Design/analysis of GEGS4-1 time integration framework with improved stability and solution accuracy for first-order transient systems
•A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods which are suitable for practical applications.•The basic concepts are demonstrated purposely through simple examples validating the purposed t...
Saved in:
| Published in | Journal of computational physics Vol. 422; p. 109763 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Elsevier Inc
01.12.2020
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2020.109763 |
Cover
| Abstract | •A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods which are suitable for practical applications.•The basic concepts are demonstrated purposely through simple examples validating the purposed theoretical claims.•Proposed GEGS4-1 algorithms have improved stability and solution accuracy in comparison to AB and TG methods.•No special starting procedure is required and high-order explicit algorithms can be readily generated.
In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of linear multi-step (LMS) methods for first-order linear and/or nonlinear transient systems with second-/third-/fourth-order accuracy features. To this end, we focus on developing and designing General Explicit time integration algorithms in an advanced algorithmic fashion typical of the Generalized Single-Step Single-Solve framework for the first-order transient system (GEGS4-1), in which the original GS4-1 has been acknowledged to encompass a wide variety of implicit LMS algorithms of second-order accuracy developed over the past few decades. In contrast to the existing explicit LMS family of algorithms (specifically, second-/third-/fourth-order Adams-Bashforth methods), the proposed algorithmic framework is a single-step formulation and is proved to significantly improve stability and solution accuracy with rigor via mathematical derivations and numerical demonstrations; Moreover, it does not need any additional numerical techniques, such as Runge-Kutta method, for the starting procedure. New/Optimized algorithms can be generated in the proposed framework to circumvent the stability and accuracy limitation with respect to the classical LMS family (not multi-stage method), which is most useful for practical applications. Most significantly, the proposed method readily provides a promising and controllable trade off between stability and accuracy. Specifically, (i) with different selections of free algorithmic parameters, one can recover second-order Adams-Bashforth and Taylor-Galerkin algorithms with critical stability frequency Ωs=λΔtcr=1, third-order Adams-Bashforth algorithm with Ωs=611≈0.5455, and fourth-order Adams-Bashforth algorithm with Ωs=0.3; (ii) new algorithms are originated from the proposed method with improved stability (such as second-order GEGS4-1 with Ωs=1.2 and/or 1.5, third-order GEGS4-1 with Ωs=1, 1.2, and/or 1.5, and fourth-order GEGS4-1 with Ωs=0.6, 0.8, and/or 1.0) and solution accuracy are presented. Both single-degree of freedom (SDOF) and multi-degree of freedom (MDOF) problems are utilized to validate and demonstrate the ability of proposed algorithmic framework. |
|---|---|
| AbstractList | In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of linear multi-step (LMS) methods for first-order linear and/or nonlinear transient systems with second-/third-/fourth-order accuracy features. To this end, we focus on developing and designing General Explicit time integration algorithms in an advanced algorithmic fashion typical of the Generalized Single-Step Single-Solve framework for the first-order transient system (GEGS4-1), in which the original GS4-1 has been acknowledged to encompass a wide variety of implicit LMS algorithms of second-order accuracy developed over the past few decades. In contrast to the existing explicit LMS family of algorithms (specifically, second-/third-/fourth-order Adams-Bashforth methods), the proposed algorithmic framework is a single-step formulation and is proved to significantly improve stability and solution accuracy with rigor via mathematical derivations and numerical demonstrations; Moreover, it does not need any additional numerical techniques, such as Runge-Kutta method, for the starting procedure. New/Optimized algorithms can be generated in the proposed framework to circumvent the stability and accuracy limitation with respect to the classical LMS family (not multi-stage method), which is most useful for practical applications. Most significantly, the proposed method readily provides a promising and controllable trade off between stability and accuracy. Specifically, (i) with different selections of free algorithmic parameters, one can recover second-order Adams-Bashforth and Taylor-Galerkin algorithms with critical stability frequency Ωs = λΔtcr = 1, third-order Adams-Bashforth algorithm with Ωs = 6/11 ≈ 0.5455, and fourth-order Adams-Bashforth algorithm with Ωs = 0.3; (ii) new algorithms are originated from the proposed method with improved stability (such as second-order GEGS4-1 with Ωs = 1.2 and/or 1.5, third-order GEGS4-1 with Ωs = 1, 1.2, and/or 1.5, and fourth-order GEGS4-1 with Ωs = 0.6, 0.8, and/or 1.0) and solution accuracy are presented. Both single-degree of freedom (SDOF) and multi-degree of freedom (MDOF) problems are utilized to validate and demonstrate the ability of proposed algorithmic framework. •A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods which are suitable for practical applications.•The basic concepts are demonstrated purposely through simple examples validating the purposed theoretical claims.•Proposed GEGS4-1 algorithms have improved stability and solution accuracy in comparison to AB and TG methods.•No special starting procedure is required and high-order explicit algorithms can be readily generated. In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of linear multi-step (LMS) methods for first-order linear and/or nonlinear transient systems with second-/third-/fourth-order accuracy features. To this end, we focus on developing and designing General Explicit time integration algorithms in an advanced algorithmic fashion typical of the Generalized Single-Step Single-Solve framework for the first-order transient system (GEGS4-1), in which the original GS4-1 has been acknowledged to encompass a wide variety of implicit LMS algorithms of second-order accuracy developed over the past few decades. In contrast to the existing explicit LMS family of algorithms (specifically, second-/third-/fourth-order Adams-Bashforth methods), the proposed algorithmic framework is a single-step formulation and is proved to significantly improve stability and solution accuracy with rigor via mathematical derivations and numerical demonstrations; Moreover, it does not need any additional numerical techniques, such as Runge-Kutta method, for the starting procedure. New/Optimized algorithms can be generated in the proposed framework to circumvent the stability and accuracy limitation with respect to the classical LMS family (not multi-stage method), which is most useful for practical applications. Most significantly, the proposed method readily provides a promising and controllable trade off between stability and accuracy. Specifically, (i) with different selections of free algorithmic parameters, one can recover second-order Adams-Bashforth and Taylor-Galerkin algorithms with critical stability frequency Ωs=λΔtcr=1, third-order Adams-Bashforth algorithm with Ωs=611≈0.5455, and fourth-order Adams-Bashforth algorithm with Ωs=0.3; (ii) new algorithms are originated from the proposed method with improved stability (such as second-order GEGS4-1 with Ωs=1.2 and/or 1.5, third-order GEGS4-1 with Ωs=1, 1.2, and/or 1.5, and fourth-order GEGS4-1 with Ωs=0.6, 0.8, and/or 1.0) and solution accuracy are presented. Both single-degree of freedom (SDOF) and multi-degree of freedom (MDOF) problems are utilized to validate and demonstrate the ability of proposed algorithmic framework. |
| ArticleNumber | 109763 |
| Author | Tamma, Kumar K. Maxam, Dean Wang, Yazhou Qin, Guoliang |
| Author_xml | – sequence: 1 givenname: Yazhou orcidid: 0000-0002-8146-1401 surname: Wang fullname: Wang, Yazhou email: wangyazhouw@stu.xjtu.edu.cn organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China – sequence: 2 givenname: Dean surname: Maxam fullname: Maxam, Dean email: maxam010@umn.edu organization: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA – sequence: 3 givenname: Kumar K. surname: Tamma fullname: Tamma, Kumar K. email: ktamma@umn.edu organization: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA – sequence: 4 givenname: Guoliang surname: Qin fullname: Qin, Guoliang email: glqin@mail.xjtu.edu.cn organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| BookMark | eNp9kM1u1DAURi1UJKZDH6A7S6wz9U_GjsUKlTJFqsQCWFuuc1McEnvw9bTKA_De9XRYsejG9pW-Y93vnJOzmCIQcsnZhjOursbN6PcbwcRxNlrJN2RVH6wRmqszsmJM8MYYw9-Rc8SRMdZt225F_n4GDA_xykU3LRiQpoHubnbf24bTEmagIRZ4yK6EFOmQ3QxPKf-mT6H8omHe5_QIPcXi7sMUykJdrFOaDi9x5_0hO7_QIWU6hIylSbmHTEt2EQPEQnHBAjO-J28HNyFc_LvX5OeXmx_Xt83dt93X6093jZdiWxoO3AnJtHHgt0YwLRn0vZecD1API9recOOkEUPX3SupjTK-ZbJzndaiV3JNPpz-rYv_OQAWO6ZDrtXRilYpqXRX42vCTymfE2KGwe5zmF1eLGf2aNuOttq2R9v2ZLsy-j_Gh_JirZYN06vkxxMJtfhjgGzRVzce-pDBF9un8Ar9DDJ9nOI |
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117522 crossref_primary_10_1016_j_jcp_2022_111836 crossref_primary_10_1108_HFF_07_2024_0547 crossref_primary_10_1007_s11831_021_09536_3 crossref_primary_10_1016_j_cma_2021_113920 crossref_primary_10_1016_j_jcp_2024_113032 crossref_primary_10_1002_nme_7658 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126576 crossref_primary_10_1016_j_compstruc_2022_106901 crossref_primary_10_1016_j_ijthermalsci_2024_109024 crossref_primary_10_1016_j_cma_2020_113509 crossref_primary_10_1016_j_cma_2020_113604 |
| Cites_doi | 10.1016/j.jcp.2009.12.039 10.1016/j.cma.2018.09.015 10.1080/10407782.2019.1608778 10.1016/j.jcp.2019.108883 10.1007/s40687-020-00212-9 10.1016/j.jcp.2019.06.021 10.1137/16M1061588 10.1007/s10915-012-9621-8 10.1108/HFF-04-2015-0155 10.1016/j.jcp.2019.109105 10.1016/j.cma.2008.06.018 10.1002/nme.3228 10.3934/ipi.2013.7.679 10.1007/BF02736209 10.1016/0045-7825(88)90082-5 10.1080/01495739.2018.1536869 10.1007/s10915-019-01008-y 10.1016/j.cma.2005.03.003 10.1002/nme.1559 10.1007/BF01963532 10.1016/j.jcp.2016.10.040 10.1002/nme.1019 10.1016/j.compfluid.2018.07.013 10.1137/140993193 10.1002/nme.873 10.1016/j.cma.2018.02.007 10.1016/j.ijheatmasstransfer.2016.05.020 10.1016/0021-9991(91)90007-8 10.1016/j.jcp.2018.08.014 10.1002/nme.4715 10.1007/s11831-011-9060-y 10.1007/s10915-004-4636-4 10.1016/j.jcp.2019.05.014 10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2 10.1016/j.ijheatmasstransfer.2017.09.081 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright Elsevier Science Ltd. Dec 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Dec 1, 2020 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2020.109763 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| ExternalDocumentID | 10_1016_j_jcp_2020_109763 S0021999120305374 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c325t-1e1a23079aec5920730eddc311fe311924d919a392f88b637969c4038a8772d63 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9991 |
| IngestDate | Mon Jul 14 08:13:45 EDT 2025 Thu Apr 24 22:59:57 EDT 2025 Wed Oct 01 02:36:52 EDT 2025 Fri Feb 23 02:45:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | First-order systems General explicit algorithms Improved stability and solution accuracy Time integration GS4-1 framework LMS algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-1e1a23079aec5920730eddc311fe311924d919a392f88b637969c4038a8772d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8146-1401 |
| PQID | 2466367840 |
| PQPubID | 2047462 |
| ParticipantIDs | proquest_journals_2466367840 crossref_primary_10_1016_j_jcp_2020_109763 crossref_citationtrail_10_1016_j_jcp_2020_109763 elsevier_sciencedirect_doi_10_1016_j_jcp_2020_109763 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Wang, Qin, Tamma, Geng (br0100) 2019; 75 Zhu, Qiu, Shu (br0140) 2020; 404 Noels, Stainier, Ponthot (br0170) 2006; 195 Masuri, Sellier, Zhou, Tamma (br0330) 2011; 88 Wang, Qin (br0090) 2018; 174 Karniadakis, Israeli, Orszag (br0060) 1991; 97 Zhou, Tamma (br0300) 2004; 59 Capuano, Coppola, Rández, de Luca (br0150) 2017; 328 Maxam, Deokar, Tamma (br0380) 2019; 42 Chen, Li, Wang, Wang, Wang (br0240) 2020; 7 Tamma, Namburu (br0120) 1988; 13 Kadioglu, Knoll (br0180) 2010; 229 Li, Qiao, Tang (br0280) 2016; 54 Muscat, Puigt, Montagnac, Brenner (br0190) 2019; 398 Cheng, Wang (br0220) 2016; 54 Feng, Song, Tang, Yang (br0270) 2013; 7 Dahlquist (br0040) 1963; 3 Mikida, Klöckner, Bodony (br0070) 2019; 396 Deokar, Maxam, Tamma (br0420) 2018; 334 Tamma, Zhou, Sha (br0290) 2000; 7 Oden (br0030) 2006 Yao, Lin, Wang, Kou (br0230) 2017; 14 Huang, Persson, Zahr (br0160) 2019; 346 Har, Tamma (br0410) 2012 Tamma, Har, Zhou, Shimada, Hoitink (br0390) 2011; 18 Bjøntegaard, Rønquist (br0080) 2008; 197 Durran (br0050) 1991; 119 Zhou, Tamma (br0320) 2006; 66 Tang, Yang (br0260) 2016; 34 Zienkiewicz, Taylor, Nithiarasu, Zhu (br0020) 1977 Xue, Zhang, Tamma (br0370) 2018; 374 Vermeire (br0130) 2019; 393 Xue, Zhang, Tamma (br0360) 2018; 116 Xue, Tamma, Zhang (br0400) 2016; 101 Cheng, Qiao, Wang (br0250) 2019; 81 Pareschi, Russo (br0200) 2005; 25 Belytschko, Hughes (br0010) 1983 Tamma, Masuri (br0350) 2016; 26 Shimada, Masuri, Tamma (br0340) 2015; 102 Tamma, Namburu (br0110) 1988; 71 LeVeque (br0430) 2007 Gottlieb, Wang (br0210) 2012; 53 Zhou, Tamma (br0310) 2004; 60 Pareschi (10.1016/j.jcp.2020.109763_br0200) 2005; 25 Capuano (10.1016/j.jcp.2020.109763_br0150) 2017; 328 Bjøntegaard (10.1016/j.jcp.2020.109763_br0080) 2008; 197 Zienkiewicz (10.1016/j.jcp.2020.109763_br0020) 1977 Dahlquist (10.1016/j.jcp.2020.109763_br0040) 1963; 3 Maxam (10.1016/j.jcp.2020.109763_br0380) 2019; 42 Oden (10.1016/j.jcp.2020.109763_br0030) 2006 Zhou (10.1016/j.jcp.2020.109763_br0320) 2006; 66 Tamma (10.1016/j.jcp.2020.109763_br0350) 2016; 26 Li (10.1016/j.jcp.2020.109763_br0280) 2016; 54 Wang (10.1016/j.jcp.2020.109763_br0100) 2019; 75 Noels (10.1016/j.jcp.2020.109763_br0170) 2006; 195 Yao (10.1016/j.jcp.2020.109763_br0230) 2017; 14 Muscat (10.1016/j.jcp.2020.109763_br0190) 2019; 398 Xue (10.1016/j.jcp.2020.109763_br0370) 2018; 374 Wang (10.1016/j.jcp.2020.109763_br0090) 2018; 174 Xue (10.1016/j.jcp.2020.109763_br0360) 2018; 116 Chen (10.1016/j.jcp.2020.109763_br0240) 2020; 7 Mikida (10.1016/j.jcp.2020.109763_br0070) 2019; 396 Tang (10.1016/j.jcp.2020.109763_br0260) 2016; 34 Karniadakis (10.1016/j.jcp.2020.109763_br0060) 1991; 97 Tamma (10.1016/j.jcp.2020.109763_br0120) 1988; 13 Cheng (10.1016/j.jcp.2020.109763_br0250) 2019; 81 Zhou (10.1016/j.jcp.2020.109763_br0300) 2004; 59 Belytschko (10.1016/j.jcp.2020.109763_br0010) 1983 Tamma (10.1016/j.jcp.2020.109763_br0290) 2000; 7 Feng (10.1016/j.jcp.2020.109763_br0270) 2013; 7 Durran (10.1016/j.jcp.2020.109763_br0050) 1991; 119 Tamma (10.1016/j.jcp.2020.109763_br0110) 1988; 71 Har (10.1016/j.jcp.2020.109763_br0410) 2012 Deokar (10.1016/j.jcp.2020.109763_br0420) 2018; 334 Masuri (10.1016/j.jcp.2020.109763_br0330) 2011; 88 Zhu (10.1016/j.jcp.2020.109763_br0140) 2020; 404 Shimada (10.1016/j.jcp.2020.109763_br0340) 2015; 102 Tamma (10.1016/j.jcp.2020.109763_br0390) 2011; 18 Huang (10.1016/j.jcp.2020.109763_br0160) 2019; 346 Kadioglu (10.1016/j.jcp.2020.109763_br0180) 2010; 229 Cheng (10.1016/j.jcp.2020.109763_br0220) 2016; 54 LeVeque (10.1016/j.jcp.2020.109763_br0430) 2007 Zhou (10.1016/j.jcp.2020.109763_br0310) 2004; 60 Gottlieb (10.1016/j.jcp.2020.109763_br0210) 2012; 53 Xue (10.1016/j.jcp.2020.109763_br0400) 2016; 101 Vermeire (10.1016/j.jcp.2020.109763_br0130) 2019; 393 |
| References_xml | – volume: 75 start-page: 579 year: 2019 end-page: 597 ident: br0100 article-title: Accurate solution for natural convection around single and tandem circular cylinders inside a square enclosure using sem publication-title: Numer. Heat Transf., Part A, Appl. – volume: 7 start-page: 1 year: 2020 end-page: 27 ident: br0240 article-title: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy publication-title: Res. Math. Sci. – volume: 71 start-page: 137 year: 1988 end-page: 150 ident: br0110 article-title: A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 374 start-page: 1180 year: 2018 end-page: 1195 ident: br0370 article-title: A two-field state-based peridynamic theory for thermal contact problems publication-title: J. Comput. Phys. – volume: 334 start-page: 414 year: 2018 end-page: 439 ident: br0420 article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: adaptive time stepping in second-order dynamical systems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 404 year: 2020 ident: br0140 article-title: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters publication-title: J. Comput. Phys. – year: 1977 ident: br0020 article-title: The Finite Element Method – volume: 116 start-page: 889 year: 2018 end-page: 896 ident: br0360 article-title: Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration publication-title: Int. J. Heat Mass Transf. – volume: 197 start-page: 4763 year: 2008 end-page: 4773 ident: br0080 article-title: A high order splitting method for time-dependent domains publication-title: Comput. Methods Appl. Mech. Eng. – year: 1983 ident: br0010 article-title: Computational Methods for Transient Analysis – volume: 174 start-page: 122 year: 2018 end-page: 134 ident: br0090 article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation publication-title: Comput. Fluids – year: 2012 ident: br0410 article-title: Advances in Computational Dynamics of Particles, Materials and Structures – volume: 81 start-page: 154 year: 2019 end-page: 185 ident: br0250 article-title: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability publication-title: J. Sci. Comput. – volume: 102 start-page: 867 year: 2015 end-page: 891 ident: br0340 article-title: A novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systems publication-title: Int. J. Numer. Methods Eng. – volume: 346 start-page: 674 year: 2019 end-page: 706 ident: br0160 article-title: High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit–explicit Runge–Kutta schemes publication-title: Comput. Methods Appl. Mech. Eng. – volume: 7 start-page: 679 year: 2013 end-page: 695 ident: br0270 article-title: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation publication-title: Inverse Probl. Imaging – volume: 54 start-page: 3123 year: 2016 end-page: 3144 ident: br0220 article-title: Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier–Stokes equations publication-title: SIAM J. Numer. Anal. – volume: 88 start-page: 1411 year: 2011 end-page: 1448 ident: br0330 article-title: Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation publication-title: Int. J. Numer. Methods Eng. – volume: 7 start-page: 67 year: 2000 end-page: 290 ident: br0290 article-title: The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications publication-title: Arch. Comput. Methods Eng. – volume: 398 year: 2019 ident: br0190 article-title: A coupled implicit-explicit time integration method for compressible unsteady flows publication-title: J. Comput. Phys. – volume: 229 start-page: 3237 year: 2010 end-page: 3249 ident: br0180 article-title: A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems publication-title: J. Comput. Phys. – volume: 59 start-page: 597 year: 2004 end-page: 668 ident: br0300 article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics publication-title: Int. J. Numer. Methods Eng. – year: 2007 ident: br0430 article-title: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems – volume: 18 start-page: 119 year: 2011 end-page: 283 ident: br0390 article-title: An overview and recent advances in vector and scalar formalisms: space/time discretizations in computational dynamics—a unified approach publication-title: Arch. Comput. Methods Eng. – volume: 393 start-page: 465 year: 2019 end-page: 483 ident: br0130 article-title: Paired explicit Runge-Kutta schemes for stiff systems of equations publication-title: J. Comput. Phys. – volume: 195 start-page: 2169 year: 2006 end-page: 2192 ident: br0170 article-title: Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 25 start-page: 129 year: 2005 end-page: 155 ident: br0200 article-title: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with reaction publication-title: J. Sci. Comput. – volume: 14 start-page: 511 year: 2017 end-page: 531 ident: br0230 article-title: A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method publication-title: Int. J. Numer. Anal. Model. – volume: 26 start-page: 1634 year: 2016 end-page: 1660 ident: br0350 article-title: A novel extension of GS4-1 time integrator to fluid dynamics type non-linear problems with illustrations to Burgers' equation publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 3 start-page: 27 year: 1963 end-page: 43 ident: br0040 article-title: A special stability problem for linear multistep methods publication-title: BIT Numer. Math. – volume: 53 start-page: 102 year: 2012 end-page: 128 ident: br0210 article-title: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation publication-title: J. Sci. Comput. – volume: 396 start-page: 325 year: 2019 end-page: 346 ident: br0070 article-title: Multi-rate time integration on overset meshes publication-title: J. Comput. Phys. – volume: 119 start-page: 702 year: 1991 end-page: 720 ident: br0050 article-title: The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing publication-title: Mon. Weather Rev. – volume: 42 start-page: 163 year: 2019 end-page: 184 ident: br0380 article-title: A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the GSSSS framework involving differential algebraic equation systems publication-title: J. Therm. Stresses – volume: 34 start-page: 471 year: 2016 end-page: 481 ident: br0260 article-title: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle publication-title: J. Comput. Math. – volume: 66 start-page: 1738 year: 2006 end-page: 1790 ident: br0320 article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics publication-title: Int. J. Numer. Methods Eng. – year: 2006 ident: br0030 article-title: Finite Elements of Nonlinear Continua – volume: 54 start-page: 1653 year: 2016 end-page: 1681 ident: br0280 article-title: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations publication-title: SIAM J. Numer. Anal. – volume: 97 start-page: 414 year: 1991 end-page: 443 ident: br0060 article-title: High-order splitting methods for the incompressible Navier-Stokes equations publication-title: J. Comput. Phys. – volume: 13 start-page: 409 year: 1988 end-page: 426 ident: br0120 article-title: Explicit second-order accurate Taylor-Galerkin-based finite-element formulations for linear/nonlinear transient heat transfer publication-title: Numer. Heat Transf., Part A, Appl. – volume: 328 start-page: 86 year: 2017 end-page: 94 ident: br0150 article-title: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties publication-title: J. Comput. Phys. – volume: 60 start-page: 1699 year: 2004 end-page: 1740 ident: br0310 article-title: A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design publication-title: Int. J. Numer. Methods Eng. – volume: 101 start-page: 365 year: 2016 end-page: 372 ident: br0400 article-title: A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems publication-title: Int. J. Heat Mass Transf. – volume: 229 start-page: 3237 issue: 9 year: 2010 ident: 10.1016/j.jcp.2020.109763_br0180 article-title: A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.12.039 – year: 2007 ident: 10.1016/j.jcp.2020.109763_br0430 – volume: 346 start-page: 674 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0160 article-title: High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit–explicit Runge–Kutta schemes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.09.015 – year: 1977 ident: 10.1016/j.jcp.2020.109763_br0020 – volume: 75 start-page: 579 issue: 9 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0100 article-title: Accurate solution for natural convection around single and tandem circular cylinders inside a square enclosure using sem publication-title: Numer. Heat Transf., Part A, Appl. doi: 10.1080/10407782.2019.1608778 – volume: 398 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0190 article-title: A coupled implicit-explicit time integration method for compressible unsteady flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108883 – volume: 7 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.jcp.2020.109763_br0240 article-title: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy publication-title: Res. Math. Sci. doi: 10.1007/s40687-020-00212-9 – volume: 396 start-page: 325 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0070 article-title: Multi-rate time integration on overset meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.06.021 – volume: 54 start-page: 3123 issue: 5 year: 2016 ident: 10.1016/j.jcp.2020.109763_br0220 article-title: Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier–Stokes equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1061588 – volume: 53 start-page: 102 issue: 1 year: 2012 ident: 10.1016/j.jcp.2020.109763_br0210 article-title: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation publication-title: J. Sci. Comput. doi: 10.1007/s10915-012-9621-8 – volume: 26 start-page: 1634 issue: 6 year: 2016 ident: 10.1016/j.jcp.2020.109763_br0350 article-title: A novel extension of GS4-1 time integrator to fluid dynamics type non-linear problems with illustrations to Burgers' equation publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-04-2015-0155 – volume: 404 year: 2020 ident: 10.1016/j.jcp.2020.109763_br0140 article-title: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109105 – volume: 197 start-page: 4763 issue: 51–52 year: 2008 ident: 10.1016/j.jcp.2020.109763_br0080 article-title: A high order splitting method for time-dependent domains publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.06.018 – volume: 88 start-page: 1411 issue: 13 year: 2011 ident: 10.1016/j.jcp.2020.109763_br0330 article-title: Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.3228 – volume: 7 start-page: 679 issue: 3 year: 2013 ident: 10.1016/j.jcp.2020.109763_br0270 article-title: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2013.7.679 – volume: 7 start-page: 67 issue: 2 year: 2000 ident: 10.1016/j.jcp.2020.109763_br0290 article-title: The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF02736209 – volume: 71 start-page: 137 issue: 2 year: 1988 ident: 10.1016/j.jcp.2020.109763_br0110 article-title: A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(88)90082-5 – volume: 42 start-page: 163 issue: 1 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0380 article-title: A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the GSSSS framework involving differential algebraic equation systems publication-title: J. Therm. Stresses doi: 10.1080/01495739.2018.1536869 – volume: 81 start-page: 154 issue: 1 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0250 article-title: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability publication-title: J. Sci. Comput. doi: 10.1007/s10915-019-01008-y – volume: 195 start-page: 2169 issue: 19-22 year: 2006 ident: 10.1016/j.jcp.2020.109763_br0170 article-title: Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.03.003 – volume: 66 start-page: 1738 issue: 11 year: 2006 ident: 10.1016/j.jcp.2020.109763_br0320 article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1559 – volume: 14 start-page: 511 issue: 4–5 year: 2017 ident: 10.1016/j.jcp.2020.109763_br0230 article-title: A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method publication-title: Int. J. Numer. Anal. Model. – volume: 3 start-page: 27 issue: 1 year: 1963 ident: 10.1016/j.jcp.2020.109763_br0040 article-title: A special stability problem for linear multistep methods publication-title: BIT Numer. Math. doi: 10.1007/BF01963532 – volume: 328 start-page: 86 year: 2017 ident: 10.1016/j.jcp.2020.109763_br0150 article-title: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.040 – volume: 60 start-page: 1699 issue: 10 year: 2004 ident: 10.1016/j.jcp.2020.109763_br0310 article-title: A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1019 – volume: 174 start-page: 122 year: 2018 ident: 10.1016/j.jcp.2020.109763_br0090 article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.07.013 – volume: 54 start-page: 1653 issue: 3 year: 2016 ident: 10.1016/j.jcp.2020.109763_br0280 article-title: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/140993193 – year: 1983 ident: 10.1016/j.jcp.2020.109763_br0010 – volume: 59 start-page: 597 issue: 5 year: 2004 ident: 10.1016/j.jcp.2020.109763_br0300 article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.873 – volume: 334 start-page: 414 year: 2018 ident: 10.1016/j.jcp.2020.109763_br0420 article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: adaptive time stepping in second-order dynamical systems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.02.007 – volume: 101 start-page: 365 year: 2016 ident: 10.1016/j.jcp.2020.109763_br0400 article-title: A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.020 – volume: 34 start-page: 471 issue: 5 year: 2016 ident: 10.1016/j.jcp.2020.109763_br0260 article-title: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle publication-title: J. Comput. Math. – volume: 97 start-page: 414 issue: 2 year: 1991 ident: 10.1016/j.jcp.2020.109763_br0060 article-title: High-order splitting methods for the incompressible Navier-Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90007-8 – volume: 374 start-page: 1180 year: 2018 ident: 10.1016/j.jcp.2020.109763_br0370 article-title: A two-field state-based peridynamic theory for thermal contact problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.014 – volume: 102 start-page: 867 issue: 3–4 year: 2015 ident: 10.1016/j.jcp.2020.109763_br0340 article-title: A novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4715 – volume: 18 start-page: 119 issue: 2 year: 2011 ident: 10.1016/j.jcp.2020.109763_br0390 article-title: An overview and recent advances in vector and scalar formalisms: space/time discretizations in computational dynamics—a unified approach publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-011-9060-y – volume: 25 start-page: 129 issue: 1 year: 2005 ident: 10.1016/j.jcp.2020.109763_br0200 article-title: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with reaction publication-title: J. Sci. Comput. doi: 10.1007/s10915-004-4636-4 – volume: 393 start-page: 465 year: 2019 ident: 10.1016/j.jcp.2020.109763_br0130 article-title: Paired explicit Runge-Kutta schemes for stiff systems of equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.014 – year: 2006 ident: 10.1016/j.jcp.2020.109763_br0030 – volume: 119 start-page: 702 issue: 3 year: 1991 ident: 10.1016/j.jcp.2020.109763_br0050 article-title: The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2 – volume: 13 start-page: 409 issue: 4 year: 1988 ident: 10.1016/j.jcp.2020.109763_br0120 article-title: Explicit second-order accurate Taylor-Galerkin-based finite-element formulations for linear/nonlinear transient heat transfer publication-title: Numer. Heat Transf., Part A, Appl. – volume: 116 start-page: 889 year: 2018 ident: 10.1016/j.jcp.2020.109763_br0360 article-title: Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.09.081 – year: 2012 ident: 10.1016/j.jcp.2020.109763_br0410 |
| SSID | ssj0008548 |
| Score | 2.424849 |
| Snippet | •A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods... In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109763 |
| SubjectTerms | Accuracy Algorithms Computational physics Control stability Degrees of freedom First-order systems Frequency stability General explicit algorithms GS4-1 framework Improved stability and solution accuracy LMS algorithms Nonlinear systems Runge-Kutta method Stability analysis Time integration |
| Title | Design/analysis of GEGS4-1 time integration framework with improved stability and solution accuracy for first-order transient systems |
| URI | https://dx.doi.org/10.1016/j.jcp.2020.109763 https://www.proquest.com/docview/2466367840 |
| Volume | 422 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YEJybSJnddYlT4A0QUqdbMcx5FaobbqY-jCxv_mznFAINGBJZIj24p857vPzufPhNyoQKhIpCnLDOdMwKqWKUhLDLxDCK1gSWTlmp6H4WAkHsfBuEI65VkYpFW62F_EdBut3ZumG83mYjLBM74-nqH3fPRZHqEmqBAR3mJw9_5N84gDUURjpCJA7fLPpuV4TTVKVvqFkGPI_8pNv6K0TT29I3LgMCNtF591TCpmdkIOHX6kbnauTsnHvaVjNJUTGqHznPa7_RfBPIp3yNNSGwJsQfOSlUVxK5ZO7OYCdAdo0fJlt1TNoOQ8kyqtN0ultxRALs0ngBmZVe2ka0x2eKiSFqLQqzMy6nVfOwPmrllgmvvBmnnGU0gHT5TRQeLjnDdZprnn5QYesEDLEi9RAKTyOE5DHiVhokWLxyoGaJ6F_JxUZ_OZuSCU6zwyBiX6IOsFeZrmHgIObUSaQK-8RlrlAEvtNMjxKow3WZLNphJsItEmsrBJjdx-NVkUAhy7KovSavKHF0lIELua1UsLSzeFV9IXAMYglYvW5f96vSL7WCq4L3VSXS835hoQzDptWBdtkL32w9Ng-AlpIe9c |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRrzxwIRkWsfOa0RQKNCy0EpsluM4UivUVrQMLGz8b-5sBwQSDCyRkthW5DvffXY-fybkRMdSp7IoWGmFYBJmtUxDWmLgHVIaDVMiJ9fUvU_afXn7GD_OkYt6LwzSKkPs9zHdRevwpBF6szEZDHCPb4R76HmEPitSOU8WZRylOAM7e_vieWSx9OEYuQhQvP616UheQ4OalZFXckzEb8npR5h2uedqjawE0EjP_Xetkzk72iCrAUDSMDynm-T90vExGjoojdBxRa9b1w-ScYqHyNNaHAKMQaualkVxLZYO3OoCNAdw0RFmX6kewV1wTaqNeXnW5pUCyqXVAEAjc7KddIbZDndVUq8KPd0i_atW76LNwjkLzIgonjFuuUY-eK6tifMIB70tSyM4ryxcYIZW5jzXgKSqLCsSkeZJbmRTZDoDbF4mYpssjMYju0OoMFVqLWr0QdqLq6KoOCIOY2WRQ6tilzTrDlYmiJDjWRhPqmabDRXYRKFNlLfJLjn9rDLxChx_FZa11dQ3N1KQIf6qdlBbWIUxPFWRBDQGuVw29_7X6jFZave6HdW5ub_bJ8v4xhNhDsjC7PnFHgKcmRVHzl0_APp18PE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2Fanalysis+of+GEGS4-1+time+integration+framework+with+improved+stability+and+solution+accuracy+for+first-order+transient+systems&rft.jtitle=Journal+of+computational+physics&rft.au=Wang%2C+Yazhou&rft.au=Maxam%2C+Dean&rft.au=Tamma%2C+Kumar+K.&rft.au=Qin%2C+Guoliang&rft.date=2020-12-01&rft.issn=0021-9991&rft.volume=422&rft.spage=109763&rft_id=info:doi/10.1016%2Fj.jcp.2020.109763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2020_109763 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |