Design/analysis of GEGS4-1 time integration framework with improved stability and solution accuracy for first-order transient systems

•A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods which are suitable for practical applications.•The basic concepts are demonstrated purposely through simple examples validating the purposed t...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 422; p. 109763
Main Authors Wang, Yazhou, Maxam, Dean, Tamma, Kumar K., Qin, Guoliang
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.12.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2020.109763

Cover

Abstract •A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods which are suitable for practical applications.•The basic concepts are demonstrated purposely through simple examples validating the purposed theoretical claims.•Proposed GEGS4-1 algorithms have improved stability and solution accuracy in comparison to AB and TG methods.•No special starting procedure is required and high-order explicit algorithms can be readily generated. In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of linear multi-step (LMS) methods for first-order linear and/or nonlinear transient systems with second-/third-/fourth-order accuracy features. To this end, we focus on developing and designing General Explicit time integration algorithms in an advanced algorithmic fashion typical of the Generalized Single-Step Single-Solve framework for the first-order transient system (GEGS4-1), in which the original GS4-1 has been acknowledged to encompass a wide variety of implicit LMS algorithms of second-order accuracy developed over the past few decades. In contrast to the existing explicit LMS family of algorithms (specifically, second-/third-/fourth-order Adams-Bashforth methods), the proposed algorithmic framework is a single-step formulation and is proved to significantly improve stability and solution accuracy with rigor via mathematical derivations and numerical demonstrations; Moreover, it does not need any additional numerical techniques, such as Runge-Kutta method, for the starting procedure. New/Optimized algorithms can be generated in the proposed framework to circumvent the stability and accuracy limitation with respect to the classical LMS family (not multi-stage method), which is most useful for practical applications. Most significantly, the proposed method readily provides a promising and controllable trade off between stability and accuracy. Specifically, (i) with different selections of free algorithmic parameters, one can recover second-order Adams-Bashforth and Taylor-Galerkin algorithms with critical stability frequency Ωs=λΔtcr=1, third-order Adams-Bashforth algorithm with Ωs=611≈0.5455, and fourth-order Adams-Bashforth algorithm with Ωs=0.3; (ii) new algorithms are originated from the proposed method with improved stability (such as second-order GEGS4-1 with Ωs=1.2 and/or 1.5, third-order GEGS4-1 with Ωs=1, 1.2, and/or 1.5, and fourth-order GEGS4-1 with Ωs=0.6, 0.8, and/or 1.0) and solution accuracy are presented. Both single-degree of freedom (SDOF) and multi-degree of freedom (MDOF) problems are utilized to validate and demonstrate the ability of proposed algorithmic framework.
AbstractList In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of linear multi-step (LMS) methods for first-order linear and/or nonlinear transient systems with second-/third-/fourth-order accuracy features. To this end, we focus on developing and designing General Explicit time integration algorithms in an advanced algorithmic fashion typical of the Generalized Single-Step Single-Solve framework for the first-order transient system (GEGS4-1), in which the original GS4-1 has been acknowledged to encompass a wide variety of implicit LMS algorithms of second-order accuracy developed over the past few decades. In contrast to the existing explicit LMS family of algorithms (specifically, second-/third-/fourth-order Adams-Bashforth methods), the proposed algorithmic framework is a single-step formulation and is proved to significantly improve stability and solution accuracy with rigor via mathematical derivations and numerical demonstrations; Moreover, it does not need any additional numerical techniques, such as Runge-Kutta method, for the starting procedure. New/Optimized algorithms can be generated in the proposed framework to circumvent the stability and accuracy limitation with respect to the classical LMS family (not multi-stage method), which is most useful for practical applications. Most significantly, the proposed method readily provides a promising and controllable trade off between stability and accuracy. Specifically, (i) with different selections of free algorithmic parameters, one can recover second-order Adams-Bashforth and Taylor-Galerkin algorithms with critical stability frequency Ωs = λΔtcr = 1, third-order Adams-Bashforth algorithm with Ωs = 6/11 ≈ 0.5455, and fourth-order Adams-Bashforth algorithm with Ωs = 0.3; (ii) new algorithms are originated from the proposed method with improved stability (such as second-order GEGS4-1 with Ωs = 1.2 and/or 1.5, third-order GEGS4-1 with Ωs = 1, 1.2, and/or 1.5, and fourth-order GEGS4-1 with Ωs = 0.6, 0.8, and/or 1.0) and solution accuracy are presented. Both single-degree of freedom (SDOF) and multi-degree of freedom (MDOF) problems are utilized to validate and demonstrate the ability of proposed algorithmic framework.
•A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods which are suitable for practical applications.•The basic concepts are demonstrated purposely through simple examples validating the purposed theoretical claims.•Proposed GEGS4-1 algorithms have improved stability and solution accuracy in comparison to AB and TG methods.•No special starting procedure is required and high-order explicit algorithms can be readily generated. In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of linear multi-step (LMS) methods for first-order linear and/or nonlinear transient systems with second-/third-/fourth-order accuracy features. To this end, we focus on developing and designing General Explicit time integration algorithms in an advanced algorithmic fashion typical of the Generalized Single-Step Single-Solve framework for the first-order transient system (GEGS4-1), in which the original GS4-1 has been acknowledged to encompass a wide variety of implicit LMS algorithms of second-order accuracy developed over the past few decades. In contrast to the existing explicit LMS family of algorithms (specifically, second-/third-/fourth-order Adams-Bashforth methods), the proposed algorithmic framework is a single-step formulation and is proved to significantly improve stability and solution accuracy with rigor via mathematical derivations and numerical demonstrations; Moreover, it does not need any additional numerical techniques, such as Runge-Kutta method, for the starting procedure. New/Optimized algorithms can be generated in the proposed framework to circumvent the stability and accuracy limitation with respect to the classical LMS family (not multi-stage method), which is most useful for practical applications. Most significantly, the proposed method readily provides a promising and controllable trade off between stability and accuracy. Specifically, (i) with different selections of free algorithmic parameters, one can recover second-order Adams-Bashforth and Taylor-Galerkin algorithms with critical stability frequency Ωs=λΔtcr=1, third-order Adams-Bashforth algorithm with Ωs=611≈0.5455, and fourth-order Adams-Bashforth algorithm with Ωs=0.3; (ii) new algorithms are originated from the proposed method with improved stability (such as second-order GEGS4-1 with Ωs=1.2 and/or 1.5, third-order GEGS4-1 with Ωs=1, 1.2, and/or 1.5, and fourth-order GEGS4-1 with Ωs=0.6, 0.8, and/or 1.0) and solution accuracy are presented. Both single-degree of freedom (SDOF) and multi-degree of freedom (MDOF) problems are utilized to validate and demonstrate the ability of proposed algorithmic framework.
ArticleNumber 109763
Author Tamma, Kumar K.
Maxam, Dean
Wang, Yazhou
Qin, Guoliang
Author_xml – sequence: 1
  givenname: Yazhou
  orcidid: 0000-0002-8146-1401
  surname: Wang
  fullname: Wang, Yazhou
  email: wangyazhouw@stu.xjtu.edu.cn
  organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Dean
  surname: Maxam
  fullname: Maxam, Dean
  email: maxam010@umn.edu
  organization: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 3
  givenname: Kumar K.
  surname: Tamma
  fullname: Tamma, Kumar K.
  email: ktamma@umn.edu
  organization: Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 4
  givenname: Guoliang
  surname: Qin
  fullname: Qin, Guoliang
  email: glqin@mail.xjtu.edu.cn
  organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
BookMark eNp9kM1u1DAURi1UJKZDH6A7S6wz9U_GjsUKlTJFqsQCWFuuc1McEnvw9bTKA_De9XRYsejG9pW-Y93vnJOzmCIQcsnZhjOursbN6PcbwcRxNlrJN2RVH6wRmqszsmJM8MYYw9-Rc8SRMdZt225F_n4GDA_xykU3LRiQpoHubnbf24bTEmagIRZ4yK6EFOmQ3QxPKf-mT6H8omHe5_QIPcXi7sMUykJdrFOaDi9x5_0hO7_QIWU6hIylSbmHTEt2EQPEQnHBAjO-J28HNyFc_LvX5OeXmx_Xt83dt93X6093jZdiWxoO3AnJtHHgt0YwLRn0vZecD1API9recOOkEUPX3SupjTK-ZbJzndaiV3JNPpz-rYv_OQAWO6ZDrtXRilYpqXRX42vCTymfE2KGwe5zmF1eLGf2aNuOttq2R9v2ZLsy-j_Gh_JirZYN06vkxxMJtfhjgGzRVzce-pDBF9un8Ar9DDJ9nOI
CitedBy_id crossref_primary_10_1016_j_cma_2024_117522
crossref_primary_10_1016_j_jcp_2022_111836
crossref_primary_10_1108_HFF_07_2024_0547
crossref_primary_10_1007_s11831_021_09536_3
crossref_primary_10_1016_j_cma_2021_113920
crossref_primary_10_1016_j_jcp_2024_113032
crossref_primary_10_1002_nme_7658
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126576
crossref_primary_10_1016_j_compstruc_2022_106901
crossref_primary_10_1016_j_ijthermalsci_2024_109024
crossref_primary_10_1016_j_cma_2020_113509
crossref_primary_10_1016_j_cma_2020_113604
Cites_doi 10.1016/j.jcp.2009.12.039
10.1016/j.cma.2018.09.015
10.1080/10407782.2019.1608778
10.1016/j.jcp.2019.108883
10.1007/s40687-020-00212-9
10.1016/j.jcp.2019.06.021
10.1137/16M1061588
10.1007/s10915-012-9621-8
10.1108/HFF-04-2015-0155
10.1016/j.jcp.2019.109105
10.1016/j.cma.2008.06.018
10.1002/nme.3228
10.3934/ipi.2013.7.679
10.1007/BF02736209
10.1016/0045-7825(88)90082-5
10.1080/01495739.2018.1536869
10.1007/s10915-019-01008-y
10.1016/j.cma.2005.03.003
10.1002/nme.1559
10.1007/BF01963532
10.1016/j.jcp.2016.10.040
10.1002/nme.1019
10.1016/j.compfluid.2018.07.013
10.1137/140993193
10.1002/nme.873
10.1016/j.cma.2018.02.007
10.1016/j.ijheatmasstransfer.2016.05.020
10.1016/0021-9991(91)90007-8
10.1016/j.jcp.2018.08.014
10.1002/nme.4715
10.1007/s11831-011-9060-y
10.1007/s10915-004-4636-4
10.1016/j.jcp.2019.05.014
10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2
10.1016/j.ijheatmasstransfer.2017.09.081
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier Science Ltd. Dec 1, 2020
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Dec 1, 2020
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2020.109763
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2020_109763
S0021999120305374
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-1e1a23079aec5920730eddc311fe311924d919a392f88b637969c4038a8772d63
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Mon Jul 14 08:13:45 EDT 2025
Thu Apr 24 22:59:57 EDT 2025
Wed Oct 01 02:36:52 EDT 2025
Fri Feb 23 02:45:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First-order systems
General explicit algorithms
Improved stability and solution accuracy
Time integration
GS4-1 framework
LMS algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1e1a23079aec5920730eddc311fe311924d919a392f88b637969c4038a8772d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8146-1401
PQID 2466367840
PQPubID 2047462
ParticipantIDs proquest_journals_2466367840
crossref_primary_10_1016_j_jcp_2020_109763
crossref_citationtrail_10_1016_j_jcp_2020_109763
elsevier_sciencedirect_doi_10_1016_j_jcp_2020_109763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Wang, Qin, Tamma, Geng (br0100) 2019; 75
Zhu, Qiu, Shu (br0140) 2020; 404
Noels, Stainier, Ponthot (br0170) 2006; 195
Masuri, Sellier, Zhou, Tamma (br0330) 2011; 88
Wang, Qin (br0090) 2018; 174
Karniadakis, Israeli, Orszag (br0060) 1991; 97
Zhou, Tamma (br0300) 2004; 59
Capuano, Coppola, Rández, de Luca (br0150) 2017; 328
Maxam, Deokar, Tamma (br0380) 2019; 42
Chen, Li, Wang, Wang, Wang (br0240) 2020; 7
Tamma, Namburu (br0120) 1988; 13
Kadioglu, Knoll (br0180) 2010; 229
Li, Qiao, Tang (br0280) 2016; 54
Muscat, Puigt, Montagnac, Brenner (br0190) 2019; 398
Cheng, Wang (br0220) 2016; 54
Feng, Song, Tang, Yang (br0270) 2013; 7
Dahlquist (br0040) 1963; 3
Mikida, Klöckner, Bodony (br0070) 2019; 396
Deokar, Maxam, Tamma (br0420) 2018; 334
Tamma, Zhou, Sha (br0290) 2000; 7
Oden (br0030) 2006
Yao, Lin, Wang, Kou (br0230) 2017; 14
Huang, Persson, Zahr (br0160) 2019; 346
Har, Tamma (br0410) 2012
Tamma, Har, Zhou, Shimada, Hoitink (br0390) 2011; 18
Bjøntegaard, Rønquist (br0080) 2008; 197
Durran (br0050) 1991; 119
Zhou, Tamma (br0320) 2006; 66
Tang, Yang (br0260) 2016; 34
Zienkiewicz, Taylor, Nithiarasu, Zhu (br0020) 1977
Xue, Zhang, Tamma (br0370) 2018; 374
Vermeire (br0130) 2019; 393
Xue, Zhang, Tamma (br0360) 2018; 116
Xue, Tamma, Zhang (br0400) 2016; 101
Cheng, Qiao, Wang (br0250) 2019; 81
Pareschi, Russo (br0200) 2005; 25
Belytschko, Hughes (br0010) 1983
Tamma, Masuri (br0350) 2016; 26
Shimada, Masuri, Tamma (br0340) 2015; 102
Tamma, Namburu (br0110) 1988; 71
LeVeque (br0430) 2007
Gottlieb, Wang (br0210) 2012; 53
Zhou, Tamma (br0310) 2004; 60
Pareschi (10.1016/j.jcp.2020.109763_br0200) 2005; 25
Capuano (10.1016/j.jcp.2020.109763_br0150) 2017; 328
Bjøntegaard (10.1016/j.jcp.2020.109763_br0080) 2008; 197
Zienkiewicz (10.1016/j.jcp.2020.109763_br0020) 1977
Dahlquist (10.1016/j.jcp.2020.109763_br0040) 1963; 3
Maxam (10.1016/j.jcp.2020.109763_br0380) 2019; 42
Oden (10.1016/j.jcp.2020.109763_br0030) 2006
Zhou (10.1016/j.jcp.2020.109763_br0320) 2006; 66
Tamma (10.1016/j.jcp.2020.109763_br0350) 2016; 26
Li (10.1016/j.jcp.2020.109763_br0280) 2016; 54
Wang (10.1016/j.jcp.2020.109763_br0100) 2019; 75
Noels (10.1016/j.jcp.2020.109763_br0170) 2006; 195
Yao (10.1016/j.jcp.2020.109763_br0230) 2017; 14
Muscat (10.1016/j.jcp.2020.109763_br0190) 2019; 398
Xue (10.1016/j.jcp.2020.109763_br0370) 2018; 374
Wang (10.1016/j.jcp.2020.109763_br0090) 2018; 174
Xue (10.1016/j.jcp.2020.109763_br0360) 2018; 116
Chen (10.1016/j.jcp.2020.109763_br0240) 2020; 7
Mikida (10.1016/j.jcp.2020.109763_br0070) 2019; 396
Tang (10.1016/j.jcp.2020.109763_br0260) 2016; 34
Karniadakis (10.1016/j.jcp.2020.109763_br0060) 1991; 97
Tamma (10.1016/j.jcp.2020.109763_br0120) 1988; 13
Cheng (10.1016/j.jcp.2020.109763_br0250) 2019; 81
Zhou (10.1016/j.jcp.2020.109763_br0300) 2004; 59
Belytschko (10.1016/j.jcp.2020.109763_br0010) 1983
Tamma (10.1016/j.jcp.2020.109763_br0290) 2000; 7
Feng (10.1016/j.jcp.2020.109763_br0270) 2013; 7
Durran (10.1016/j.jcp.2020.109763_br0050) 1991; 119
Tamma (10.1016/j.jcp.2020.109763_br0110) 1988; 71
Har (10.1016/j.jcp.2020.109763_br0410) 2012
Deokar (10.1016/j.jcp.2020.109763_br0420) 2018; 334
Masuri (10.1016/j.jcp.2020.109763_br0330) 2011; 88
Zhu (10.1016/j.jcp.2020.109763_br0140) 2020; 404
Shimada (10.1016/j.jcp.2020.109763_br0340) 2015; 102
Tamma (10.1016/j.jcp.2020.109763_br0390) 2011; 18
Huang (10.1016/j.jcp.2020.109763_br0160) 2019; 346
Kadioglu (10.1016/j.jcp.2020.109763_br0180) 2010; 229
Cheng (10.1016/j.jcp.2020.109763_br0220) 2016; 54
LeVeque (10.1016/j.jcp.2020.109763_br0430) 2007
Zhou (10.1016/j.jcp.2020.109763_br0310) 2004; 60
Gottlieb (10.1016/j.jcp.2020.109763_br0210) 2012; 53
Xue (10.1016/j.jcp.2020.109763_br0400) 2016; 101
Vermeire (10.1016/j.jcp.2020.109763_br0130) 2019; 393
References_xml – volume: 75
  start-page: 579
  year: 2019
  end-page: 597
  ident: br0100
  article-title: Accurate solution for natural convection around single and tandem circular cylinders inside a square enclosure using sem
  publication-title: Numer. Heat Transf., Part A, Appl.
– volume: 7
  start-page: 1
  year: 2020
  end-page: 27
  ident: br0240
  article-title: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy
  publication-title: Res. Math. Sci.
– volume: 71
  start-page: 137
  year: 1988
  end-page: 150
  ident: br0110
  article-title: A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 374
  start-page: 1180
  year: 2018
  end-page: 1195
  ident: br0370
  article-title: A two-field state-based peridynamic theory for thermal contact problems
  publication-title: J. Comput. Phys.
– volume: 334
  start-page: 414
  year: 2018
  end-page: 439
  ident: br0420
  article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: adaptive time stepping in second-order dynamical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 404
  year: 2020
  ident: br0140
  article-title: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters
  publication-title: J. Comput. Phys.
– year: 1977
  ident: br0020
  article-title: The Finite Element Method
– volume: 116
  start-page: 889
  year: 2018
  end-page: 896
  ident: br0360
  article-title: Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration
  publication-title: Int. J. Heat Mass Transf.
– volume: 197
  start-page: 4763
  year: 2008
  end-page: 4773
  ident: br0080
  article-title: A high order splitting method for time-dependent domains
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 1983
  ident: br0010
  article-title: Computational Methods for Transient Analysis
– volume: 174
  start-page: 122
  year: 2018
  end-page: 134
  ident: br0090
  article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation
  publication-title: Comput. Fluids
– year: 2012
  ident: br0410
  article-title: Advances in Computational Dynamics of Particles, Materials and Structures
– volume: 81
  start-page: 154
  year: 2019
  end-page: 185
  ident: br0250
  article-title: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability
  publication-title: J. Sci. Comput.
– volume: 102
  start-page: 867
  year: 2015
  end-page: 891
  ident: br0340
  article-title: A novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systems
  publication-title: Int. J. Numer. Methods Eng.
– volume: 346
  start-page: 674
  year: 2019
  end-page: 706
  ident: br0160
  article-title: High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit–explicit Runge–Kutta schemes
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 7
  start-page: 679
  year: 2013
  end-page: 695
  ident: br0270
  article-title: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation
  publication-title: Inverse Probl. Imaging
– volume: 54
  start-page: 3123
  year: 2016
  end-page: 3144
  ident: br0220
  article-title: Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier–Stokes equations
  publication-title: SIAM J. Numer. Anal.
– volume: 88
  start-page: 1411
  year: 2011
  end-page: 1448
  ident: br0330
  article-title: Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation
  publication-title: Int. J. Numer. Methods Eng.
– volume: 7
  start-page: 67
  year: 2000
  end-page: 290
  ident: br0290
  article-title: The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications
  publication-title: Arch. Comput. Methods Eng.
– volume: 398
  year: 2019
  ident: br0190
  article-title: A coupled implicit-explicit time integration method for compressible unsteady flows
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 3237
  year: 2010
  end-page: 3249
  ident: br0180
  article-title: A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems
  publication-title: J. Comput. Phys.
– volume: 59
  start-page: 597
  year: 2004
  end-page: 668
  ident: br0300
  article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
– year: 2007
  ident: br0430
  article-title: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
– volume: 18
  start-page: 119
  year: 2011
  end-page: 283
  ident: br0390
  article-title: An overview and recent advances in vector and scalar formalisms: space/time discretizations in computational dynamics—a unified approach
  publication-title: Arch. Comput. Methods Eng.
– volume: 393
  start-page: 465
  year: 2019
  end-page: 483
  ident: br0130
  article-title: Paired explicit Runge-Kutta schemes for stiff systems of equations
  publication-title: J. Comput. Phys.
– volume: 195
  start-page: 2169
  year: 2006
  end-page: 2192
  ident: br0170
  article-title: Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 25
  start-page: 129
  year: 2005
  end-page: 155
  ident: br0200
  article-title: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with reaction
  publication-title: J. Sci. Comput.
– volume: 14
  start-page: 511
  year: 2017
  end-page: 531
  ident: br0230
  article-title: A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method
  publication-title: Int. J. Numer. Anal. Model.
– volume: 26
  start-page: 1634
  year: 2016
  end-page: 1660
  ident: br0350
  article-title: A novel extension of GS4-1 time integrator to fluid dynamics type non-linear problems with illustrations to Burgers' equation
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 3
  start-page: 27
  year: 1963
  end-page: 43
  ident: br0040
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT Numer. Math.
– volume: 53
  start-page: 102
  year: 2012
  end-page: 128
  ident: br0210
  article-title: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation
  publication-title: J. Sci. Comput.
– volume: 396
  start-page: 325
  year: 2019
  end-page: 346
  ident: br0070
  article-title: Multi-rate time integration on overset meshes
  publication-title: J. Comput. Phys.
– volume: 119
  start-page: 702
  year: 1991
  end-page: 720
  ident: br0050
  article-title: The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing
  publication-title: Mon. Weather Rev.
– volume: 42
  start-page: 163
  year: 2019
  end-page: 184
  ident: br0380
  article-title: A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the GSSSS framework involving differential algebraic equation systems
  publication-title: J. Therm. Stresses
– volume: 34
  start-page: 471
  year: 2016
  end-page: 481
  ident: br0260
  article-title: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle
  publication-title: J. Comput. Math.
– volume: 66
  start-page: 1738
  year: 2006
  end-page: 1790
  ident: br0320
  article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics
  publication-title: Int. J. Numer. Methods Eng.
– year: 2006
  ident: br0030
  article-title: Finite Elements of Nonlinear Continua
– volume: 54
  start-page: 1653
  year: 2016
  end-page: 1681
  ident: br0280
  article-title: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations
  publication-title: SIAM J. Numer. Anal.
– volume: 97
  start-page: 414
  year: 1991
  end-page: 443
  ident: br0060
  article-title: High-order splitting methods for the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 409
  year: 1988
  end-page: 426
  ident: br0120
  article-title: Explicit second-order accurate Taylor-Galerkin-based finite-element formulations for linear/nonlinear transient heat transfer
  publication-title: Numer. Heat Transf., Part A, Appl.
– volume: 328
  start-page: 86
  year: 2017
  end-page: 94
  ident: br0150
  article-title: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties
  publication-title: J. Comput. Phys.
– volume: 60
  start-page: 1699
  year: 2004
  end-page: 1740
  ident: br0310
  article-title: A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design
  publication-title: Int. J. Numer. Methods Eng.
– volume: 101
  start-page: 365
  year: 2016
  end-page: 372
  ident: br0400
  article-title: A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems
  publication-title: Int. J. Heat Mass Transf.
– volume: 229
  start-page: 3237
  issue: 9
  year: 2010
  ident: 10.1016/j.jcp.2020.109763_br0180
  article-title: A fully second order implicit/explicit time integration technique for hydrodynamics plus nonlinear heat conduction problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.039
– year: 2007
  ident: 10.1016/j.jcp.2020.109763_br0430
– volume: 346
  start-page: 674
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0160
  article-title: High-order, linearly stable, partitioned solvers for general multiphysics problems based on implicit–explicit Runge–Kutta schemes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.09.015
– year: 1977
  ident: 10.1016/j.jcp.2020.109763_br0020
– volume: 75
  start-page: 579
  issue: 9
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0100
  article-title: Accurate solution for natural convection around single and tandem circular cylinders inside a square enclosure using sem
  publication-title: Numer. Heat Transf., Part A, Appl.
  doi: 10.1080/10407782.2019.1608778
– volume: 398
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0190
  article-title: A coupled implicit-explicit time integration method for compressible unsteady flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108883
– volume: 7
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.jcp.2020.109763_br0240
  article-title: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy
  publication-title: Res. Math. Sci.
  doi: 10.1007/s40687-020-00212-9
– volume: 396
  start-page: 325
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0070
  article-title: Multi-rate time integration on overset meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.021
– volume: 54
  start-page: 3123
  issue: 5
  year: 2016
  ident: 10.1016/j.jcp.2020.109763_br0220
  article-title: Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier–Stokes equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1061588
– volume: 53
  start-page: 102
  issue: 1
  year: 2012
  ident: 10.1016/j.jcp.2020.109763_br0210
  article-title: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-012-9621-8
– volume: 26
  start-page: 1634
  issue: 6
  year: 2016
  ident: 10.1016/j.jcp.2020.109763_br0350
  article-title: A novel extension of GS4-1 time integrator to fluid dynamics type non-linear problems with illustrations to Burgers' equation
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2015-0155
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2020.109763_br0140
  article-title: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109105
– volume: 197
  start-page: 4763
  issue: 51–52
  year: 2008
  ident: 10.1016/j.jcp.2020.109763_br0080
  article-title: A high order splitting method for time-dependent domains
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.06.018
– volume: 88
  start-page: 1411
  issue: 13
  year: 2011
  ident: 10.1016/j.jcp.2020.109763_br0330
  article-title: Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3228
– volume: 7
  start-page: 679
  issue: 3
  year: 2013
  ident: 10.1016/j.jcp.2020.109763_br0270
  article-title: Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2013.7.679
– volume: 7
  start-page: 67
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2020.109763_br0290
  article-title: The time dimension: a theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02736209
– volume: 71
  start-page: 137
  issue: 2
  year: 1988
  ident: 10.1016/j.jcp.2020.109763_br0110
  article-title: A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(88)90082-5
– volume: 42
  start-page: 163
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0380
  article-title: A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the GSSSS framework involving differential algebraic equation systems
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495739.2018.1536869
– volume: 81
  start-page: 154
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0250
  article-title: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-019-01008-y
– volume: 195
  start-page: 2169
  issue: 19-22
  year: 2006
  ident: 10.1016/j.jcp.2020.109763_br0170
  article-title: Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.03.003
– volume: 66
  start-page: 1738
  issue: 11
  year: 2006
  ident: 10.1016/j.jcp.2020.109763_br0320
  article-title: Algorithms by design with illustrations to solid and structural mechanics/dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1559
– volume: 14
  start-page: 511
  issue: 4–5
  year: 2017
  ident: 10.1016/j.jcp.2020.109763_br0230
  article-title: A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method
  publication-title: Int. J. Numer. Anal. Model.
– volume: 3
  start-page: 27
  issue: 1
  year: 1963
  ident: 10.1016/j.jcp.2020.109763_br0040
  article-title: A special stability problem for linear multistep methods
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01963532
– volume: 328
  start-page: 86
  year: 2017
  ident: 10.1016/j.jcp.2020.109763_br0150
  article-title: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.040
– volume: 60
  start-page: 1699
  issue: 10
  year: 2004
  ident: 10.1016/j.jcp.2020.109763_br0310
  article-title: A new unified theory underlying time dependent linear first-order systems: a prelude to algorithms by design
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1019
– volume: 174
  start-page: 122
  year: 2018
  ident: 10.1016/j.jcp.2020.109763_br0090
  article-title: An improved time-splitting method for simulating natural convection heat transfer in a square cavity by Legendre spectral element approximation
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.07.013
– volume: 54
  start-page: 1653
  issue: 3
  year: 2016
  ident: 10.1016/j.jcp.2020.109763_br0280
  article-title: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140993193
– year: 1983
  ident: 10.1016/j.jcp.2020.109763_br0010
– volume: 59
  start-page: 597
  issue: 5
  year: 2004
  ident: 10.1016/j.jcp.2020.109763_br0300
  article-title: Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.873
– volume: 334
  start-page: 414
  year: 2018
  ident: 10.1016/j.jcp.2020.109763_br0420
  article-title: A novel and simple a posteriori error estimator for LMS methods under the umbrella of GSSSS framework: adaptive time stepping in second-order dynamical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.02.007
– volume: 101
  start-page: 365
  year: 2016
  ident: 10.1016/j.jcp.2020.109763_br0400
  article-title: A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.020
– volume: 34
  start-page: 471
  issue: 5
  year: 2016
  ident: 10.1016/j.jcp.2020.109763_br0260
  article-title: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle
  publication-title: J. Comput. Math.
– volume: 97
  start-page: 414
  issue: 2
  year: 1991
  ident: 10.1016/j.jcp.2020.109763_br0060
  article-title: High-order splitting methods for the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90007-8
– volume: 374
  start-page: 1180
  year: 2018
  ident: 10.1016/j.jcp.2020.109763_br0370
  article-title: A two-field state-based peridynamic theory for thermal contact problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.014
– volume: 102
  start-page: 867
  issue: 3–4
  year: 2015
  ident: 10.1016/j.jcp.2020.109763_br0340
  article-title: A novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4715
– volume: 18
  start-page: 119
  issue: 2
  year: 2011
  ident: 10.1016/j.jcp.2020.109763_br0390
  article-title: An overview and recent advances in vector and scalar formalisms: space/time discretizations in computational dynamics—a unified approach
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-011-9060-y
– volume: 25
  start-page: 129
  issue: 1
  year: 2005
  ident: 10.1016/j.jcp.2020.109763_br0200
  article-title: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with reaction
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-004-4636-4
– volume: 393
  start-page: 465
  year: 2019
  ident: 10.1016/j.jcp.2020.109763_br0130
  article-title: Paired explicit Runge-Kutta schemes for stiff systems of equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.014
– year: 2006
  ident: 10.1016/j.jcp.2020.109763_br0030
– volume: 119
  start-page: 702
  issue: 3
  year: 1991
  ident: 10.1016/j.jcp.2020.109763_br0050
  article-title: The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2
– volume: 13
  start-page: 409
  issue: 4
  year: 1988
  ident: 10.1016/j.jcp.2020.109763_br0120
  article-title: Explicit second-order accurate Taylor-Galerkin-based finite-element formulations for linear/nonlinear transient heat transfer
  publication-title: Numer. Heat Transf., Part A, Appl.
– volume: 116
  start-page: 889
  year: 2018
  ident: 10.1016/j.jcp.2020.109763_br0360
  article-title: Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.09.081
– year: 2012
  ident: 10.1016/j.jcp.2020.109763_br0410
SSID ssj0008548
Score 2.424849
Snippet •A general purpose methodology is developed to design and generate low to high order accuracy explicit algorithms.•Focus on generating high-order LMS methods...
In this work, the fundamental design procedure, termed as Algorithms by Design, is exploited to establish novel explicit algorithms under the umbrella of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109763
SubjectTerms Accuracy
Algorithms
Computational physics
Control stability
Degrees of freedom
First-order systems
Frequency stability
General explicit algorithms
GS4-1 framework
Improved stability and solution accuracy
LMS algorithms
Nonlinear systems
Runge-Kutta method
Stability analysis
Time integration
Title Design/analysis of GEGS4-1 time integration framework with improved stability and solution accuracy for first-order transient systems
URI https://dx.doi.org/10.1016/j.jcp.2020.109763
https://www.proquest.com/docview/2466367840
Volume 422
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YEJybSJnddYlT4A0QUqdbMcx5FaobbqY-jCxv_mznFAINGBJZIj24p857vPzufPhNyoQKhIpCnLDOdMwKqWKUhLDLxDCK1gSWTlmp6H4WAkHsfBuEI65VkYpFW62F_EdBut3ZumG83mYjLBM74-nqH3fPRZHqEmqBAR3mJw9_5N84gDUURjpCJA7fLPpuV4TTVKVvqFkGPI_8pNv6K0TT29I3LgMCNtF591TCpmdkIOHX6kbnauTsnHvaVjNJUTGqHznPa7_RfBPIp3yNNSGwJsQfOSlUVxK5ZO7OYCdAdo0fJlt1TNoOQ8kyqtN0ultxRALs0ngBmZVe2ka0x2eKiSFqLQqzMy6nVfOwPmrllgmvvBmnnGU0gHT5TRQeLjnDdZprnn5QYesEDLEi9RAKTyOE5DHiVhokWLxyoGaJ6F_JxUZ_OZuSCU6zwyBiX6IOsFeZrmHgIObUSaQK-8RlrlAEvtNMjxKow3WZLNphJsItEmsrBJjdx-NVkUAhy7KovSavKHF0lIELua1UsLSzeFV9IXAMYglYvW5f96vSL7WCq4L3VSXS835hoQzDptWBdtkL32w9Ng-AlpIe9c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRrzxwIRkWsfOa0RQKNCy0EpsluM4UivUVrQMLGz8b-5sBwQSDCyRkthW5DvffXY-fybkRMdSp7IoWGmFYBJmtUxDWmLgHVIaDVMiJ9fUvU_afXn7GD_OkYt6LwzSKkPs9zHdRevwpBF6szEZDHCPb4R76HmEPitSOU8WZRylOAM7e_vieWSx9OEYuQhQvP616UheQ4OalZFXckzEb8npR5h2uedqjawE0EjP_Xetkzk72iCrAUDSMDynm-T90vExGjoojdBxRa9b1w-ScYqHyNNaHAKMQaualkVxLZYO3OoCNAdw0RFmX6kewV1wTaqNeXnW5pUCyqXVAEAjc7KddIbZDndVUq8KPd0i_atW76LNwjkLzIgonjFuuUY-eK6tifMIB70tSyM4ryxcYIZW5jzXgKSqLCsSkeZJbmRTZDoDbF4mYpssjMYju0OoMFVqLWr0QdqLq6KoOCIOY2WRQ6tilzTrDlYmiJDjWRhPqmabDRXYRKFNlLfJLjn9rDLxChx_FZa11dQ3N1KQIf6qdlBbWIUxPFWRBDQGuVw29_7X6jFZave6HdW5ub_bJ8v4xhNhDsjC7PnFHgKcmRVHzl0_APp18PE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2Fanalysis+of+GEGS4-1+time+integration+framework+with+improved+stability+and+solution+accuracy+for+first-order+transient+systems&rft.jtitle=Journal+of+computational+physics&rft.au=Wang%2C+Yazhou&rft.au=Maxam%2C+Dean&rft.au=Tamma%2C+Kumar+K.&rft.au=Qin%2C+Guoliang&rft.date=2020-12-01&rft.issn=0021-9991&rft.volume=422&rft.spage=109763&rft_id=info:doi/10.1016%2Fj.jcp.2020.109763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2020_109763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon