Differentiation between COVID‐19 and bacterial pneumonia using radiomics of chest computed tomography and clinical features
To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all patients were randomly divided into a training group (n = 245) and a validation group (n = 105). The whole lung lesion on chest computed tomograph...
Saved in:
| Published in | International journal of imaging systems and technology Vol. 31; no. 1; pp. 47 - 58 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2021
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0899-9457 1098-1098 |
| DOI | 10.1002/ima.22538 |
Cover
| Abstract | To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all patients were randomly divided into a training group (n = 245) and a validation group (n = 105). The whole lung lesion on chest computed tomography (CT) was drawn as the region of interest (ROI) for each patient. Both feature selection and model construction were first performed in the training set and then further tested in the validation set with the same thresholds. Additional tests were conducted on an external multicentre cohort with 105 subjects. The diagnostic model of LightGBM showed the best performance, achieving a sensitivity of 0.941, specificity of 0.981, accuracy of 0.962 on the validation dataset. In this study, we established a differential model to distinguish between COVID‐19 and bacterial pneumonia based on chest CT radiomics and clinical indexes. |
|---|---|
| AbstractList | To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all patients were randomly divided into a training group (n = 245) and a validation group (n = 105). The whole lung lesion on chest computed tomography (CT) was drawn as the region of interest (ROI) for each patient. Both feature selection and model construction were first performed in the training set and then further tested in the validation set with the same thresholds. Additional tests were conducted on an external multicentre cohort with 105 subjects. The diagnostic model of LightGBM showed the best performance, achieving a sensitivity of 0.941, specificity of 0.981, accuracy of 0.962 on the validation dataset. In this study, we established a differential model to distinguish between COVID‐19 and bacterial pneumonia based on chest CT radiomics and clinical indexes. |
| Author | Li, Chuanming Lin, Liping Wang, Wenjing Wang, Shike Liu, Xinghua Wei, Ying Shi, Feng Yang, Qingning He, Yichu Guo, Yi Zeng, Ping Feng, Junbang Liu, Jun |
| Author_xml | – sequence: 1 givenname: Junbang surname: Feng fullname: Feng, Junbang organization: The Second Affiliated Hospital of Chongqing Medical University – sequence: 2 givenname: Yi surname: Guo fullname: Guo, Yi organization: Chongqing Emergency Medical Center – sequence: 3 givenname: Shike surname: Wang fullname: Wang, Shike organization: The Second Affiliated Hospital of Chongqing Medical University – sequence: 4 givenname: Feng surname: Shi fullname: Shi, Feng organization: Shanghai United Imaging Intelligence Co., Ltd – sequence: 5 givenname: Ying surname: Wei fullname: Wei, Ying organization: Shanghai United Imaging Intelligence Co., Ltd – sequence: 6 givenname: Yichu surname: He fullname: He, Yichu organization: Shanghai United Imaging Intelligence Co., Ltd – sequence: 7 givenname: Ping surname: Zeng fullname: Zeng, Ping organization: Chongqing Emergency Medical Center – sequence: 8 givenname: Jun surname: Liu fullname: Liu, Jun organization: Chongqing Emergency Medical Center – sequence: 9 givenname: Wenjing surname: Wang fullname: Wang, Wenjing organization: Chongqing Emergency Medical Center – sequence: 10 givenname: Liping surname: Lin fullname: Lin, Liping organization: The Second People's Hospital of Neijiang – sequence: 11 givenname: Qingning surname: Yang fullname: Yang, Qingning organization: Chongqing Emergency Medical Center – sequence: 12 givenname: Chuanming orcidid: 0000-0002-4006-9411 surname: Li fullname: Li, Chuanming email: lichuanming@hospital.cqmu.edu.cn organization: The Second Affiliated Hospital of Chongqing Medical University – sequence: 13 givenname: Xinghua surname: Liu fullname: Liu, Xinghua email: paulliuxh@163.com organization: Chongqing Three Gorges Central Hospital |
| BookMark | eNp1kE1u2zAQhYnCAer8LHoDAl11oZikRJtcBnZ_DCTIJslWGFKjhIFEqiSFwIsAPULP2JNUtrMqms3M4n3vzeCdkpkPHgn5xNklZ0wsXA-XQshSfSBzzrQq9mNG5kxpXehKrj6S05SeGeNcMjknrxvXthjRZwfZBU8N5hdET9e3D9vNn1-_uabgG2rAZowOOjp4HPvgHdAxOf9IIzQu9M4mGlpqnzBlakM_jBkbmkMfHiMMT7tDiO2cd3bKaBHyGDGdk5MWuoQXb_uM3H_7erf-UVzfft-ur64LWwqpCtuUQq2aii-xWRoD0JiVgaUqJasUWIPIASshhIGyNHYlja60mVRlVMU5L8_I52PuEMPPcXqxfg5j9NPJWlRqKaXWFZuoxZGyMaQUsa2ty4dWcgTX1ZzV-47rqeP60PHk-PKPY4iTGnf_Zd_SX1yHu_fBentzdXT8BeWgkFA |
| CitedBy_id | crossref_primary_10_3390_app11125410 crossref_primary_10_1002_ima_22706 crossref_primary_10_1186_s13244_023_01423_8 crossref_primary_10_7717_peerj_17556 |
| Cites_doi | 10.1152/physiolgenomics.00029.2020 10.2214/AJR.20.22961 10.2214/AJR.20.23034 10.1016/j.ejca.2011.11.036 10.1186/s40249-020-00646-x 10.1148/radiol.2020200823 10.1148/radiol.2020200642 10.1016/j.jinf.2020.04.011 10.1007/s12630-020-01620-9 10.1155/2019/3761203 10.1016/j.neunet.2020.03.007 10.1016/S0140-6736(20)30183-5 10.1016/j.ejrad.2004.03.010 10.1002/cyto.a.20810 10.1109/LSP.2014.2337313 10.7326/M20-0504 10.1159/000495068 10.1097/RTI.0000000000000347 10.1016/j.neunet.2017.11.006 10.1001/jama.2020.12603 10.1001/jama.2016.20441 10.1007/s00330-020-06731-x 10.7150/thno.45016 10.1182/blood.2020007214 10.1056/NEJMoa2001316 10.1109/TPAMI.2014.2362751 10.1093/infdis/jiaa150 10.1158/0008-5472.CAN-17-0339 10.1515/cclm-2020-0398 10.1183/13993003.00775-2020 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC. 2021 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC. – notice: 2021 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ima.22538 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1098-1098 |
| EndPage | 58 |
| ExternalDocumentID | 10_1002_ima_22538 IMA22538 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31771619 – fundername: Research on Artificial Intelligence Diagnosis Model for Patients with Negative Nucleic Acid Test and Positive Lung CT funderid: X2813 – fundername: The clinical research project for novel coronavirus pneumonia from Chongqing Medical University funderid: 30 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION |
| ID | FETCH-LOGICAL-c3258-cd3287d416ed6bbaadb7ba6835048acbee1ae4222ba33bc75b949b3508b841113 |
| IEDL.DBID | DR2 |
| ISSN | 0899-9457 |
| IngestDate | Fri Jul 25 08:28:41 EDT 2025 Wed Oct 01 02:12:04 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Wed Jan 22 16:31:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3258-cd3287d416ed6bbaadb7ba6835048acbee1ae4222ba33bc75b949b3508b841113 |
| Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 31771619; Research on Artificial Intelligence Diagnosis Model for Patients with Negative Nucleic Acid Test and Positive Lung CT, Grant/Award Number: X2813; The clinical research project for novel coronavirus pneumonia from Chongqing Medical University, Grant/Award Number: 30 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4006-9411 |
| PQID | 2486559940 |
| PQPubID | 1026352 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2486559940 crossref_citationtrail_10_1002_ima_22538 crossref_primary_10_1002_ima_22538 wiley_primary_10_1002_ima_22538_IMA22538 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2021 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York |
| PublicationTitle | International journal of imaging systems and technology |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2017; 317 2010; 77 2015; 37 2019; 2019 2019; 97 2020; 382 2020; 81 2020; 126 2020; 324 2020; 58 2020; 221 2020; 56 2020; 10 2014; 21 2004; 51 2020; 30 2020; 52 2020; 395 2020; 296 2017; 77 2020; 172 2020; 9 2020; 215 2020; 67 2012; 48 2020; 136 2018; 33 2018; 98 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 Zeder M (e_1_2_11_16_1) 2010; 77 e_1_2_11_15_1 e_1_2_11_19_1 |
| References_xml | – volume: 67 start-page: 732 issue: 6 year: 2020 end-page: 745 article-title: Preparing for a COVID‐19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Se préparer pour la pandémie de COVID‐19: revue des moyens déployés dans un bloc opératoire d'un grand hôpital tertiaire au Singapour publication-title: Can J Anaesth – volume: 296 start-page: E32 issue: 2 year: 2020 end-page: E40 article-title: Correlation of chest CT and RT‐PCR testing for coronavirus disease 2019 (COVID‐19) in China: a report of 1014 cases publication-title: Radiology – volume: 30 start-page: 3306 issue: 6 year: 2020 end-page: 3309 article-title: Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019‐nCoV): a study of 63 patients in Wuhan, China publication-title: Eur Radiol – volume: 9 issue: 1 year: 2020 article-title: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID‐19) during the early outbreak period: a scoping review publication-title: Infect Dis Poverty – volume: 221 start-page: 1762 issue: 11 year: 2020 end-page: 1769 article-title: Characteristics of peripheral lymphocyte subset alteration in COVID‐19 pneumonia publication-title: J Infect Dis – volume: 52 start-page: 200 issue: 4 year: 2020 end-page: 202 article-title: Artificial intelligence and machine learning to fight COVID‐19 publication-title: Physiol Genomics – volume: 215 start-page: 87 issue: 1 year: 2020 end-page: 93 article-title: Coronavirus disease 2019 (COVID‐19): a systematic review of imaging findings in 919 patients publication-title: Am J Roentgenol – volume: 77 start-page: 76 issue: 1 year: 2010 end-page: 85 article-title: Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria publication-title: Cytometry A – volume: 81 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Current epidemiological and clinical features of COVID‐19; a global perspective from China publication-title: J Infect – volume: 58 start-page: 1095 issue: 7 year: 2020 end-page: 1099 article-title: Routine blood tests as a potential diagnostic tool for COVID‐19 publication-title: Clin Chem Lab Med – volume: 126 start-page: 76 year: 2020 end-page: 94 article-title: AdaEn‐Net: an ensemble of adaptive 2D‐3D fully convolutional networks for medical image segmentation publication-title: Neural Netw – volume: 48 start-page: 441 issue: 4 year: 2012 end-page: 446 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer – volume: 296 start-page: E46 issue: 2 year: 2020 end-page: E54 article-title: Performance of radiologists in differentiating COVID‐19 from non‐COVID‐19 viral pneumonia at chest CT publication-title: Radiology – volume: 2019 start-page: 1 year: 2019 end-page: 11 article-title: A LightGBM‐based EEG analysis method for driver mental states classification publication-title: Comput Intell Neurosci – volume: 172 start-page: 577 issue: 9 year: 2020 end-page: 582 article-title: The incubation period of coronavirus disease 2019 (COVID‐19) from publicly reported confirmed cases: estimation and application publication-title: Ann Intern Med – volume: 382 start-page: 1199 issue: 13 year: 2020 end-page: 1207 article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus‐infected pneumonia publication-title: N Engl J Med – volume: 395 start-page: 497 issue: 10223 year: 2020 end-page: 506 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet (London, England) – volume: 324 start-page: 603 issue: 6 year: 2020 end-page: 605 article-title: Persistent symptoms in patients after acute COVID‐19 publication-title: JAMA – volume: 10 start-page: 4606 issue: 10 year: 2020 end-page: 4613 article-title: CT scans of patients with 2019 novel coronavirus (COVID‐19) pneumonia publication-title: Theranostics – volume: 56 issue: 2 year: 2020 article-title: A fully automatic deep learning system for COVID‐19 diagnostic and prognostic analysis publication-title: Eur Respir J – volume: 215 start-page: 338 issue: 2 year: 2020 end-page: 343 article-title: Early clinical and CT manifestations of coronavirus disease 2019 (COVID‐19) pneumonia publication-title: Am J Roentgenol – volume: 33 start-page: 282 issue: 5 year: 2018 end-page: 294 article-title: Imaging of community‐acquired pneumonia publication-title: J Thorac Imaging – volume: 136 start-page: 1317 issue: 11 year: 2020 end-page: 1329 article-title: Platelet gene expression and function in patients with COVID‐19 publication-title: Blood – volume: 98 start-page: 87 year: 2018 end-page: 101 article-title: Support vector machine with Dirichlet feature mapping publication-title: Neural Netw – volume: 97 start-page: 508 issue: 6 year: 2019 end-page: 517 article-title: Community‐acquired pneumonia with negative chest radiography findings: clinical and radiological features publication-title: Respiration – volume: 21 start-page: 1389 issue: 11 year: 2014 end-page: 1393 article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves publication-title: IEEE Signal Process Lett – volume: 51 start-page: 102 issue: 2 year: 2004 end-page: 113 article-title: Radiology of bacterial pneumonia publication-title: Eur J Radiol – volume: 37 start-page: 1297 issue: 6 year: 2015 end-page: 1303 article-title: A very simple safe‐Bayesian random Forest publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 77 start-page: e104 issue: 21 year: 2017 end-page: e107 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res – volume: 317 start-page: 1068 issue: 10 year: 2017 end-page: 1069 article-title: Logistic regression diagnostics: understanding how well a model predicts outcomes publication-title: JAMA – ident: e_1_2_11_30_1 doi: 10.1152/physiolgenomics.00029.2020 – ident: e_1_2_11_7_1 doi: 10.2214/AJR.20.22961 – ident: e_1_2_11_10_1 doi: 10.2214/AJR.20.23034 – ident: e_1_2_11_14_1 doi: 10.1016/j.ejca.2011.11.036 – ident: e_1_2_11_25_1 doi: 10.1186/s40249-020-00646-x – ident: e_1_2_11_5_1 doi: 10.1148/radiol.2020200823 – ident: e_1_2_11_6_1 doi: 10.1148/radiol.2020200642 – ident: e_1_2_11_23_1 doi: 10.1016/j.jinf.2020.04.011 – ident: e_1_2_11_8_1 doi: 10.1007/s12630-020-01620-9 – ident: e_1_2_11_18_1 doi: 10.1155/2019/3761203 – ident: e_1_2_11_15_1 doi: 10.1016/j.neunet.2020.03.007 – ident: e_1_2_11_2_1 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_2_11_13_1 doi: 10.1016/j.ejrad.2004.03.010 – volume: 77 start-page: 76 issue: 1 year: 2010 ident: e_1_2_11_16_1 article-title: Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria publication-title: Cytometry A doi: 10.1002/cyto.a.20810 – ident: e_1_2_11_22_1 doi: 10.1109/LSP.2014.2337313 – ident: e_1_2_11_4_1 doi: 10.7326/M20-0504 – ident: e_1_2_11_11_1 doi: 10.1159/000495068 – ident: e_1_2_11_12_1 doi: 10.1097/RTI.0000000000000347 – ident: e_1_2_11_20_1 doi: 10.1016/j.neunet.2017.11.006 – ident: e_1_2_11_26_1 doi: 10.1001/jama.2020.12603 – ident: e_1_2_11_19_1 doi: 10.1001/jama.2016.20441 – ident: e_1_2_11_9_1 doi: 10.1007/s00330-020-06731-x – ident: e_1_2_11_24_1 doi: 10.7150/thno.45016 – ident: e_1_2_11_29_1 doi: 10.1182/blood.2020007214 – ident: e_1_2_11_3_1 doi: 10.1056/NEJMoa2001316 – ident: e_1_2_11_21_1 doi: 10.1109/TPAMI.2014.2362751 – ident: e_1_2_11_28_1 doi: 10.1093/infdis/jiaa150 – ident: e_1_2_11_17_1 doi: 10.1158/0008-5472.CAN-17-0339 – ident: e_1_2_11_27_1 doi: 10.1515/cclm-2020-0398 – ident: e_1_2_11_31_1 doi: 10.1183/13993003.00775-2020 |
| SSID | ssj0011505 |
| Score | 2.2622871 |
| Snippet | To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 47 |
| SubjectTerms | Bacteria bacterial pneumonia Chest Computed tomography COVID‐19 Diagnostic systems LightGBM Performance indices Pneumonia Radiomics Training |
| Title | Differentiation between COVID‐19 and bacterial pneumonia using radiomics of chest computed tomography and clinical features |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22538 https://www.proquest.com/docview/2486559940 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1098-1098 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ABDBF dateStart: 19890601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-1098 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0011505 issn: 0899-9457 databaseCode: ADMLS dateStart: 19890601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0899-9457 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011505 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA4iCHrwX1xdJYgHL9VtknZbPC3qsgoqiIoHoWSSrCxqd9l2L4LgI_iMPomTtF1_UBBvpZ2kbSYzmYRvviFkO4hVYHwhPQ7APSFRF9CNfE83DC6-itl0UIu2OAs7V-LkJriZIPtVLkzBDzE-cLOW4fy1NXAJ2d4HaWjP0gYxtFf0vz4P3XbqYkwdZQMdB1-MLAOlCJoVq1CD7Y1bfl2LPgLMz2GqW2fac-S2-sICXnK_O8phVz19I2_85y_Mk9ky_qStYsIskAmTLpKZT6yEi2TKoUJVtkSeD8vyKXmhQFqiuujB-fXx4dvLqx9TmWoKBeUz9jtIzQgndk9SC6i_o0OpezbvOaP9LnW1uagq6khomvcfS75s10mVo0m7xpGNZsvkqn10edDxynoNnuIsiDylOe6_NIZ4RocAUmpoggwxxkM3IRUY40tjj5xAcg6qGUAsYsCnEUTClrxfIZNpPzWrhEaCq1iGeBNbaMnQy4ShkRHjoim7RtfITqW5RJVk5ramxkNS0DCzBMc2cWNbI1tj0UHB4PGTUL1Sf1IacZYwYbN241g08HVOj793kByfttzF2t9F18k0swgZh2irk8l8ODIbGOLksOnm8jsR2_li |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD5MRdQH7-J0ahAffKnb0rRrwRdxyuYVRMUXKblNhtrJ1r0Igj_B3-gv8SRtNxUF8a20Sdrm5CRfwne-A7DlhdLTVcYdVwjXYRxtIVpB1VEVjYuvpCYc1LAtzvzGFTu68W4KsJvHwqT6EIMDN-MZdr42Dm4OpMtD1dC20Q2i6LAjMMZ83KcYSHQxEI8yUMcSGAOjQcm8Wq4rVKHlQdWvq9EQYn4GqnalOZyB2_wbU4LJ_U4_ETvy-Zt8439_YhamMwhK9tIxMwcFHc_D1CdhwnkYt8RQ2VuAl3qWQSVJbUgyYhfZP79u1t9f36oh4bEiIlV9xnafYt3Hsd3mxHDq70iXq7YJfe6RTovY9FxEpqkkFEk6j5lktm0kD9MkLW31RnuLcHV4cLnfcLKUDY50qRc4Urm4BVOI8rTyheBciZrgPsI8nCm4FFpXuTanToK7rpA1T4QsFPg0EAEzWe-XYDTuxHoZSMBcGXIfb2INxSlONL6veUBdVuMtrYqwnZsukpmeuUmr8RClSsw0wr6NbN8WYXNQ9CkV8fipUCm3f5T5cS-izATuhiGr4OusIX9vIGqe7tmLlb8X3YCJxuXpSXTSPDtehUlqCDOW4FaC0aTb12uIeBKxbgf2B6rT_YM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oRNEH7-K8BvHBl-6Spl0LvohzbN4Rlb1Iya0y1G6s3Ysg-BP8jf4Sk7TdVBTEt9ImaZuTk3wJ3_kOwK7jc0dWCbVsxmyLUGULFnpVS1SkWnw51uGgmm1x7jZvyHHbaY_Bfh4Lk-pDDA_ctGeY-Vo7uOyJsDxSDe1o3SCsHHYcJojje5rQV78aikdpqGMIjJ7WoCROLdcVquDysOrX1WgEMT8DVbPSNObgLv_GlGDyUBokrMSfv8k3_vcn5mE2g6DoIB0zCzAmo0WY-SRMuAiThhjK4yV4qWcZVJLUhigjdqHDi9tW_f31reojGgnEUtVn1W4vkgM1tjsUaU79PepT0dGhzzHqhsik50I8TSUhUNJ9yiSzTSN5mCYKpdEbjZfhpnF0fdi0spQNFrex41lc2GoLJhTKk8JljFLBaoy6CuapmYJyJmWVSn3qxKhtM15zmE98pp56zCM66_0KFKJuJFcBecTmPnXVTVVDUKwmGteV1MM2qdFQiiLs5aYLeKZnrtNqPAapEjMOVN8Gpm-LsDMs2ktFPH4qtJHbP8j8OA4w0YG7vk8q6nXGkL83ELTODszF2t-LbsPUZb0RnLbOT9ZhGmu-jOG3bUAh6Q_kpgI8Cdsy4_oDVrT9Bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+between+COVID%E2%80%9019+and+bacterial+pneumonia+using+radiomics+of+chest+computed+tomography+and+clinical+features&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Feng%2C+Junbang&rft.au=Guo%2C+Yi&rft.au=Wang%2C+Shike&rft.au=Shi%2C+Feng&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=1&rft.spage=47&rft.epage=58&rft_id=info:doi/10.1002%2Fima.22538&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |