Differentiation between COVID‐19 and bacterial pneumonia using radiomics of chest computed tomography and clinical features

To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all patients were randomly divided into a training group (n = 245) and a validation group (n = 105). The whole lung lesion on chest computed tomograph...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 31; no. 1; pp. 47 - 58
Main Authors Feng, Junbang, Guo, Yi, Wang, Shike, Shi, Feng, Wei, Ying, He, Yichu, Zeng, Ping, Liu, Jun, Wang, Wenjing, Lin, Liping, Yang, Qingning, Li, Chuanming, Liu, Xinghua
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22538

Cover

Abstract To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all patients were randomly divided into a training group (n = 245) and a validation group (n = 105). The whole lung lesion on chest computed tomography (CT) was drawn as the region of interest (ROI) for each patient. Both feature selection and model construction were first performed in the training set and then further tested in the validation set with the same thresholds. Additional tests were conducted on an external multicentre cohort with 105 subjects. The diagnostic model of LightGBM showed the best performance, achieving a sensitivity of 0.941, specificity of 0.981, accuracy of 0.962 on the validation dataset. In this study, we established a differential model to distinguish between COVID‐19 and bacterial pneumonia based on chest CT radiomics and clinical indexes.
AbstractList To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all patients were randomly divided into a training group (n = 245) and a validation group (n = 105). The whole lung lesion on chest computed tomography (CT) was drawn as the region of interest (ROI) for each patient. Both feature selection and model construction were first performed in the training set and then further tested in the validation set with the same thresholds. Additional tests were conducted on an external multicentre cohort with 105 subjects. The diagnostic model of LightGBM showed the best performance, achieving a sensitivity of 0.941, specificity of 0.981, accuracy of 0.962 on the validation dataset. In this study, we established a differential model to distinguish between COVID‐19 and bacterial pneumonia based on chest CT radiomics and clinical indexes.
Author Li, Chuanming
Lin, Liping
Wang, Wenjing
Wang, Shike
Liu, Xinghua
Wei, Ying
Shi, Feng
Yang, Qingning
He, Yichu
Guo, Yi
Zeng, Ping
Feng, Junbang
Liu, Jun
Author_xml – sequence: 1
  givenname: Junbang
  surname: Feng
  fullname: Feng, Junbang
  organization: The Second Affiliated Hospital of Chongqing Medical University
– sequence: 2
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  organization: Chongqing Emergency Medical Center
– sequence: 3
  givenname: Shike
  surname: Wang
  fullname: Wang, Shike
  organization: The Second Affiliated Hospital of Chongqing Medical University
– sequence: 4
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: Shanghai United Imaging Intelligence Co., Ltd
– sequence: 5
  givenname: Ying
  surname: Wei
  fullname: Wei, Ying
  organization: Shanghai United Imaging Intelligence Co., Ltd
– sequence: 6
  givenname: Yichu
  surname: He
  fullname: He, Yichu
  organization: Shanghai United Imaging Intelligence Co., Ltd
– sequence: 7
  givenname: Ping
  surname: Zeng
  fullname: Zeng, Ping
  organization: Chongqing Emergency Medical Center
– sequence: 8
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
  organization: Chongqing Emergency Medical Center
– sequence: 9
  givenname: Wenjing
  surname: Wang
  fullname: Wang, Wenjing
  organization: Chongqing Emergency Medical Center
– sequence: 10
  givenname: Liping
  surname: Lin
  fullname: Lin, Liping
  organization: The Second People's Hospital of Neijiang
– sequence: 11
  givenname: Qingning
  surname: Yang
  fullname: Yang, Qingning
  organization: Chongqing Emergency Medical Center
– sequence: 12
  givenname: Chuanming
  orcidid: 0000-0002-4006-9411
  surname: Li
  fullname: Li, Chuanming
  email: lichuanming@hospital.cqmu.edu.cn
  organization: The Second Affiliated Hospital of Chongqing Medical University
– sequence: 13
  givenname: Xinghua
  surname: Liu
  fullname: Liu, Xinghua
  email: paulliuxh@163.com
  organization: Chongqing Three Gorges Central Hospital
BookMark eNp1kE1u2zAQhYnCAer8LHoDAl11oZikRJtcBnZ_DCTIJslWGFKjhIFEqiSFwIsAPULP2JNUtrMqms3M4n3vzeCdkpkPHgn5xNklZ0wsXA-XQshSfSBzzrQq9mNG5kxpXehKrj6S05SeGeNcMjknrxvXthjRZwfZBU8N5hdET9e3D9vNn1-_uabgG2rAZowOOjp4HPvgHdAxOf9IIzQu9M4mGlpqnzBlakM_jBkbmkMfHiMMT7tDiO2cd3bKaBHyGDGdk5MWuoQXb_uM3H_7erf-UVzfft-ur64LWwqpCtuUQq2aii-xWRoD0JiVgaUqJasUWIPIASshhIGyNHYlja60mVRlVMU5L8_I52PuEMPPcXqxfg5j9NPJWlRqKaXWFZuoxZGyMaQUsa2ty4dWcgTX1ZzV-47rqeP60PHk-PKPY4iTGnf_Zd_SX1yHu_fBentzdXT8BeWgkFA
CitedBy_id crossref_primary_10_3390_app11125410
crossref_primary_10_1002_ima_22706
crossref_primary_10_1186_s13244_023_01423_8
crossref_primary_10_7717_peerj_17556
Cites_doi 10.1152/physiolgenomics.00029.2020
10.2214/AJR.20.22961
10.2214/AJR.20.23034
10.1016/j.ejca.2011.11.036
10.1186/s40249-020-00646-x
10.1148/radiol.2020200823
10.1148/radiol.2020200642
10.1016/j.jinf.2020.04.011
10.1007/s12630-020-01620-9
10.1155/2019/3761203
10.1016/j.neunet.2020.03.007
10.1016/S0140-6736(20)30183-5
10.1016/j.ejrad.2004.03.010
10.1002/cyto.a.20810
10.1109/LSP.2014.2337313
10.7326/M20-0504
10.1159/000495068
10.1097/RTI.0000000000000347
10.1016/j.neunet.2017.11.006
10.1001/jama.2020.12603
10.1001/jama.2016.20441
10.1007/s00330-020-06731-x
10.7150/thno.45016
10.1182/blood.2020007214
10.1056/NEJMoa2001316
10.1109/TPAMI.2014.2362751
10.1093/infdis/jiaa150
10.1158/0008-5472.CAN-17-0339
10.1515/cclm-2020-0398
10.1183/13993003.00775-2020
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC.
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22538
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 58
ExternalDocumentID 10_1002_ima_22538
IMA22538
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31771619
– fundername: Research on Artificial Intelligence Diagnosis Model for Patients with Negative Nucleic Acid Test and Positive Lung CT
  funderid: X2813
– fundername: The clinical research project for novel coronavirus pneumonia from Chongqing Medical University
  funderid: 30
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
ID FETCH-LOGICAL-c3258-cd3287d416ed6bbaadb7ba6835048acbee1ae4222ba33bc75b949b3508b841113
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Fri Jul 25 08:28:41 EDT 2025
Wed Oct 01 02:12:04 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Wed Jan 22 16:31:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3258-cd3287d416ed6bbaadb7ba6835048acbee1ae4222ba33bc75b949b3508b841113
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 31771619; Research on Artificial Intelligence Diagnosis Model for Patients with Negative Nucleic Acid Test and Positive Lung CT, Grant/Award Number: X2813; The clinical research project for novel coronavirus pneumonia from Chongqing Medical University, Grant/Award Number: 30
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4006-9411
PQID 2486559940
PQPubID 1026352
PageCount 12
ParticipantIDs proquest_journals_2486559940
crossref_citationtrail_10_1002_ima_22538
crossref_primary_10_1002_ima_22538
wiley_primary_10_1002_ima_22538_IMA22538
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 317
2010; 77
2015; 37
2019; 2019
2019; 97
2020; 382
2020; 81
2020; 126
2020; 324
2020; 58
2020; 221
2020; 56
2020; 10
2014; 21
2004; 51
2020; 30
2020; 52
2020; 395
2020; 296
2017; 77
2020; 172
2020; 9
2020; 215
2020; 67
2012; 48
2020; 136
2018; 33
2018; 98
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
Zeder M (e_1_2_11_16_1) 2010; 77
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 67
  start-page: 732
  issue: 6
  year: 2020
  end-page: 745
  article-title: Preparing for a COVID‐19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Se préparer pour la pandémie de COVID‐19: revue des moyens déployés dans un bloc opératoire d'un grand hôpital tertiaire au Singapour
  publication-title: Can J Anaesth
– volume: 296
  start-page: E32
  issue: 2
  year: 2020
  end-page: E40
  article-title: Correlation of chest CT and RT‐PCR testing for coronavirus disease 2019 (COVID‐19) in China: a report of 1014 cases
  publication-title: Radiology
– volume: 30
  start-page: 3306
  issue: 6
  year: 2020
  end-page: 3309
  article-title: Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019‐nCoV): a study of 63 patients in Wuhan, China
  publication-title: Eur Radiol
– volume: 9
  issue: 1
  year: 2020
  article-title: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID‐19) during the early outbreak period: a scoping review
  publication-title: Infect Dis Poverty
– volume: 221
  start-page: 1762
  issue: 11
  year: 2020
  end-page: 1769
  article-title: Characteristics of peripheral lymphocyte subset alteration in COVID‐19 pneumonia
  publication-title: J Infect Dis
– volume: 52
  start-page: 200
  issue: 4
  year: 2020
  end-page: 202
  article-title: Artificial intelligence and machine learning to fight COVID‐19
  publication-title: Physiol Genomics
– volume: 215
  start-page: 87
  issue: 1
  year: 2020
  end-page: 93
  article-title: Coronavirus disease 2019 (COVID‐19): a systematic review of imaging findings in 919 patients
  publication-title: Am J Roentgenol
– volume: 77
  start-page: 76
  issue: 1
  year: 2010
  end-page: 85
  article-title: Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria
  publication-title: Cytometry A
– volume: 81
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Current epidemiological and clinical features of COVID‐19; a global perspective from China
  publication-title: J Infect
– volume: 58
  start-page: 1095
  issue: 7
  year: 2020
  end-page: 1099
  article-title: Routine blood tests as a potential diagnostic tool for COVID‐19
  publication-title: Clin Chem Lab Med
– volume: 126
  start-page: 76
  year: 2020
  end-page: 94
  article-title: AdaEn‐Net: an ensemble of adaptive 2D‐3D fully convolutional networks for medical image segmentation
  publication-title: Neural Netw
– volume: 48
  start-page: 441
  issue: 4
  year: 2012
  end-page: 446
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
– volume: 296
  start-page: E46
  issue: 2
  year: 2020
  end-page: E54
  article-title: Performance of radiologists in differentiating COVID‐19 from non‐COVID‐19 viral pneumonia at chest CT
  publication-title: Radiology
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  article-title: A LightGBM‐based EEG analysis method for driver mental states classification
  publication-title: Comput Intell Neurosci
– volume: 172
  start-page: 577
  issue: 9
  year: 2020
  end-page: 582
  article-title: The incubation period of coronavirus disease 2019 (COVID‐19) from publicly reported confirmed cases: estimation and application
  publication-title: Ann Intern Med
– volume: 382
  start-page: 1199
  issue: 13
  year: 2020
  end-page: 1207
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus‐infected pneumonia
  publication-title: N Engl J Med
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  end-page: 506
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet (London, England)
– volume: 324
  start-page: 603
  issue: 6
  year: 2020
  end-page: 605
  article-title: Persistent symptoms in patients after acute COVID‐19
  publication-title: JAMA
– volume: 10
  start-page: 4606
  issue: 10
  year: 2020
  end-page: 4613
  article-title: CT scans of patients with 2019 novel coronavirus (COVID‐19) pneumonia
  publication-title: Theranostics
– volume: 56
  issue: 2
  year: 2020
  article-title: A fully automatic deep learning system for COVID‐19 diagnostic and prognostic analysis
  publication-title: Eur Respir J
– volume: 215
  start-page: 338
  issue: 2
  year: 2020
  end-page: 343
  article-title: Early clinical and CT manifestations of coronavirus disease 2019 (COVID‐19) pneumonia
  publication-title: Am J Roentgenol
– volume: 33
  start-page: 282
  issue: 5
  year: 2018
  end-page: 294
  article-title: Imaging of community‐acquired pneumonia
  publication-title: J Thorac Imaging
– volume: 136
  start-page: 1317
  issue: 11
  year: 2020
  end-page: 1329
  article-title: Platelet gene expression and function in patients with COVID‐19
  publication-title: Blood
– volume: 98
  start-page: 87
  year: 2018
  end-page: 101
  article-title: Support vector machine with Dirichlet feature mapping
  publication-title: Neural Netw
– volume: 97
  start-page: 508
  issue: 6
  year: 2019
  end-page: 517
  article-title: Community‐acquired pneumonia with negative chest radiography findings: clinical and radiological features
  publication-title: Respiration
– volume: 21
  start-page: 1389
  issue: 11
  year: 2014
  end-page: 1393
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Process Lett
– volume: 51
  start-page: 102
  issue: 2
  year: 2004
  end-page: 113
  article-title: Radiology of bacterial pneumonia
  publication-title: Eur J Radiol
– volume: 37
  start-page: 1297
  issue: 6
  year: 2015
  end-page: 1303
  article-title: A very simple safe‐Bayesian random Forest
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 77
  start-page: e104
  issue: 21
  year: 2017
  end-page: e107
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
– volume: 317
  start-page: 1068
  issue: 10
  year: 2017
  end-page: 1069
  article-title: Logistic regression diagnostics: understanding how well a model predicts outcomes
  publication-title: JAMA
– ident: e_1_2_11_30_1
  doi: 10.1152/physiolgenomics.00029.2020
– ident: e_1_2_11_7_1
  doi: 10.2214/AJR.20.22961
– ident: e_1_2_11_10_1
  doi: 10.2214/AJR.20.23034
– ident: e_1_2_11_14_1
  doi: 10.1016/j.ejca.2011.11.036
– ident: e_1_2_11_25_1
  doi: 10.1186/s40249-020-00646-x
– ident: e_1_2_11_5_1
  doi: 10.1148/radiol.2020200823
– ident: e_1_2_11_6_1
  doi: 10.1148/radiol.2020200642
– ident: e_1_2_11_23_1
  doi: 10.1016/j.jinf.2020.04.011
– ident: e_1_2_11_8_1
  doi: 10.1007/s12630-020-01620-9
– ident: e_1_2_11_18_1
  doi: 10.1155/2019/3761203
– ident: e_1_2_11_15_1
  doi: 10.1016/j.neunet.2020.03.007
– ident: e_1_2_11_2_1
  doi: 10.1016/S0140-6736(20)30183-5
– ident: e_1_2_11_13_1
  doi: 10.1016/j.ejrad.2004.03.010
– volume: 77
  start-page: 76
  issue: 1
  year: 2010
  ident: e_1_2_11_16_1
  article-title: Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20810
– ident: e_1_2_11_22_1
  doi: 10.1109/LSP.2014.2337313
– ident: e_1_2_11_4_1
  doi: 10.7326/M20-0504
– ident: e_1_2_11_11_1
  doi: 10.1159/000495068
– ident: e_1_2_11_12_1
  doi: 10.1097/RTI.0000000000000347
– ident: e_1_2_11_20_1
  doi: 10.1016/j.neunet.2017.11.006
– ident: e_1_2_11_26_1
  doi: 10.1001/jama.2020.12603
– ident: e_1_2_11_19_1
  doi: 10.1001/jama.2016.20441
– ident: e_1_2_11_9_1
  doi: 10.1007/s00330-020-06731-x
– ident: e_1_2_11_24_1
  doi: 10.7150/thno.45016
– ident: e_1_2_11_29_1
  doi: 10.1182/blood.2020007214
– ident: e_1_2_11_3_1
  doi: 10.1056/NEJMoa2001316
– ident: e_1_2_11_21_1
  doi: 10.1109/TPAMI.2014.2362751
– ident: e_1_2_11_28_1
  doi: 10.1093/infdis/jiaa150
– ident: e_1_2_11_17_1
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: e_1_2_11_27_1
  doi: 10.1515/cclm-2020-0398
– ident: e_1_2_11_31_1
  doi: 10.1183/13993003.00775-2020
SSID ssj0011505
Score 2.2622871
Snippet To develop and validate an effective model for distinguishing COVID‐19 from bacterial pneumonia. In the training group and internal validation group, all...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Bacteria
bacterial pneumonia
Chest
Computed tomography
COVID‐19
Diagnostic systems
LightGBM
Performance indices
Pneumonia
Radiomics
Training
Title Differentiation between COVID‐19 and bacterial pneumonia using radiomics of chest computed tomography and clinical features
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22538
https://www.proquest.com/docview/2486559940
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1098-1098
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ABDBF
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: ADMLS
  dateStart: 19890601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0899-9457
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA4iCHrwX1xdJYgHL9VtknZbPC3qsgoqiIoHoWSSrCxqd9l2L4LgI_iMPomTtF1_UBBvpZ2kbSYzmYRvviFkO4hVYHwhPQ7APSFRF9CNfE83DC6-itl0UIu2OAs7V-LkJriZIPtVLkzBDzE-cLOW4fy1NXAJ2d4HaWjP0gYxtFf0vz4P3XbqYkwdZQMdB1-MLAOlCJoVq1CD7Y1bfl2LPgLMz2GqW2fac-S2-sICXnK_O8phVz19I2_85y_Mk9ky_qStYsIskAmTLpKZT6yEi2TKoUJVtkSeD8vyKXmhQFqiuujB-fXx4dvLqx9TmWoKBeUz9jtIzQgndk9SC6i_o0OpezbvOaP9LnW1uagq6khomvcfS75s10mVo0m7xpGNZsvkqn10edDxynoNnuIsiDylOe6_NIZ4RocAUmpoggwxxkM3IRUY40tjj5xAcg6qGUAsYsCnEUTClrxfIZNpPzWrhEaCq1iGeBNbaMnQy4ShkRHjoim7RtfITqW5RJVk5ramxkNS0DCzBMc2cWNbI1tj0UHB4PGTUL1Sf1IacZYwYbN241g08HVOj793kByfttzF2t9F18k0swgZh2irk8l8ODIbGOLksOnm8jsR2_li
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD5MRdQH7-J0ahAffKnb0rRrwRdxyuYVRMUXKblNhtrJ1r0Igj_B3-gv8SRtNxUF8a20Sdrm5CRfwne-A7DlhdLTVcYdVwjXYRxtIVpB1VEVjYuvpCYc1LAtzvzGFTu68W4KsJvHwqT6EIMDN-MZdr42Dm4OpMtD1dC20Q2i6LAjMMZ83KcYSHQxEI8yUMcSGAOjQcm8Wq4rVKHlQdWvq9EQYn4GqnalOZyB2_wbU4LJ_U4_ETvy-Zt8439_YhamMwhK9tIxMwcFHc_D1CdhwnkYt8RQ2VuAl3qWQSVJbUgyYhfZP79u1t9f36oh4bEiIlV9xnafYt3Hsd3mxHDq70iXq7YJfe6RTovY9FxEpqkkFEk6j5lktm0kD9MkLW31RnuLcHV4cLnfcLKUDY50qRc4Urm4BVOI8rTyheBciZrgPsI8nCm4FFpXuTanToK7rpA1T4QsFPg0EAEzWe-XYDTuxHoZSMBcGXIfb2INxSlONL6veUBdVuMtrYqwnZsukpmeuUmr8RClSsw0wr6NbN8WYXNQ9CkV8fipUCm3f5T5cS-izATuhiGr4OusIX9vIGqe7tmLlb8X3YCJxuXpSXTSPDtehUlqCDOW4FaC0aTb12uIeBKxbgf2B6rT_YM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oRNEH7-K8BvHBl-6Spl0LvohzbN4Rlb1Iya0y1G6s3Ysg-BP8jf4Sk7TdVBTEt9ImaZuTk3wJ3_kOwK7jc0dWCbVsxmyLUGULFnpVS1SkWnw51uGgmm1x7jZvyHHbaY_Bfh4Lk-pDDA_ctGeY-Vo7uOyJsDxSDe1o3SCsHHYcJojje5rQV78aikdpqGMIjJ7WoCROLdcVquDysOrX1WgEMT8DVbPSNObgLv_GlGDyUBokrMSfv8k3_vcn5mE2g6DoIB0zCzAmo0WY-SRMuAiThhjK4yV4qWcZVJLUhigjdqHDi9tW_f31reojGgnEUtVn1W4vkgM1tjsUaU79PepT0dGhzzHqhsik50I8TSUhUNJ9yiSzTSN5mCYKpdEbjZfhpnF0fdi0spQNFrex41lc2GoLJhTKk8JljFLBaoy6CuapmYJyJmWVSn3qxKhtM15zmE98pp56zCM66_0KFKJuJFcBecTmPnXVTVVDUKwmGteV1MM2qdFQiiLs5aYLeKZnrtNqPAapEjMOVN8Gpm-LsDMs2ktFPH4qtJHbP8j8OA4w0YG7vk8q6nXGkL83ELTODszF2t-LbsPUZb0RnLbOT9ZhGmu-jOG3bUAh6Q_kpgI8Cdsy4_oDVrT9Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+between+COVID%E2%80%9019+and+bacterial+pneumonia+using+radiomics+of+chest+computed+tomography+and+clinical+features&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Feng%2C+Junbang&rft.au=Guo%2C+Yi&rft.au=Wang%2C+Shike&rft.au=Shi%2C+Feng&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=31&rft.issue=1&rft.spage=47&rft.epage=58&rft_id=info:doi/10.1002%2Fima.22538&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon