouwer, De Proft, Obluková, Sokolová, Pospíšil (bib42) 2020; 869 Teng, Huang, Wang, Tseng, Yen (bib47) 2021; 10 Kim, Park, Lim (bib38) 2015; 31 Zimányi, Thekkan, Eckert, Condren, Dmitrenko, Kuhn, Alabugin, Saltiel (bib41) 2020; 124 Spriggs, Cubberley, Loadman, Sheffield, Wierzbicki (bib50) 2018; 292 . Pliego (bib34) 2003; 367 Spielmann, Balls, Dupuis, Pape, Pechovitch, de Silva, Holzhütter, Clothier, Desolle, Gerberick, Liebsch, Lovell, Maurer, Pfannenbecker, Potthast, Csato, Sladowski, Steiling, Brantom (bib36) 1998; 12 Urquhart (bib3) 2022; 21 Choiri, Fitriastuti, Faradiva, Rahayu (bib13) 2022; 28 Ljunggren, Cohen, Carter, Wayne (bib37) 1980; 75 Fukuhara, Nakanishi, Matsuoka, Matsumura, Honda, Hayashi, Ozawa, Miyata, Saito, Ikota, Okuda (bib21) 2008; 21 Marenich, Cramer, Truhlar (bib35) 2009; 113 Smith, Jayawickreme, Rickard, Nicodeme, Bui, Simmons, Coquery, Neil, Pryor, Mayhew, Rajpal, Creech, Furst, Lee, Wu, Rastinejad, Willson, Viviani, Morris, Moore, Cote-Sierra (bib8) 2017; 137 Vacek, Zatloukalova, Kabelac (bib12) 2022; 36 Egea, Fabregat, Frapart, Ghezzi, Görlach, Kietzmann, Kubaichuk, Knaus, Lopez, Olaso-Gonzalez, Petry, Schulz, Vina, Winyard, Abbas, Ademowo, Afonso, Andreadou, Antelmann, Antunes, Aslan, Bachschmid, Barbosa, Belousov, Berndt, Bernlohr, Bertrán, Bindoli, Bottari, Brito, Carrara, Casas, Chatzi, Chondrogianni, Conrad, Cooke, Costa, Cuadrado, My-Chan Dang, De Smet, Debelec–Butuner, Dias, Dunn, Edson, El Assar, El-Benna, Ferdinandy, Fernandes, Fladmark, Förstermann, Giniatullin, Giricz, Görbe, Griffiths, Hampl, Hanf, Herget, Hernansanz-Agustín, Hillion, Huang, Ilikay, Jansen-Dürr, Jaquet, Joles, Kalyanaraman, Kaminskyy, Karbaschi, Kleanthous, Klotz, Korac, Korkmaz, Koziel, Kračun, Krause, Křen, Krieg, Laranjinha, Lazou, Li, Martínez-Ruiz, Matsui, McBean, Meredith, Messens, Miguel, Mikhed, Milisav, Milković, Miranda-Vizuete, Mojović, Monsalve, Mouthuy, Mulvey, Münzel, Muzykantov, Nguyen, Oelze, Oliveira, Palmeira, Papaevgeniou, Pavićević, Pedre, Peyrot, Phylactides, Pircalabioru, Pitt, Poulsen, Prieto, Rigobello, Robledinos-Antón, Rodríguez-Mañas, Rolo, Rousset, Ruskovska, Saraiva, Sasson, Schröder, Semen, Seredenina, Shakirzyanova, Smith, Soldati, Sousa, Spickett, Stancic, Stasia, Steinbrenner, Stepanić, Steven, Tokatlidis, Tuncay, Turan, Ursini, Vacek, Vajnerova, Valentová, Van Breusegem, Varisli, Veal, Yalçın, Yelisyeyeva, Žarković, Zatloukalová, Zielonka, Touyz, Papapetropoulos, Grune, Lamas, Schmidt, Di Lisa, Daiber (bib39) 2017; 13 Runeberg, Ryabukhin, Lagerquist, Rahkila, Eklund (bib15) 2023; 404 Ghazali, Rajab, Zainuddin, Ahmat, Surien (bib48) 2021; 14 Benayahoum, Amira-Guebailia, Houache (bib23) 2013; 19 Squella, Bollo, Núñez-Vergara (bib25) 2005; 9 Zheng, Wei, Cai, Fang, Zhou, Yang, Liu (bib27) 2006; 41 Stojanović, Sprinz, Brede (bib17) 2001; 391 Csuk, Albert, Siewert (bib20) 2013; 346 Chaiprasongsuk, Panich (bib44) 2022; 13 Fang, Lu, Chen, Zhu, Li, Yang, Wu, Liu (bib18) 2002; 8 Shang, Qian, Liu, Dai, Shang, Jia, Liu, Fang, Zhou (bib19) 2009; 74 Scalmani, Frisch (bib32) 2010; 132 Bollo, Soto-Bustamante, Núñez-Vergara, Squella (bib24) 2000; 492 Bozhüyük, Zhou, Engel, Heinrich, Pérez, Bode (bib5) 2017; 402 Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji, Li, Caricato, Marenich, Bloino, Janesko, Gomperts, Mennucci, Hratchian, Ortiz, Izmaylov, Sonnenberg, Williams-Young, Ding, Lipparini, Egidi, Goings, Peng, Petrone, Henderson, Ranasinghe, Zakrzewski, Gao, Rega, Zheng, Liang, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Throssell, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Keith, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Millam, Klene, Adamo, Cammi, Ochterski, Martin, Morokuma, Farkas, Foresman, Fox (bib30) 2016 Sirerol, Feddi, Mena, Rodriguez, Sirera, Aupí, Pérez, Asensi, Ortega, Estrela (bib26) 2015; 85 Jett, McLaughlin, Wilson, Somerville, DellaMaestra, Rubenstein, Piscitelli (bib49) 2022; 21 Amorati, Lucarini, Mugnaini, Pedulli, Roberti, Pizzirani (bib22) 2004; 69 Hseu, Vudhya Gowrisankar, Wang, Zhang, Chen, Huang, Yen, Yang (bib46) 2021; 44 Stojanović, Brede (bib16) 2002; 4 Liptak, Shields (bib33) 2001; 123 Bissonnette, Saint-Cyr Proulx, Jack, Maari (bib7) 2023; 37 Bissonnette, Vasist, Bullman, Collingwood, Chen, Maeda-Chubachi (bib51) 2018; 7 Pyszková, Biler, Biedermann, Valentová, Kuzma, Vrba, Ulrichová, Sokolová, Mojović, Popović-Bijelić, Kubala, Trouillas, Křen, Vacek (bib10) 2016; 90 Pliego (10.1016/j.freeradbiomed.2024.07.032_bib34) 2003; 367 Hseu (10.1016/j.freeradbiomed.2024.07.032_bib46) 2021; 44 Teng (10.1016/j.freeradbiomed.2024.07.032_bib47) 2021; 10 Vacek (10.1016/j.freeradbiomed.2024.07.032_bib42) 2020; 869 Liptak (10.1016/j.freeradbiomed.2024.07.032_bib33) 2001; 123 Heřmánková (10.1016/j.freeradbiomed.2024.07.032_bib9) 2019; 143 Grau (10.1016/j.freeradbiomed.2024.07.032_bib1) 2023; 246 Larkin (10.1016/j.freeradbiomed.2024.07.032_bib2) 2022; 328 Smith (10.1016/j.freeradbiomed.2024.07.032_bib8) 2017; 137 Treml (10.1016/j.freeradbiomed.2024.07.032_bib14) 2019; 9 Runeberg (10.1016/j.freeradbiomed.2024.07.032_bib15) 2023; 404 Stojanović (10.1016/j.freeradbiomed.2024.07.032_bib16) 2002; 4 Zatloukalova (10.1016/j.freeradbiomed.2024.07.032_bib29) 2011; 82 Bollo (10.1016/j.freeradbiomed.2024.07.032_bib24) 2000; 492 Jett (10.1016/j.freeradbiomed.2024.07.032_bib52) 2022; 23 Squella (10.1016/j.freeradbiomed.2024.07.032_bib25) 2005; 9 Spielmann (10.1016/j.freeradbiomed.2024.07.032_bib36) 1998; 12 Bozhüyük (10.1016/j.freeradbiomed.2024.07.032_bib5) 2017; 402 Vacek (10.1016/j.freeradbiomed.2024.07.032_bib11) 2021; 164 Li (10.1016/j.freeradbiomed.2024.07.032_bib6) 1995; 61 Kim (10.1016/j.freeradbiomed.2024.07.032_bib38) 2015; 31 Egea (10.1016/j.freeradbiomed.2024.07.032_bib39) 2017; 13 Bissonnette (10.1016/j.freeradbiomed.2024.07.032_bib51) 2018; 7 Chaiprasongsuk (10.1016/j.freeradbiomed.2024.07.032_bib44) 2022; 13 Fang (10.1016/j.freeradbiomed.2024.07.032_bib18) 2002; 8 Ghazali (10.1016/j.freeradbiomed.2024.07.032_bib48) 2021; 14 10.1016/j.freeradbiomed.2024.07.032_bib31 Shirley (10.1016/j.freeradbiomed.2024.07.032_bib53) 2023; 39 Vacek (10.1016/j.freeradbiomed.2024.07.032_bib12) 2022; 36 Jett (10.1016/j.freeradbiomed.2024.07.032_bib49) 2022; 21 Bissonnette (10.1016/j.freeradbiomed.2024.07.032_bib7) 2023; 37 Amorati (10.1016/j.freeradbiomed.2024.07.032_bib22) 2004; 69 Marenich (10.1016/j.freeradbiomed.2024.07.032_bib35) 2009; 113 Scalmani (10.1016/j.freeradbiomed.2024.07.032_bib32) 2010; 132 Vavříková (10.1016/j.freeradbiomed.2024.07.032_bib43) 2017; 127 Stojanović (10.1016/j.freeradbiomed.2024.07.032_bib17) 2001; 391 Csuk (10.1016/j.freeradbiomed.2024.07.032_bib20) 2013; 346 Sirerol (10.1016/j.freeradbiomed.2024.07.032_bib26) 2015; 85 Fukuhara (10.1016/j.freeradbiomed.2024.07.032_bib21) 2008; 21 Vacek (10.1016/j.freeradbiomed.2024.07.032_bib28) 2013; 205 Ljunggren (10.1016/j.freeradbiomed.2024.07.032_bib37) 1980; 75 Spriggs (10.1016/j.freeradbiomed.2024.07.032_bib50) 2018; 292 Shang (10.1016/j.freeradbiomed.2024.07.032_bib19) 2009; 74 Bissonnette (10.1016/j.freeradbiomed.2024.07.032_bib4) 2021; 84 Benayahoum (10.1016/j.freeradbiomed.2024.07.032_bib23) 2013; 19 Pyszková (10.1016/j.freeradbiomed.2024.07.032_bib10) 2016; 90 Deng (10.1016/j.freeradbiomed.2024.07.032_bib45) 2018; 73 Wang (10.1016/j.freeradbiomed.2024.07.032_bib40) 2024; 144 Zimányi (10.1016/j.freeradbiomed.2024.07.032_bib41) 2020; 124 Zheng (10.1016/j.freeradbiomed.2024.07.032_bib27) 2006; 41 Urquhart (10.1016/j.freeradbiomed.2024.07.032_bib3) 2022; 21 Choiri (10.1016/j.freeradbiomed.2024.07.032_bib13) 2022; 28 Frisch (10.1016/j.freeradbiomed.2024.07.032_bib30) 2016 |
References_xml | – volume: 61 start-page: 4329 year: 1995 end-page: 4333 ident: bib6 article-title: Identification of two pigments and a hydroxystilbene antibiotic from publication-title: Appl. Environ. Microbiol. – volume: 74 start-page: 5025 year: 2009 end-page: 5031 ident: bib19 article-title: Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution publication-title: J. Org. Chem. – volume: 14 start-page: 1917 year: 2021 end-page: 1927 ident: bib48 article-title: Assessment of skin irritation and sensitisation effects by topical pterostilbene publication-title: Biomed. Pharmacol. J. – volume: 9 start-page: 565 year: 2005 end-page: 581 ident: bib25 article-title: Recent developments in the electrochemistry of some nitro compounds of biological significance publication-title: Curr. Org. Chem. – volume: 123 start-page: 7314 year: 2001 end-page: 7319 ident: bib33 article-title: Accurate p publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 305 year: 1998 end-page: 327 ident: bib36 article-title: The international EU/COLIPA publication-title: Toxicol. Vitro – volume: 90 start-page: 114 year: 2016 end-page: 125 ident: bib10 article-title: Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity publication-title: Free Radic. Biol. Med. – volume: 31 start-page: 97 year: 2015 end-page: 104 ident: bib38 article-title: Phototoxicity: its mechanism and animal alternative test methods publication-title: Toxicol. Res. – volume: 367 start-page: 145 year: 2003 end-page: 149 ident: bib34 article-title: Thermodynamic cycles and the calculation of p publication-title: Chem. Phys. Lett. – volume: 246 year: 2023 ident: bib1 article-title: Resveratrol derivatives: synthesis and their biological activities publication-title: Eur. J. Med. Chem. – volume: 19 start-page: 2285 year: 2013 end-page: 2298 ident: bib23 article-title: A DFT method for the study of the antioxidant action mechanism of resveratrol derivatives publication-title: J. Mol. Model. – volume: 73 start-page: 651 year: 2018 end-page: 658 ident: bib45 article-title: Pterostilbene's protective effects against photodamage caused by UVA/UVB irradiation publication-title: Pharmazie – volume: 82 start-page: 117 year: 2011 end-page: 124 ident: bib29 article-title: Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II) publication-title: Bioelectrochemistry – volume: 164 start-page: 258 year: 2021 end-page: 270 ident: bib11 article-title: Antioxidant function of phytocannabinoids: molecular basis of their stability and cytoprotective properties under UV-irradiation publication-title: Free Radic. Biol. Med. – volume: 44 year: 2021 ident: bib46 article-title: The publication-title: Redox Biol. – volume: 84 start-page: 1059 year: 2021 end-page: 1067 ident: bib4 article-title: Tapinarof in the treatment of psoriasis: a review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent publication-title: J. Am. Acad. Dermatol. – volume: 13 start-page: 94 year: 2017 end-page: 162 ident: bib39 article-title: European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) publication-title: Redox Biol. – volume: 124 start-page: 6294 year: 2020 end-page: 6302 ident: bib41 article-title: Determination of the p publication-title: J. Phys. Chem. A – volume: 69 start-page: 7101 year: 2004 end-page: 7107 ident: bib22 article-title: Antioxidant activity of hydroxystilbene derivatives in homogeneous solution publication-title: J. Org. Chem. – volume: 10 start-page: 1552 year: 2021 ident: bib47 article-title: Pterostilbene attenuates particulate matter-induced oxidative stress, inflammation and aging in keratinocytes publication-title: Antioxidants – volume: 402 start-page: 55 year: 2017 end-page: 79 ident: bib5 article-title: Natural products from publication-title: Curr. Top. Microbiol. Immunol. – year: 2016 ident: bib30 article-title: Gaussian 16, Revision B.01 – volume: 36 year: 2022 ident: bib12 article-title: Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors publication-title: Curr. Opin. Electrochem. – volume: 391 start-page: 79 year: 2001 end-page: 89 ident: bib17 article-title: Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation publication-title: Arch. Biochem. Biophys. – volume: 8 start-page: 4191 year: 2002 end-page: 4198 ident: bib18 article-title: Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles publication-title: Chem. Eur J. – volume: 85 start-page: 1 year: 2015 end-page: 11 ident: bib26 article-title: Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis publication-title: Free Radic. Biol. Med. – volume: 346 start-page: 504 year: 2013 end-page: 510 ident: bib20 article-title: Synthesis and radical scavenging activities of resveratrol analogs publication-title: Arch. Pharmazie – volume: 23 start-page: 83 year: 2022 end-page: 91 ident: bib52 article-title: Tapinarof cream 1% for extensive plaque psoriasis: a maximal use trial on safety, tolerability, and pharmacokinetics publication-title: Am. J. Clin. Dermatol. – volume: 7 start-page: 524 year: 2018 end-page: 531 ident: bib51 article-title: Systemic pharmacokinetics, safety, and preliminary efficacy of topical AhR agonist tapinarof: results of a phase 1 study publication-title: Clin. Pharmacol. Drug Dev. – volume: 28 start-page: 365 year: 2022 end-page: 375 ident: bib13 article-title: Antioxidant activity and nano delivery of the most frequently applied stilbene derivates: a brief and recent review publication-title: Pharmaceut. Sci. – volume: 328 start-page: 11 year: 2022 ident: bib2 article-title: Nonsteroidal topical treatment for plaque psoriasis is approved publication-title: JAMA – volume: 869 year: 2020 ident: bib42 article-title: Diferulate: a highly effective electron donor publication-title: J. Electroanal. Chem. – volume: 37 start-page: 1168 year: 2023 end-page: 1174 ident: bib7 article-title: Tapinarof for psoriasis and atopic dermatitis: 15 years of clinical research publication-title: J. Eur. Acad. Dermatol. Venereol. – volume: 21 start-page: 282 year: 2008 end-page: 287 ident: bib21 article-title: Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol publication-title: Chem. Res. Toxicol. – reference: Avogadro:, an open-source molecular builder and visualization tool. Version 1.20. – volume: 205 start-page: 173 year: 2013 end-page: 180 ident: bib28 article-title: Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin publication-title: Chem. Biol. Interact. – volume: 144 start-page: 509 year: 2024 end-page: 519.e7 ident: bib40 article-title: Benvitimod inhibits IL-4– and IL-13–induced tight junction impairment by activating AHR/ARNT pathway and inhibiting STAT6 phosphorylation in human keratinocytes publication-title: J. Invest. Dermatol. – volume: 404 year: 2023 ident: bib15 article-title: Transformations and antioxidative activities of lignans and stilbenes at high temperatures publication-title: Food Chem. – volume: 137 start-page: 2110 year: 2017 end-page: 2119 ident: bib8 article-title: Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans publication-title: J. Invest. Dermatol. – volume: 113 start-page: 6378 year: 2009 end-page: 6396 ident: bib35 article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions publication-title: J. Phys. Chem. B – volume: 21 start-page: 1084 year: 2022 end-page: 1090 ident: bib49 article-title: Dermal safety of tapinarof cream 1%: results from 4 phase 1 trials publication-title: J. Drugs Dermatol. JDD – volume: 132 year: 2010 ident: bib32 article-title: Continuous surface charge polarizable continuum models of solvation. I. General formalism publication-title: J. Chem. Phys. – volume: 143 start-page: 240 year: 2019 end-page: 251 ident: bib9 article-title: Redox properties of individual quercetin moieties publication-title: Free Radic. Biol. Med. – volume: 127 start-page: 263 year: 2017 end-page: 274 ident: bib43 article-title: Novel flavonolignan hybrid antioxidants: from enzymatic preparation to molecular rationalization publication-title: Eur. J. Med. Chem. – volume: 75 start-page: 253 year: 1980 end-page: 256 ident: bib37 article-title: Chlorpromazine phototoxicity: growth inhibition and DNA-interaction in normal human fibroblasts publication-title: J. Invest. Dermatol. – volume: 39 start-page: 303 year: 2023 end-page: 308 ident: bib53 article-title: Tapinarof cream 1% in plaque psoriasis: a profile of its use publication-title: Drugs Ther. Perspect. – volume: 21 start-page: 550 year: 2022 ident: bib3 article-title: FDA new drug approvals in Q2 2022 publication-title: Nat. Rev. Drug Discov. – volume: 41 start-page: 1807 year: 2006 end-page: 1816 ident: bib27 article-title: DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship publication-title: Free Radic. Biol. Med. – reference: . – volume: 492 start-page: 54 year: 2000 end-page: 62 ident: bib24 article-title: Electrochemical study of nitrostilbene derivatives: nitro group as a probe of the push-pull effect publication-title: J. Electroanal. Chem. – volume: 9 start-page: 468 year: 2019 ident: bib14 article-title: Antioxidant activity of selected stilbenoid derivatives in a cellular model system publication-title: Biomolecules – volume: 13 year: 2022 ident: bib44 article-title: Role of phytochemicals in skin photoprotection publication-title: Front. Pharmacol. – volume: 4 start-page: 757 year: 2002 end-page: 764 ident: bib16 article-title: Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene publication-title: Phys. Chem. Chem. Phys. – volume: 292 start-page: 63 year: 2018 end-page: 72 ident: bib50 article-title: A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin publication-title: Toxicol. Lett. – volume: 13 start-page: 94 year: 2017 ident: 10.1016/j.freeradbiomed.2024.07.032_bib39 article-title: European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) publication-title: Redox Biol. doi: 10.1016/j.redox.2017.05.007 – volume: 246 year: 2023 ident: 10.1016/j.freeradbiomed.2024.07.032_bib1 article-title: Resveratrol derivatives: synthesis and their biological activities publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2022.114962 – volume: 74 start-page: 5025 year: 2009 ident: 10.1016/j.freeradbiomed.2024.07.032_bib19 article-title: Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution publication-title: J. Org. Chem. doi: 10.1021/jo9007095 – ident: 10.1016/j.freeradbiomed.2024.07.032_bib31 – volume: 23 start-page: 83 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib52 article-title: Tapinarof cream 1% for extensive plaque psoriasis: a maximal use trial on safety, tolerability, and pharmacokinetics publication-title: Am. J. Clin. Dermatol. doi: 10.1007/s40257-021-00641-4 – volume: 391 start-page: 79 year: 2001 ident: 10.1016/j.freeradbiomed.2024.07.032_bib17 article-title: Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2001.2388 – volume: 41 start-page: 1807 year: 2006 ident: 10.1016/j.freeradbiomed.2024.07.032_bib27 article-title: DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.09.007 – volume: 10 start-page: 1552 year: 2021 ident: 10.1016/j.freeradbiomed.2024.07.032_bib47 article-title: Pterostilbene attenuates particulate matter-induced oxidative stress, inflammation and aging in keratinocytes publication-title: Antioxidants doi: 10.3390/antiox10101552 – volume: 37 start-page: 1168 year: 2023 ident: 10.1016/j.freeradbiomed.2024.07.032_bib7 article-title: Tapinarof for psoriasis and atopic dermatitis: 15 years of clinical research publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/jdv.18925 – volume: 346 start-page: 504 year: 2013 ident: 10.1016/j.freeradbiomed.2024.07.032_bib20 article-title: Synthesis and radical scavenging activities of resveratrol analogs publication-title: Arch. Pharmazie doi: 10.1002/ardp.201300081 – volume: 123 start-page: 7314 year: 2001 ident: 10.1016/j.freeradbiomed.2024.07.032_bib33 article-title: Accurate pKa calculations for carboxylic acids using Complete Basis Set and Gaussian-n models combined with CPCM continuum solvation methods publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010534f – volume: 69 start-page: 7101 year: 2004 ident: 10.1016/j.freeradbiomed.2024.07.032_bib22 article-title: Antioxidant activity of hydroxystilbene derivatives in homogeneous solution publication-title: J. Org. Chem. doi: 10.1021/jo0497860 – volume: 404 year: 2023 ident: 10.1016/j.freeradbiomed.2024.07.032_bib15 article-title: Transformations and antioxidative activities of lignans and stilbenes at high temperatures publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134641 – volume: 13 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib44 article-title: Role of phytochemicals in skin photoprotection via regulation of Nrf2 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.823881 – volume: 84 start-page: 1059 year: 2021 ident: 10.1016/j.freeradbiomed.2024.07.032_bib4 article-title: Tapinarof in the treatment of psoriasis: a review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2020.10.085 – volume: 143 start-page: 240 year: 2019 ident: 10.1016/j.freeradbiomed.2024.07.032_bib9 article-title: Redox properties of individual quercetin moieties publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.08.001 – volume: 19 start-page: 2285 year: 2013 ident: 10.1016/j.freeradbiomed.2024.07.032_bib23 article-title: A DFT method for the study of the antioxidant action mechanism of resveratrol derivatives publication-title: J. Mol. Model. doi: 10.1007/s00894-013-1770-7 – volume: 869 year: 2020 ident: 10.1016/j.freeradbiomed.2024.07.032_bib42 article-title: Diferulate: a highly effective electron donor publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.113950 – volume: 85 start-page: 1 year: 2015 ident: 10.1016/j.freeradbiomed.2024.07.032_bib26 article-title: Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.03.027 – year: 2016 ident: 10.1016/j.freeradbiomed.2024.07.032_bib30 – volume: 44 year: 2021 ident: 10.1016/j.freeradbiomed.2024.07.032_bib46 article-title: The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways publication-title: Redox Biol. doi: 10.1016/j.redox.2021.102007 – volume: 328 start-page: 11 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib2 article-title: Nonsteroidal topical treatment for plaque psoriasis is approved publication-title: JAMA – volume: 9 start-page: 468 year: 2019 ident: 10.1016/j.freeradbiomed.2024.07.032_bib14 article-title: Antioxidant activity of selected stilbenoid derivatives in a cellular model system publication-title: Biomolecules doi: 10.3390/biom9090468 – volume: 4 start-page: 757 year: 2002 ident: 10.1016/j.freeradbiomed.2024.07.032_bib16 article-title: Elementary reactions of the antioxidant action of trans-stilbene derivatives: resveratrol, pinosylvin and 4-hydroxystilbene publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b109063c – volume: 73 start-page: 651 year: 2018 ident: 10.1016/j.freeradbiomed.2024.07.032_bib45 article-title: Pterostilbene's protective effects against photodamage caused by UVA/UVB irradiation publication-title: Pharmazie – volume: 402 start-page: 55 year: 2017 ident: 10.1016/j.freeradbiomed.2024.07.032_bib5 article-title: Natural products from Photorhabdus and other entomopathogenic bacteria publication-title: Curr. Top. Microbiol. Immunol. – volume: 21 start-page: 1084 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib49 article-title: Dermal safety of tapinarof cream 1%: results from 4 phase 1 trials publication-title: J. Drugs Dermatol. JDD doi: 10.36849/JDD.6627 – volume: 82 start-page: 117 year: 2011 ident: 10.1016/j.freeradbiomed.2024.07.032_bib29 article-title: Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II) publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2011.06.005 – volume: 127 start-page: 263 year: 2017 ident: 10.1016/j.freeradbiomed.2024.07.032_bib43 article-title: Novel flavonolignan hybrid antioxidants: from enzymatic preparation to molecular rationalization publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.12.051 – volume: 164 start-page: 258 year: 2021 ident: 10.1016/j.freeradbiomed.2024.07.032_bib11 article-title: Antioxidant function of phytocannabinoids: molecular basis of their stability and cytoprotective properties under UV-irradiation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.01.012 – volume: 14 start-page: 1917 year: 2021 ident: 10.1016/j.freeradbiomed.2024.07.032_bib48 article-title: Assessment of skin irritation and sensitisation effects by topical pterostilbene publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/2290 – volume: 124 start-page: 6294 year: 2020 ident: 10.1016/j.freeradbiomed.2024.07.032_bib41 article-title: Determination of the pKa values of trans-resveratrol, a triphenolic stilbene, by singular value decomposition. Comparison with theory publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c04792 – volume: 12 start-page: 305 year: 1998 ident: 10.1016/j.freeradbiomed.2024.07.032_bib36 article-title: The international EU/COLIPA in vitro phototoxicity validation study: results of phase II (blind trial). Part 1: the 3T3 NRU phototoxicity test publication-title: Toxicol. Vitro doi: 10.1016/S0887-2333(98)00006-X – volume: 7 start-page: 524 year: 2018 ident: 10.1016/j.freeradbiomed.2024.07.032_bib51 article-title: Systemic pharmacokinetics, safety, and preliminary efficacy of topical AhR agonist tapinarof: results of a phase 1 study publication-title: Clin. Pharmacol. Drug Dev. doi: 10.1002/cpdd.439 – volume: 9 start-page: 565 year: 2005 ident: 10.1016/j.freeradbiomed.2024.07.032_bib25 article-title: Recent developments in the electrochemistry of some nitro compounds of biological significance publication-title: Curr. Org. Chem. doi: 10.2174/1385272053544380 – volume: 31 start-page: 97 year: 2015 ident: 10.1016/j.freeradbiomed.2024.07.032_bib38 article-title: Phototoxicity: its mechanism and animal alternative test methods publication-title: Toxicol. Res. doi: 10.5487/TR.2015.31.2.097 – volume: 144 start-page: 509 year: 2024 ident: 10.1016/j.freeradbiomed.2024.07.032_bib40 article-title: Benvitimod inhibits IL-4– and IL-13–induced tight junction impairment by activating AHR/ARNT pathway and inhibiting STAT6 phosphorylation in human keratinocytes publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2023.07.027 – volume: 21 start-page: 550 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib3 article-title: FDA new drug approvals in Q2 2022 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/d41573-022-00123-0 – volume: 137 start-page: 2110 year: 2017 ident: 10.1016/j.freeradbiomed.2024.07.032_bib8 article-title: Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2017.05.004 – volume: 205 start-page: 173 year: 2013 ident: 10.1016/j.freeradbiomed.2024.07.032_bib28 article-title: Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2013.07.006 – volume: 8 start-page: 4191 year: 2002 ident: 10.1016/j.freeradbiomed.2024.07.032_bib18 article-title: Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles publication-title: Chem. Eur J. doi: 10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S – volume: 292 start-page: 63 year: 2018 ident: 10.1016/j.freeradbiomed.2024.07.032_bib50 article-title: A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2018.04.011 – volume: 21 start-page: 282 year: 2008 ident: 10.1016/j.freeradbiomed.2024.07.032_bib21 article-title: Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol publication-title: Chem. Res. Toxicol. doi: 10.1021/tx7003008 – volume: 28 start-page: 365 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib13 article-title: Antioxidant activity and nano delivery of the most frequently applied stilbene derivates: a brief and recent review publication-title: Pharmaceut. Sci. – volume: 113 start-page: 6378 year: 2009 ident: 10.1016/j.freeradbiomed.2024.07.032_bib35 article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions publication-title: J. Phys. Chem. B doi: 10.1021/jp810292n – volume: 39 start-page: 303 year: 2023 ident: 10.1016/j.freeradbiomed.2024.07.032_bib53 article-title: Tapinarof cream 1% in plaque psoriasis: a profile of its use publication-title: Drugs Ther. Perspect. doi: 10.1007/s40267-023-01014-z – volume: 132 year: 2010 ident: 10.1016/j.freeradbiomed.2024.07.032_bib32 article-title: Continuous surface charge polarizable continuum models of solvation. I. General formalism publication-title: J. Chem. Phys. doi: 10.1063/1.3359469 – volume: 36 year: 2022 ident: 10.1016/j.freeradbiomed.2024.07.032_bib12 article-title: Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors publication-title: Curr. Opin. Electrochem. – volume: 90 start-page: 114 year: 2016 ident: 10.1016/j.freeradbiomed.2024.07.032_bib10 article-title: Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.11.014 – volume: 492 start-page: 54 year: 2000 ident: 10.1016/j.freeradbiomed.2024.07.032_bib24 article-title: Electrochemical study of nitrostilbene derivatives: nitro group as a probe of the push-pull effect publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00265-5 – volume: 75 start-page: 253 year: 1980 ident: 10.1016/j.freeradbiomed.2024.07.032_bib37 article-title: Chlorpromazine phototoxicity: growth inhibition and DNA-interaction in normal human fibroblasts publication-title: J. Invest. Dermatol. doi: 10.1111/1523-1747.ep12523279 – volume: 61 start-page: 4329 year: 1995 ident: 10.1016/j.freeradbiomed.2024.07.032_bib6 article-title: Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.61.12.4329-4333.1995 – volume: 367 start-page: 145 year: 2003 ident: 10.1016/j.freeradbiomed.2024.07.032_bib34 article-title: Thermodynamic cycles and the calculation of pKa publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01686-X |
SSID | ssj0004538 |
Score | 2.464268 |
Snippet | Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 212 |
SubjectTerms | (Photo)stability (Photo)toxicity Antioxidant effects Antioxidants - chemistry Antioxidants - pharmacology Benvitimod Dermatitis, Phototoxic HaCaT Cells Humans Hydroxystilbene Isopropylstilbene Keratinocytes Keratinocytes - drug effects Keratinocytes - metabolism Keratinocytes - radiation effects Oxidation Oxidation-Reduction Phenolic stilbene Pinosylvin Pterostilbene Resveratrol Resveratrol - analogs & derivatives Resveratrol - chemistry Resveratrol - pharmacology Skin Skin - drug effects Skin - metabolism Skin - pathology Skin - radiation effects Stability Stilbenes - chemistry Stilbenes - pharmacology Structure-Activity Relationship Tapinarof Ultraviolet Rays UVA-Irradiation |
Title | Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2024.07.032 https://www.ncbi.nlm.nih.gov/pubmed/39067626 https://www.proquest.com/docview/3085683908 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRa24oAJ9bCnIFVVv6Sa2491ckFYItG1VLoDEzXL8ECmqE-0uEnvht3fsJAUOSEgoJ1uxY804M9_Y8wD4qnhhbGZR-uFfjQYK10lhREiEXBQGm9TEo4vfp2J2wX9e5pdrcNTHwgS3yk72tzI9SuuuZ9RRc9RU1egMp8tQfRbBCxL3HZpA65QVIh_A-vTHr9npg6ThsaB1eD8JA97Awb2bl5tbG26tY7A72ouUx2SejD6lqJ4ColEhnbyFzQ5Jkmm72C1Ys34bdqYerei_K_KNRN_OeGi-Da_bkpOrHVicqyaE4NaOKG9ItVyQNoXszdwmIcgh1JIg895F7qpqCMJaEtKK3hLdV4eLY5ureonPbaXDkNqTWO-PLK4rT65DrubK13qFUPYdXJwcnx_Nkq7wQqIZzZdJZhUTY1NqtCa0cM7muUmty1I9tggHOVPOTIRjxo0RrnFjHU_LlJYlo0qVzLD3MPC1tx-BWG5znWlFNUcjXCmEo5NSG1OyTFNtxBB4T2XZtPk1ZO949kc-Yo4MzJHpWCJzhnDYc0Q-2i4SNcHzJvjS81Ei5cItifK2vllIhiBUIGxMJ0P40DL4_8qwV6D2EJ9e-vld2Ait1ivwMwyQ0XYP0c2y3IdX3--y_W4P_wPBov9K |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKlouFY-2LE9XrXpLN4kdZ3NBQgi0tMCli8TNcvwQKcKJdheJvfS3d-wkBQ5IlVBOcezE8jieb-xvZgC-SlZokxhc_fCvRgOFqajQ3AdCLgqNt6kOWxcXl3x8xX5cZ9dLcNz7wnhaZbf2t2t6WK27kmE3msOmqoa_8HUJqs_CsyBx3qEJ9IZlNPe8vu9_kichw0M6a1878tXfwpdHkpedGuPPrIOrO1qLKQuhPGn6kpp6CYYGdXS6Bu87HEmO2q6uw5JxG7B55NCGvluQbyQwO8OW-QastAknF5swm8jGO-DWlkinSTWfkTaA7P3URN7FwWeSINOeIHdTNQRBLfFBRR-I6nPDhbbNTT3H66FSvkntSMj2R2a3lSO3PlJz5Wq1QCD7Aa5OTybH46hLuxApmmbzKDGS8lyXCm0Jxa01WaZjY5NY5QbBIKPS6hG3VNscwRrTxrK4jNOypKmUJdX0Iyy72pktIIaZTCVKpoqhCS4lgtFRqbQuaaJSpfkAWD_Kommja4iedvZbPBOO8MIRcS5QOAM47CUink0WgXrg_17wuZejwJHzZyTSmfp-JihCUI6gMR4N4FMr4H89w1KOuoNvv_bzB_BuPLk4F-dnlz93YNU_afmBu7CMQjd7iHPm5X6Yx38B9mMAJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tapinarof+and+its+structure-activity+relationship+for+redox+chemistry+and+phototoxicity+on+human+skin+keratinocytes&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Zatloukalova%2C+Martina&rft.au=Hanyk%2C+Jiri&rft.au=Papouskova%2C+Barbora&rft.au=Kabelac%2C+Martin&rft.date=2024-10-01&rft.eissn=1873-4596&rft.volume=223&rft.spage=212&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2024.07.032&rft_id=info%3Apmid%2F39067626&rft.externalDocID=39067626 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |