The Northern Cross Fast Radio Burst project IV. Multi-wavelength study of the actively repeating FRB 20220912A
Context. Fast radio bursts (FRBs) are energetic, millisecond-duration radio pulses observed at extragalactic distances and whose origins are still a subject of heated debate. A fraction of the FRB population have shown repeating bursts, however it’s still unclear whether these represent a distinct c...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 690; p. A219 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 1432-0746 |
DOI | 10.1051/0004-6361/202450271 |
Cover
Abstract | Context.
Fast radio bursts (FRBs) are energetic, millisecond-duration radio pulses observed at extragalactic distances and whose origins are still a subject of heated debate. A fraction of the FRB population have shown repeating bursts, however it’s still unclear whether these represent a distinct class of sources.
Aims.
We investigated the bursting behaviour of FRB 20220912A, one of the most active repeating FRBs known thus far. In particular, we focused on its burst energy distribution, linked to the source energetics, and its emission spectrum, with the latter directly related to the underlying emission mechanism.
Methods.
We monitored FRB 20220912A at 408 MHz with the Northern Cross radio telescope and at 1.4 GHz using the 32-m Medicina Grueff radio telescope. Additionally, we conducted 1.2 GHz observations taken with the upgraded Giant Meter Wave Radio Telescope (uGMRT) searching for a persistent radio source coincident with FRB 20220912A, and included high energy observations in the 0.3–10 keV, 0.4–100 MeV and 0.03–30 GeV energy range.
Results.
We report 16 new bursts from FRB 20220912A at 408 MHz during the period between October 16
th
2022 and December 31
st
2023. Their cumulative spectral energy distribution follows a power law with slope
α
E
= −1.3 ± 0.2 and we measured a repetition rate of 0.19 ± 0.03 hr
−1
for bursts having a fluence of ℱ ≥ 17 Jy ms. Furthermore, we report no detections at 1.4 GHz for ℱ ≥ 20 Jy ms. These non-detections imply an upper limit of
β
< −2.3, with
β
being the 408 MHz – 1.4 GHz spectral index of FRB 20220912A. This is inconsistent with positive
β
values found for the only two known cases in which an FRB has been detected in separate spectral bands. We find that FRB 20220912A shows a decline of four orders of magnitude in its bursting activity at 1.4 GHz over a timescale of one year, while remaining active at 408 MHz. The cumulative spectral energy distribution (SED) shows a flattening for spectral energy
E
ν
≥ 10
31
erg Hz
−1
, a feature seen thus far in only two hyperactive repeaters. In particular, we highlight a strong similarity between FRB 20220912A and FRB 20201124A, with respect to both the energy and repetition rate ranges. We also find a radio continuum source with 240 ± 36 μJy flux density at 1.2 GHz, centered on the FRB 20220912A coordinates. Finally, we place an upper limit on the
γ
to radio burst efficiency
η
to be
η
< 1.5 × 10
9
at 99.7% confidence level, in the 0.4–30 MeV energy range.
Conclusions.
The strong similarity between the cumulative energy distributions of FRB 20220912A and FRB 20201124A indicate that bursts from these sources are generated via similar emission mechanisms. Our upper limit on
β
suggests that the spectrum of FRB 20220912A is intrinsically narrow-band. The radio continuum source detected at 1.2 GHz is likely due to a star formation environment surrounding the FRB, given the absence of a source compact on millisecond scales brighter than 48 μJy beam
−1
. Finally, the upper limit on the ratio between the
γ
and radio burst fluence disfavours a giant flare origin for the radio bursts unlike observed for the Galactic magnetar SGR 1806-20. |
---|---|
AbstractList | Context. Fast radio bursts (FRBs) are energetic, millisecond-duration radio pulses observed at extragalactic distances and whose origins are still a subject of heated debate. A fraction of the FRB population have shown repeating bursts, however it's still unclear whether these represent a distinct class of sources. Aims. We investigated the bursting behaviour of FRB 20220912A, one of the most active repeating FRBs known thus far. In particular, we focused on its burst energy distribution, linked to the source energetics, and its emission spectrum, with the latter directly related to the underlying emission mechanism. Methods. We monitored FRB 20220912A at 408 MHz with the Northern Cross radio telescope and at 1.4 GHz using the 32-m Medicina Grueff radio telescope. Additionally, we conducted 1.2 GHz observations taken with the upgraded Giant Meter Wave Radio Telescope (uGMRT) searching for a persistent radio source coincident with FRB 20220912A, and included high energy observations in the 0.310 keV, 0.4100 MeV and 0.0330 GeV energy range. Results. We report 16 new bursts from FRB 20220912A at 408 MHz during the period between October 16th 2022 and December 31st 2023. Their cumulative spectral energy distribution follows a power law with slope αE = 1.3±0.2 and we measured a repetition rate of 0.19±0.03 hr1 for bursts having a fluence of ± 17 Jy ms. Furthermore, we report no detections at 1.4 GHz for ± 20 Jy ms. These non-detections imply an upper limit of β < 2.3, with β being the 408 MHz 1.4 GHz spectral index of FRB 20220912A. This is inconsistent with positive β values found for the only two known cases in which an FRB has been detected in separate spectral bands. We find that FRB 20220912A shows a decline of four orders of magnitude in its bursting activity at 1.4 GHz over a timescale of one year, while remaining active at 408 MHz. The cumulative spectral energy distribution (SED) shows a flattening for spectral energy Eν 1031 erg Hz1, a feature seen thus far in only two hyperactive repeaters. In particular, we highlight a strong similarity between FRB 20220912A and FRB 20201124A, with respect to both the energy and repetition rate ranges. We also find a radio continuum source with 240±36 μJy flux density at 1.2 GHz, centered on the FRB 20220912A coordinates. Finally, we place an upper limit on the γ to radio burst efficiency η to be η < 1.5A-109 at 99.7% confidence level, in the 0.430 MeV energy range. Conclusions. The strong similarity between the cumulative energy distributions of FRB 20220912A and FRB 20201124A indicate that bursts from these sources are generated via similar emission mechanisms. Our upper limit on β suggests that the spectrum of FRB 20220912A is intrinsically narrow-band. The radio continuum source detected at 1.2 GHz is likely due to a star formation environment surrounding the FRB, given the absence of a source compact on millisecond scales brighter than 48 μJy beam1. Finally, the upper limit on the ratio between the γ and radio burst fluence disfavours a giant flare origin for the radio bursts unlike observed for the Galactic magnetar SGR 1806-20. Context. Fast radio bursts (FRBs) are energetic, millisecond-duration radio pulses observed at extragalactic distances and whose origins are still a subject of heated debate. A fraction of the FRB population have shown repeating bursts, however it’s still unclear whether these represent a distinct class of sources. Aims. We investigated the bursting behaviour of FRB 20220912A, one of the most active repeating FRBs known thus far. In particular, we focused on its burst energy distribution, linked to the source energetics, and its emission spectrum, with the latter directly related to the underlying emission mechanism. Methods. We monitored FRB 20220912A at 408 MHz with the Northern Cross radio telescope and at 1.4 GHz using the 32-m Medicina Grueff radio telescope. Additionally, we conducted 1.2 GHz observations taken with the upgraded Giant Meter Wave Radio Telescope (uGMRT) searching for a persistent radio source coincident with FRB 20220912A, and included high energy observations in the 0.3–10 keV, 0.4–100 MeV and 0.03–30 GeV energy range. Results. We report 16 new bursts from FRB 20220912A at 408 MHz during the period between October 16 th 2022 and December 31 st 2023. Their cumulative spectral energy distribution follows a power law with slope α E = −1.3 ± 0.2 and we measured a repetition rate of 0.19 ± 0.03 hr −1 for bursts having a fluence of ℱ ≥ 17 Jy ms. Furthermore, we report no detections at 1.4 GHz for ℱ ≥ 20 Jy ms. These non-detections imply an upper limit of β < −2.3, with β being the 408 MHz – 1.4 GHz spectral index of FRB 20220912A. This is inconsistent with positive β values found for the only two known cases in which an FRB has been detected in separate spectral bands. We find that FRB 20220912A shows a decline of four orders of magnitude in its bursting activity at 1.4 GHz over a timescale of one year, while remaining active at 408 MHz. The cumulative spectral energy distribution (SED) shows a flattening for spectral energy E ν ≥ 10 31 erg Hz −1 , a feature seen thus far in only two hyperactive repeaters. In particular, we highlight a strong similarity between FRB 20220912A and FRB 20201124A, with respect to both the energy and repetition rate ranges. We also find a radio continuum source with 240 ± 36 μJy flux density at 1.2 GHz, centered on the FRB 20220912A coordinates. Finally, we place an upper limit on the γ to radio burst efficiency η to be η < 1.5 × 10 9 at 99.7% confidence level, in the 0.4–30 MeV energy range. Conclusions. The strong similarity between the cumulative energy distributions of FRB 20220912A and FRB 20201124A indicate that bursts from these sources are generated via similar emission mechanisms. Our upper limit on β suggests that the spectrum of FRB 20220912A is intrinsically narrow-band. The radio continuum source detected at 1.2 GHz is likely due to a star formation environment surrounding the FRB, given the absence of a source compact on millisecond scales brighter than 48 μJy beam −1 . Finally, the upper limit on the ratio between the γ and radio burst fluence disfavours a giant flare origin for the radio bursts unlike observed for the Galactic magnetar SGR 1806-20. |
Author | Maccaferri, G. Trudu, M. Maccaferri, A. Verrecchia, F. Perri, M. Bortolotti, C. Dallacasa, D. Esposito, P. Kirsten, F. Bruno, L. Setti, G. Perini, F. Pelliciari, D. Giarratana, S. Giroletti, M. Zanichelli, A. Mattana, A. Geminardi, A. Bianchi, G. Bernardi, G. Casentini, C. Lulli, R. Magro, A. Naldi, G. Pilia, M. Tavani, M. Roma, M. Pupillo, G. Schiaffino, M. |
Author_xml | – sequence: 1 givenname: D. surname: Pelliciari fullname: Pelliciari, D. – sequence: 2 givenname: G. orcidid: 0000-0002-0916-7443 surname: Bernardi fullname: Bernardi, G. – sequence: 3 givenname: M. orcidid: 0000-0001-7397-8091 surname: Pilia fullname: Pilia, M. – sequence: 4 givenname: G. orcidid: 0000-0003-1807-6188 surname: Naldi fullname: Naldi, G. – sequence: 5 givenname: G. orcidid: 0000-0002-1482-708X surname: Maccaferri fullname: Maccaferri, G. – sequence: 6 givenname: F. surname: Verrecchia fullname: Verrecchia, F. – sequence: 7 givenname: C. surname: Casentini fullname: Casentini, C. – sequence: 8 givenname: M. orcidid: 0000-0003-3613-4409 surname: Perri fullname: Perri, M. – sequence: 9 givenname: F. orcidid: 0000-0001-6664-8668 surname: Kirsten fullname: Kirsten, F. – sequence: 10 givenname: G. orcidid: 0000-0002-9832-9036 surname: Bianchi fullname: Bianchi, G. – sequence: 11 givenname: C. surname: Bortolotti fullname: Bortolotti, C. – sequence: 12 givenname: L. orcidid: 0000-0003-1217-6807 surname: Bruno fullname: Bruno, L. – sequence: 13 givenname: D. surname: Dallacasa fullname: Dallacasa, D. – sequence: 14 givenname: P. orcidid: 0000-0003-4849-5092 surname: Esposito fullname: Esposito, P. – sequence: 15 givenname: A. orcidid: 0009-0002-3410-8709 surname: Geminardi fullname: Geminardi, A. – sequence: 16 givenname: S. orcidid: 0000-0002-2815-7291 surname: Giarratana fullname: Giarratana, S. – sequence: 17 givenname: M. orcidid: 0000-0002-8657-8852 surname: Giroletti fullname: Giroletti, M. – sequence: 18 givenname: R. orcidid: 0000-0003-1384-2437 surname: Lulli fullname: Lulli, R. – sequence: 19 givenname: A. orcidid: 0000-0001-7231-4007 surname: Maccaferri fullname: Maccaferri, A. – sequence: 20 givenname: A. surname: Magro fullname: Magro, A. – sequence: 21 givenname: A. orcidid: 0000-0002-0496-0098 surname: Mattana fullname: Mattana, A. – sequence: 22 givenname: F. orcidid: 0000-0002-8935-8142 surname: Perini fullname: Perini, F. – sequence: 23 givenname: G. orcidid: 0000-0003-2172-1336 surname: Pupillo fullname: Pupillo, G. – sequence: 24 givenname: M. orcidid: 0000-0003-4142-3897 surname: Roma fullname: Roma, M. – sequence: 25 givenname: M. surname: Schiaffino fullname: Schiaffino, M. – sequence: 26 givenname: G. surname: Setti fullname: Setti, G. – sequence: 27 givenname: M. surname: Tavani fullname: Tavani, M. – sequence: 28 givenname: M. surname: Trudu fullname: Trudu, M. – sequence: 29 givenname: A. orcidid: 0000-0002-2893-023X surname: Zanichelli fullname: Zanichelli, A. |
BackLink | https://research.chalmers.se/publication/543588$$DView record from Swedish Publication Index |
BookMark | eNp9kE1Lw0AQhhepYFv9BV5yl-ju7Ed2j1qsCkVB63nZ7E5ISpuU3RTx35tQ6cGDp5mB931gnhmZtF2LhFwzesuoZHeUUpErrtgdUBCSQsHOyJQJDjkthJqQ6SlxQWYpbYYTmOZTcrOuMXvtYl9jbLNF7FLKli712bsLTZc9HOKw72O3Qd9fkvPKbRNe_c45-Vw-rhfP-ert6WVxv8o9B9nnTCqltZHSFJURUEkwoD0zUEAQpcTSGV1xqpWuBDLtjXEIKINCJwOKwOfk48hNX7g_lHYfm52L37ZzjY2Y0EVfW1-77Q5jsgmtKYqAFQNbMGOs0BhsCaWy3AgRqOBUgByo_Ej145MRqxOXUTtatKMjOzqyJ4tDy_xp-aZ3fdO1fXTN9t_uD6eLdc0 |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad98f8 crossref_primary_10_1093_mnras_stae2296 |
Cites_doi | 10.1051/0004-6361/202039771 10.1051/0004-6361/202346307 10.1111/j.1365-2966.2008.13794.x 10.3847/1538-4357/aced0b 10.1051/0004-6361/202245303 10.1051/0004-6361/201525830 10.3847/1538-4357/ad03e8 10.1038/nature20797 10.1051/0004-6361/200810527 10.3847/2041-8213/ab86b1 10.3847/2041-8213/ad083f 10.3847/1538-4357/ac332f 10.3847/1538-4357/ac49e1 10.3847/2041-8213/834/2/L8 10.1093/mnras/stac251 10.1093/mnras/stac1960 10.1093/mnras/stae632 10.1093/mnras/sty2083 10.3847/2041-8213/abd634 10.1086/587054 10.3847/2041-8213/ab9742 10.1007/s00159-017-0102-9 10.3847/2041-8213/acc4b6 10.1093/mnrasl/slab117 10.3847/2041-8213/ab96bf 10.3390/universe9070330 10.3847/1538-4365/abb82d 10.1017/pasa.2023.51 10.1038/s41586-022-05071-8 10.1126/sciadv.adf6198 10.3847/1538-4357/ace5aa 10.1093/mnras/stad2847 10.1103/RevModPhys.95.035005 10.1093/mnras/staa2450 10.3847/1538-4357/ab83eb 10.3847/2041-8213/aba2cf 10.1088/1674-4527/ac98f8 10.3847/1538-4357/ac33ac 10.1051/0004-6361/201118023 10.1093/mnras/staa1856 10.1051/0004-6361/202141903 10.1088/1674-4527/ac98f7 10.1086/422091 10.3847/1538-4357/aa9700 10.3847/1538-4357/abca95 10.1093/mnras/staa813 10.1093/mnras/stac3446 10.1093/mnras/stad269 10.1051/0004-6361/201629178 10.1126/science.abo6526 10.3847/1538-4357/aad005 10.3847/2041-8213/ab13ae 10.1038/s41550-019-0831-y 10.1093/mnras/stad3630 10.1038/s41550-023-02153-z 10.1038/s41586-021-03724-8 10.3847/1538-4357/ab97b5 10.3847/2041-8213/ab8f99 10.1093/mnras/staa3223 10.3847/1538-4357/acaf06 10.1088/0067-0049/204/2/19 10.3847/1538-4365/ac33ab 10.1038/s41586-021-03878-5 10.3847/2041-8213/ab0e7a 10.1038/s41550-020-01246-3 10.3847/0004-637X/826/2/223 10.1086/342285 10.1038/s41586-022-04755-5 10.1007/s00159-022-00139-w 10.1086/186413 10.1038/nature25149 10.3847/1538-4365/ac6fd9 10.3847/1538-4357/ac4bc7 10.1093/mnras/staa3436 10.3847/0004-637X/827/1/59 10.3847/1538-4357/acc6c1 10.1007/s11214-005-5097-2 10.1093/mnras/stac2524 10.1093/mnras/275.2.255 10.1038/s41586-020-2872-x 10.1111/j.1365-2966.2012.20622.x 10.1126/science.abj3043 10.1038/s41550-020-01276-x 10.1038/s41586-020-2863-y 10.3847/1538-4357/acf221 10.3847/2041-8213/ab1f8a 10.1093/mnras/stac1031 10.1051/0004-6361/201833875 10.3847/2041-8213/aaedad |
ContentType | Journal Article |
DBID | AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1051/0004-6361/202450271 |
DatabaseName | CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_research_chalmers_se_977def12_7199_48ed_b2b6_3944d0430425 10_1051_0004_6361_202450271 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 ABBSD ADTPV AOWAS D8T F1S ZZAVC |
ID | FETCH-LOGICAL-c325t-15668895597f942f52928c19272d4b5eba98f30868f4e18c99ae2e5d6ea5de4d3 |
ISSN | 0004-6361 1432-0746 |
IngestDate | Thu Aug 21 06:36:38 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Wed Oct 01 04:32:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-15668895597f942f52928c19272d4b5eba98f30868f4e18c99ae2e5d6ea5de4d3 |
ORCID | 0000-0001-6664-8668 0000-0003-1384-2437 0000-0003-1217-6807 0000-0001-7397-8091 0000-0002-0496-0098 0000-0003-3613-4409 0000-0003-4849-5092 0009-0002-3410-8709 0000-0002-1482-708X 0000-0002-2893-023X 0000-0003-2172-1336 0000-0002-9832-9036 0000-0003-1807-6188 0000-0002-8935-8142 0000-0002-0916-7443 0000-0003-4142-3897 0000-0002-2815-7291 0000-0002-8657-8852 0000-0001-7231-4007 |
OpenAccessLink | https://research.chalmers.se/publication/543588 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_977def12_7199_48ed_b2b6_3944d0430425 crossref_primary_10_1051_0004_6361_202450271 crossref_citationtrail_10_1051_0004_6361_202450271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2024 |
References | Resmi (R83) 2021; 655 Macquart (R59) 2018; 480 Zhang (R105) 2023; 955 Beloborodov (R5) 2020; 896 Nimmo (R68) 2023; 520 Sridhar (R89) 2024; 960 Andersen (R19) 2023; 947 R24 Bochenek (R8) 2021; 907 R28 Ravi (R81) 2019; 3 Pelliciari (R73) 2023; 674 Chatterjee (R13) 2017; 541 Chawla (R15) 2022; 927 Sand (R85) 2023; 956 Piro (R76) 2021; 656 Marcote (R61) 2022; 2021 Ransom (R80) 2002; 124 Niu (R69) 2022; 606 Israel (R37) 2021; 907 Lu (R56) 2020; 498 Burrows (R11) 2005; 120 Anna-Thomas (R2) 2023; 380 Duncan (R22) 1992; 392 Jahns (R38) 2023; 519 Marthi (R63) 2022; 509 R103 Zhu (R107) 2023; 9 Flewelling (R25) 2020; 251 Ben Bekhti (R35) 2016; 594 Gajjar (R26) 2018; 863 Tavani (R92) 2021; 5 Hewitt (R34) 2024; 529 R43 Mereghetti (R66) 2020; 898 Houben (R36) 2019; 623 R44 James (R40) 2020; 895 Tavani (R91) 2020; 893 Sobacchi (R88) 2022; 511 Pleunis (R78) 2021; 923 Pastor-Marazuela (R71) 2021; 596 R54 R53 Dai (R21) 2019; 874 R55 R58 Kirsten (R45) 2021; 5 Bulgarelli (R9) 2012; 540 Xu (R100) 2022; 609 Camilo (R12) 2008; 679 Kumar (R47) 2021; 500 Sheikh (R86) 2024; 527 Amiri (R16) 2022; 261 Lazaridis (R50) 2008; 390 Thompson (R94) 1995; 275 Kirsten (R46) 2024; 8 Esposito (R23) 2020; 896 Law (R49) 2017; 850 R64 Bochenek (R7) 2020; 587 Hessels (R31) 2019; 876 Hewitt (R32) 2022; 515 Michilli (R67) 2018; 553 Lanman (R48) 2022; 927 Tavani (R90) 2009; 502 James (R41) 2022; 510 James (R39) 2023; 40 R72 Ravi (R82) 2023; 949 Cruces (R20) 2021; 500 Locatelli (R52) 2020; 494 Perley (R74) 2013; 204 R79 Shin (R87) 2023; 944 Chawla (R14) 2020; 896 Trudu (R95) 2022; 513 Zhang (R102) 2023; 95 Agarwal (R1) 2020; 497 Margalit (R62) 2018; 868 Burke-Spolaor (R10) 2016; 826 Ursi (R98) 2022; 924 R84 James (R42) 2022; 516 Planck Collaboration XIII. (R77) 2016; 594 Amiri (R18) 2021; 257 Tuccari (R97) 2003; 306 Lyubarsky (R57) 2020; 897 Gehrels (R27) 2004; 611 Marcote (R60) 2017; 834 Trudu (R96) 2023; 676 Barsdell (R4) 2012; 422 Li (R51) 2021; 598 Tendulkar (R93) 2016; 827 Hewitt (R33) 2023; 526 Gordon (R29) 2023; 954 Bailes (R3) 2022; 378 Bhandari (R6) 2023; 958 Padovani (R70) 2017; 25 Zhou (R106) 2022; 22 R99 Zhang (R104) 2022; 22 Andersen (R17) 2020; 587 Gourdji (R30) 2019; 877 Petroff (R75) 2022; 30 Xu (R101) 2023; 9 McMullin (R65) 2007; 376 |
References_xml | – volume: 376 start-page: 127 year: 2007 ident: R65 publication-title: ASP Conf. Ser. – volume: 655 start-page: A102 year: 2021 ident: R83 publication-title: A&A doi: 10.1051/0004-6361/202039771 – volume: 674 start-page: A223 year: 2023 ident: R73 publication-title: A&A doi: 10.1051/0004-6361/202346307 – volume: 390 start-page: 839 year: 2008 ident: R50 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13794.x – volume: 955 start-page: 142 year: 2023 ident: R105 publication-title: ApJ doi: 10.3847/1538-4357/aced0b – ident: R79 – volume: 676 start-page: A17 year: 2023 ident: R96 publication-title: A&A doi: 10.1051/0004-6361/202245303 – volume: 594 start-page: A13 year: 2016 ident: R77 publication-title: A&A doi: 10.1051/0004-6361/201525830 – volume: 960 start-page: 74 year: 2024 ident: R89 publication-title: ApJ doi: 10.3847/1538-4357/ad03e8 – volume: 541 start-page: 58 year: 2017 ident: R13 publication-title: Nature doi: 10.1038/nature20797 – volume: 502 start-page: 995 year: 2009 ident: R90 publication-title: A&A doi: 10.1051/0004-6361/200810527 – volume: 893 start-page: L42 year: 2020 ident: R91 publication-title: ApJ doi: 10.3847/2041-8213/ab86b1 – volume: 958 start-page: L19 year: 2023 ident: R6 publication-title: ApJ doi: 10.3847/2041-8213/ad083f – volume: 924 start-page: 80 year: 2022 ident: R98 publication-title: ApJ doi: 10.3847/1538-4357/ac332f – volume: 927 start-page: 35 year: 2022 ident: R15 publication-title: ApJ doi: 10.3847/1538-4357/ac49e1 – volume: 834 start-page: L8 year: 2017 ident: R60 publication-title: ApJ doi: 10.3847/2041-8213/834/2/L8 – volume: 511 start-page: 4766 year: 2022 ident: R88 publication-title: MNRAS doi: 10.1093/mnras/stac251 – ident: R99 – volume: 515 start-page: 3577 year: 2022 ident: R32 publication-title: MNRAS doi: 10.1093/mnras/stac1960 – ident: R53 – volume: 529 start-page: 1814 year: 2024 ident: R34 publication-title: MNRAS doi: 10.1093/mnras/stae632 – volume: 480 start-page: 4211 year: 2018 ident: R59 publication-title: MNRAS doi: 10.1093/mnras/sty2083 – volume: 907 start-page: L31 year: 2021 ident: R8 publication-title: ApJ doi: 10.3847/2041-8213/abd634 – volume: 509 start-page: 2209 year: 2022 ident: R63 publication-title: MNRAS – volume: 679 start-page: 681 year: 2008 ident: R12 publication-title: ApJ doi: 10.1086/587054 – ident: R28 – volume: 896 start-page: L30 year: 2020 ident: R23 publication-title: ApJ doi: 10.3847/2041-8213/ab9742 – volume: 25 start-page: 2 year: 2017 ident: R70 publication-title: A&ARv. doi: 10.1007/s00159-017-0102-9 – volume: 949 start-page: L3 year: 2023 ident: R82 publication-title: ApJ doi: 10.3847/2041-8213/acc4b6 – volume: 510 start-page: L18 year: 2022 ident: R41 publication-title: MNRAS doi: 10.1093/mnrasl/slab117 – volume: 2021 start-page: 35 year: 2022 ident: R61 publication-title: Eur. VLBI Network Mini-Symp. Users’ Meet. – volume: 896 start-page: L41 year: 2020 ident: R14 publication-title: ApJ doi: 10.3847/2041-8213/ab96bf – volume: 9 start-page: 330 year: 2023 ident: R101 publication-title: Universe doi: 10.3390/universe9070330 – ident: R54 – volume: 251 start-page: 7 year: 2020 ident: R25 publication-title: ApJS doi: 10.3847/1538-4365/abb82d – volume: 40 start-page: e057 year: 2023 ident: R39 publication-title: PASA doi: 10.1017/pasa.2023.51 – volume: 609 start-page: 685 year: 2022 ident: R100 publication-title: Nature doi: 10.1038/s41586-022-05071-8 – volume: 9 start-page: eadf6198 year: 2023 ident: R107 publication-title: Sci. Adv. doi: 10.1126/sciadv.adf6198 – volume: 954 start-page: 80 year: 2023 ident: R29 publication-title: ApJ doi: 10.3847/1538-4357/ace5aa – volume: 526 start-page: 2039 year: 2023 ident: R33 publication-title: MNRAS doi: 10.1093/mnras/stad2847 – volume: 95 start-page: 035005 year: 2023 ident: R102 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.95.035005 – volume: 306 start-page: 177 year: 2003 ident: R97 publication-title: ASP Conf. Ser. – volume: 498 start-page: 1397 year: 2020 ident: R56 publication-title: MNRAS doi: 10.1093/mnras/staa2450 – volume: 896 start-page: 142 year: 2020 ident: R5 publication-title: ApJ doi: 10.3847/1538-4357/ab83eb – volume: 898 start-page: L29 year: 2020 ident: R66 publication-title: ApJ doi: 10.3847/2041-8213/aba2cf – volume: 22 start-page: 124001 year: 2022 ident: R106 publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/ac98f8 – volume: 923 start-page: 1 year: 2021 ident: R78 publication-title: ApJ doi: 10.3847/1538-4357/ac33ac – volume: 540 start-page: A79 year: 2012 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201118023 – ident: R103 – volume: 497 start-page: 1661 year: 2020 ident: R1 publication-title: MNRAS doi: 10.1093/mnras/staa1856 – volume: 656 start-page: L15 year: 2021 ident: R76 publication-title: A&A doi: 10.1051/0004-6361/202141903 – ident: R84 – volume: 22 start-page: 124002 year: 2022 ident: R104 publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/ac98f7 – volume: 611 start-page: 1005 year: 2004 ident: R27 publication-title: ApJ doi: 10.1086/422091 – volume: 850 start-page: 76 year: 2017 ident: R49 publication-title: ApJ doi: 10.3847/1538-4357/aa9700 – volume: 907 start-page: 7 year: 2021 ident: R37 publication-title: ApJ doi: 10.3847/1538-4357/abca95 – volume: 494 start-page: 1229 year: 2020 ident: R52 publication-title: MNRAS doi: 10.1093/mnras/staa813 – volume: 519 start-page: 666 year: 2023 ident: R38 publication-title: MNRAS doi: 10.1093/mnras/stac3446 – volume: 520 start-page: 2281 year: 2023 ident: R68 publication-title: MNRAS doi: 10.1093/mnras/stad269 – volume: 594 start-page: A116 year: 2016 ident: R35 publication-title: A&A doi: 10.1051/0004-6361/201629178 – volume: 380 start-page: 599 year: 2023 ident: R2 publication-title: Science doi: 10.1126/science.abo6526 – volume: 863 start-page: 2 year: 2018 ident: R26 publication-title: ApJ doi: 10.3847/1538-4357/aad005 – volume: 876 start-page: L23 year: 2019 ident: R31 publication-title: ApJ doi: 10.3847/2041-8213/ab13ae – volume: 3 start-page: 928 year: 2019 ident: R81 publication-title: Nat. Astron. doi: 10.1038/s41550-019-0831-y – ident: R64 – volume: 527 start-page: 10425D year: 2024 ident: R86 publication-title: MNRAS doi: 10.1093/mnras/stad3630 – volume: 8 start-page: 1 year: 2024 ident: R46 publication-title: Nat. Astron. doi: 10.1038/s41550-023-02153-z – volume: 596 start-page: 505 year: 2021 ident: R71 publication-title: Nature doi: 10.1038/s41586-021-03724-8 – volume: 897 start-page: 1 year: 2020 ident: R57 publication-title: ApJ doi: 10.3847/1538-4357/ab97b5 – volume: 895 start-page: L22 year: 2020 ident: R40 publication-title: ApJ doi: 10.3847/2041-8213/ab8f99 – volume: 500 start-page: 448 year: 2021 ident: R20 publication-title: MNRAS doi: 10.1093/mnras/staa3223 – ident: R43 – volume: 944 start-page: 105 year: 2023 ident: R87 publication-title: ApJ doi: 10.3847/1538-4357/acaf06 – volume: 204 start-page: 19 year: 2013 ident: R74 publication-title: ApJS doi: 10.1088/0067-0049/204/2/19 – volume: 257 start-page: 59 year: 2021 ident: R18 publication-title: ApJS doi: 10.3847/1538-4365/ac33ab – volume: 598 start-page: 267 year: 2021 ident: R51 publication-title: Nature doi: 10.1038/s41586-021-03878-5 – volume: 874 start-page: L14 year: 2019 ident: R21 publication-title: ApJ doi: 10.3847/2041-8213/ab0e7a – volume: 5 start-page: 414 year: 2021 ident: R45 publication-title: Nat. Astron. doi: 10.1038/s41550-020-01246-3 – volume: 826 start-page: 223 year: 2016 ident: R10 publication-title: ApJ doi: 10.3847/0004-637X/826/2/223 – volume: 124 start-page: 1788 year: 2002 ident: R80 publication-title: AJ doi: 10.1086/342285 – volume: 606 start-page: 873 year: 2022 ident: R69 publication-title: Nature doi: 10.1038/s41586-022-04755-5 – volume: 30 start-page: 2 year: 2022 ident: R75 publication-title: A&ARv. doi: 10.1007/s00159-022-00139-w – ident: R44 – volume: 392 start-page: L9 year: 1992 ident: R22 publication-title: ApJ doi: 10.1086/186413 – volume: 553 start-page: 182 year: 2018 ident: R67 publication-title: Nature doi: 10.1038/nature25149 – volume: 261 start-page: 29 year: 2022 ident: R16 publication-title: ApJS doi: 10.3847/1538-4365/ac6fd9 – volume: 927 start-page: 59 year: 2022 ident: R48 publication-title: ApJ doi: 10.3847/1538-4357/ac4bc7 – volume: 500 start-page: 2525 year: 2021 ident: R47 publication-title: MNRAS doi: 10.1093/mnras/staa3436 – ident: R58 – volume: 827 start-page: 59 year: 2016 ident: R93 publication-title: ApJ doi: 10.3847/0004-637X/827/1/59 – volume: 947 start-page: 83 year: 2023 ident: R19 publication-title: ApJ doi: 10.3847/1538-4357/acc6c1 – volume: 120 start-page: 165 year: 2005 ident: R11 publication-title: Space Sci. Rev. doi: 10.1007/s11214-005-5097-2 – volume: 516 start-page: 4862 year: 2022 ident: R42 publication-title: MNRAS doi: 10.1093/mnras/stac2524 – ident: R24 – volume: 275 start-page: 255 year: 1995 ident: R94 publication-title: MNRAS doi: 10.1093/mnras/275.2.255 – volume: 587 start-page: 59 year: 2020 ident: R7 publication-title: Nature doi: 10.1038/s41586-020-2872-x – volume: 422 start-page: 379 year: 2012 ident: R4 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20622.x – volume: 378 start-page: abj3043 year: 2022 ident: R3 publication-title: Science doi: 10.1126/science.abj3043 – volume: 5 start-page: 401 year: 2021 ident: R92 publication-title: Nat. Astron. doi: 10.1038/s41550-020-01276-x – volume: 587 start-page: 54 year: 2020 ident: R17 publication-title: Nature doi: 10.1038/s41586-020-2863-y – ident: R55 – ident: R72 – volume: 956 start-page: 23 year: 2023 ident: R85 publication-title: ApJ doi: 10.3847/1538-4357/acf221 – volume: 877 start-page: L19 year: 2019 ident: R30 publication-title: ApJ doi: 10.3847/2041-8213/ab1f8a – volume: 513 start-page: 1858 year: 2022 ident: R95 publication-title: MNRAS doi: 10.1093/mnras/stac1031 – volume: 623 start-page: A42 year: 2019 ident: R36 publication-title: A&A doi: 10.1051/0004-6361/201833875 – volume: 868 start-page: L4 year: 2018 ident: R62 publication-title: ApJ doi: 10.3847/2041-8213/aaedad |
SSID | ssj0002183 |
Score | 2.4950883 |
Snippet | Context.
Fast radio bursts (FRBs) are energetic, millisecond-duration radio pulses observed at extragalactic distances and whose origins are still a subject of... Context. Fast radio bursts (FRBs) are energetic, millisecond-duration radio pulses observed at extragalactic distances and whose origins are still a subject of... |
SourceID | swepub crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | A219 |
SubjectTerms | Methods: data analysis Methods: observational Radio continuum: galaxies Stars: magnetars |
Subtitle | IV. Multi-wavelength study of the actively repeating FRB 20220912A |
Title | The Northern Cross Fast Radio Burst project |
URI | https://research.chalmers.se/publication/543588 |
Volume | 690 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1432-0746 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002183 issn: 0004-6361 databaseCode: GI~ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbKEBIvCAZoY4D8gHgJ6RrHSR3euomyITZV04b2ZtmOs03qUkRTTfDA386dnbgtIMSvlyh1bSvqfb3cne--I-SFUWZocpPFaqDTGAnvYrAyRGy5EelgoAqrscD56Dg_OOPvzrPzXm81a2nR6L758tO6kr-RKoyBXLFK9g8kGzaFAbgH-cIVJAzX35axO3jBdmb7-L6LxmreRCeqvJpFewuw7KI21IKe_-GHfuQKbuMbhf0m6gtMT-9YpdECVU77TT_jUQIak_VFND7ZixgWyhYJG62asqM5RtFn157ASeEnHyZxcVxPo7USZ5gg8ycAoa1s74c4AAYkAaUuQB9GJ1dtFu9RGDpW07VZbaiC8ZD0tlS_PM5Tz77eqd_ctwv9QZWDtvC5j34JVq7gMTG40cny3bXGkt3SI11Kc-l6z8zl3EpAXmmrhMlhUhSSC1tKzXQusSC4RMIzUFq3yG02zDn67m8Pv4YXOVqP3nvyj-AK1VJM1uV5R2CVJbvh-93wgGtGzhoFrTNbTu-Te62_QUcePA9Iz9abZCvIjr6koxXJbZI7E3_3kMwAXbRDF3Xooogu6tBFHbpoi67XFLBFv8cWddiis4rCHrTDFg3YooAtGrD1iJyN35zuH8Rte47YpCxrYvT8hXAMhlXBWZWxggkDHsOQlVxnVqtCVCm4zKLiNhGmKJRlNitzq7LS8jJ9TDbqWW23CDU2saLUZaWTgqcW1gwzWC24qozJc71NWPd7StNy12MLlal0ORRZgjkUXKIQZBDCNnkVFn301C2_nv7eCypM_idMPfm_2-2Qu8t_1FOy0Xxa2GdgDjf6uQPtN2-wq2g |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Northern+Cross+Fast+Radio+Burst+project%3A+IV.+Multi-wavelength+study+of+the+actively+repeating+FRB+20220912A&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Pelliciari%2C+D.&rft.au=Bernardi%2C+G.&rft.au=Pilia%2C+M.&rft.au=Naldi%2C+G.&rft.date=2024-10-01&rft.issn=0004-6361&rft.volume=690&rft_id=info:doi/10.1051%2F0004-6361%2F202450271&rft.externalDocID=oai_research_chalmers_se_977def12_7199_48ed_b2b6_3944d0430425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |