Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases
Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as “protein misfolding neurodegenerative diseases” (PMNDs). These phenotypically diverse but b...
Saved in:
Published in | BioFactors (Oxford) Vol. 43; no. 6; pp. 737 - 759 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-6433 1872-8081 1872-8081 |
DOI | 10.1002/biof.1264 |
Cover
Abstract | Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as “protein misfolding neurodegenerative diseases” (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post‐transcriptional programs that up‐regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737–759, 2017 |
---|---|
AbstractList | Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as "protein misfolding neurodegenerative diseases" (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post-transcriptional programs that up-regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737-759, 2017.Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as "protein misfolding neurodegenerative diseases" (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post-transcriptional programs that up-regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737-759, 2017. Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as "protein misfolding neurodegenerative diseases" (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post-transcriptional programs that up-regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737-759, 2017. Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as “protein misfolding neurodegenerative diseases” (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post‐transcriptional programs that up‐regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737–759, 2017 |
Author | Hekmatimoghaddam, Seyedhossein Zare‐Khormizi, Mohamad Reza Pourrajab, Fatemeh |
Author_xml | – sequence: 1 givenname: Seyedhossein surname: Hekmatimoghaddam fullname: Hekmatimoghaddam, Seyedhossein organization: School of Paramedicine, Shahid Sadoughi University of Medical Sciences – sequence: 2 givenname: Mohamad Reza surname: Zare‐Khormizi fullname: Zare‐Khormizi, Mohamad Reza organization: School of Medicine, Shahid Sadoughi University of Medical Sciences – sequence: 3 givenname: Fatemeh surname: Pourrajab fullname: Pourrajab, Fatemeh email: mina_poorrajab@yahoo.com organization: School of Medicine, Shahid Sadoughi University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26899445$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1OHDEUha0IBAuhyAtELpNiwH_zs2WCQoKERJGktu7Yd1hHHntjzxBtmTfHA7tNFCpb9nc-XfuckaMQAxLyjrNLzpi46l0cLrlo1Buy4l0rqo51_Iis2LrmVaOkPCVnOf9ijEumuhNyKppuvVaqXpG_P4PF5HcuPNARzQaCy2OmECw1GxydAb_oD3s6bTDBFufJGQrbbYpQrjKdIoURvYsJJqTleEIX6OjyEL1d3AHnFC0-YCj5yT0itS4jZMxvyfEAPuPFfj0n32--_Lj-Vt3df729_nRXGSlqVck1tpwbaJjlxgzAOLe9sPUgB2sU1NBLDlb0apC85Uq2srGi8NAjb1t5Tj68WMtsv2fMky7DGfQeAsY5a96JpqlVwxb0_R6d-xGt3iY3Qtrpw6cV4OoFMCnmnHDQxk3lUTFMCZzXnOmlFr3UopdaSuLjP4mD9H_s3v7Hedy9DurPt_c3z4kn0iSg-w |
CitedBy_id | crossref_primary_10_1134_S1819712422030114 crossref_primary_10_1016_j_nbd_2018_05_010 crossref_primary_10_1007_s11356_021_13687_y crossref_primary_10_1134_S0003683822100179 crossref_primary_10_2174_1874609812666190620124324 crossref_primary_10_3390_cells11071205 crossref_primary_10_3389_fnins_2025_1475376 crossref_primary_10_1515_revneuro_2016_0035 crossref_primary_10_1016_j_mcn_2018_11_002 crossref_primary_10_1038_s41392_023_01343_5 crossref_primary_10_1007_s00018_019_03428_3 crossref_primary_10_2147_JEP_S254334 crossref_primary_10_4155_fmc_2017_0031 |
Cites_doi | 10.1016/j.neurobiolaging.2014.04.031 10.1016/j.ejmech.2014.07.095 10.1016/j.bbrc.2006.10.085 10.1016/j.neuron.2008.03.015 10.1016/j.ceb.2010.11.002 10.1593/neo.91422 10.1016/j.jmb.2013.08.006 10.1016/j.ejmech.2013.05.015 10.1016/j.nbd.2005.07.007 10.1016/j.febslet.2011.07.041 10.1016/j.bbapap.2015.01.014 10.1016/j.bmcl.2014.05.008 10.1111/j.1747-0285.2005.00318.x 10.1016/j.biocel.2015.01.015 10.1016/j.ejmech.2015.01.027 10.1016/j.semcdb.2007.09.003 10.1016/S0092-8674(03)00939-5 10.1016/j.ejmech.2014.05.083 10.1016/j.bmcl.2012.02.089 10.1016/j.bbrc.2015.01.021 10.1016/j.jmb.2015.02.010 10.1016/j.bbamem.2013.11.002 10.1016/j.chembiol.2013.09.020 10.1016/j.celrep.2012.11.001 10.1016/j.ejmech.2014.06.034 10.1016/j.biochi.2007.06.009 10.1016/j.tcb.2008.04.003 10.1016/j.bmcl.2009.03.011 10.1016/j.ejps.2013.04.024 10.1016/j.bbrc.2009.10.079 10.1016/j.parkreldis.2009.03.002 10.1016/j.ejmech.2013.02.014 10.1016/j.bmcl.2009.09.021 10.1016/j.cellsig.2013.11.008 10.1016/j.bbapap.2014.12.019 10.1016/j.abb.2008.04.015 10.1016/j.bmcl.2013.11.039 10.1155/2011/148046 10.1016/j.coi.2011.07.002 10.1016/j.bmcl.2014.12.080 10.1016/j.bmcl.2009.05.073 10.1016/j.cell.2010.02.034 10.1016/j.bmcl.2013.08.001 10.1016/j.canlet.2009.01.040 |
ContentType | Journal Article |
Copyright | 2016 International Union of Biochemistry and Molecular Biology 2016 International Union of Biochemistry and Molecular Biology. |
Copyright_xml | – notice: 2016 International Union of Biochemistry and Molecular Biology – notice: 2016 International Union of Biochemistry and Molecular Biology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/biof.1264 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1872-8081 |
EndPage | 759 |
ExternalDocumentID | 26899445 10_1002_biof_1264 BIOF1264 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .GJ 05W 0R~ 10A 1OC 23N 31~ 33P 36B 3SF 4.4 4P2 52S 52U 52V 53G 5GY 5RE 8-1 A8Z AAESR AAEVG AAHBH AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABQWH ABUBZ ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPQW ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRHK AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI C45 CAG COF DCZOG DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBD EBS EDH EJD EMB EMK EMOBN ESX F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IOS KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MET MEWTI MIO MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ O66 O9- OIG OVD P2P P2W QB0 ROL SUPJJ SV3 TEORI TUS WBKPD WIH WIJ WIK WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ZZTAW AAFNC AAHHS AAYXX ACCFJ ADZMO ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AJNRN CGR CUY CVF ECM EIF NPM 7X8 ESTFP |
ID | FETCH-LOGICAL-c3254-39e711ca60d1ccfa011db2d5f3fdc4a5ab31ad2b4f317143736d21caabe1773 |
ISSN | 0951-6433 1872-8081 |
IngestDate | Mon Sep 08 16:05:13 EDT 2025 Thu Apr 03 07:05:28 EDT 2025 Thu Apr 24 22:52:03 EDT 2025 Tue Jul 01 01:27:04 EDT 2025 Wed Aug 20 07:25:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | cell proteostasis network chemical and/or biochemical therapeutic approches protein misfolding |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 International Union of Biochemistry and Molecular Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3254-39e711ca60d1ccfa011db2d5f3fdc4a5ab31ad2b4f317143736d21caabe1773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 26899445 |
PQID | 1826654607 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1826654607 pubmed_primary_26899445 crossref_citationtrail_10_1002_biof_1264 crossref_primary_10_1002_biof_1264 wiley_primary_10_1002_biof_1264_BIOF1264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November/December 2017 2017-11-00 2017-Nov 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November/December 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | BioFactors (Oxford) |
PublicationTitleAlternate | Biofactors |
PublicationYear | 2017 |
References | 2010; 12 2007; 18 2013; 4 2013; 49 2013; 66 2015; 92 2009; 280 2013; 23 2008; 18 2013; 20 2013; 63 2013; 425 2008; 58 2014; 26 2006; 351 2014; 24 2015; 1854 2010; 140 2015; 427 2014; 85 2003; 115 2014; 83 2014; 82 2008; 90 2014; 1838 2011; 2011 2015; 25 2012; 2 2015; 457 2006; 67 2006; 21 2009; 390 2015; 61 2014; 35 2011; 23 2008; 475 2009; 19 2012; 22 2011; 585 2009; 15 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 SiyanCao S. (e_1_2_9_29_1) 2013; 4 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 |
References_xml | – volume: 351 start-page: 631 year: 2006 end-page: 638 article-title: Small heat shock proteins protect against a‐synuclein‐induced toxicity and aggregation publication-title: Biochem. Biophys. Res. Commun. – volume: 35 start-page: 2272 year: 2014 end-page: 2281 article-title: PERK mediates eIF2a phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease publication-title: Neurobiol. Aging – volume: 66 start-page: 22 year: 2013 end-page: 31 article-title: Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid‐beta aggregation and 5‐lipoxygenase publication-title: Eur. J. Med. Chem. – volume: 1838 start-page: 756 year: 2014 end-page: 765 article-title: Differential functional rescue of Lys513 and Lys516 processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain–domain interactions of the transporter publication-title: Biochim. Biophys. Acta – volume: 12 start-page: 80 year: 2010 end-page: 86 article-title: Activation of the unfolded protein response contributes toward the antitumor activity of vorinostat 1 publication-title: Neoplasia – volume: 24 start-page: 685 year: 2014 end-page: 690 article-title: Synthesis and evaluation of curcumin derivatives toward an inhibitor of beta‐site amyloid precursor protein cleaving enzyme 1 publication-title: Bioorg. Med. Chem. Lett. – volume: 1854 start-page: 426 year: 2015 end-page: 436 article-title: Curcumin binds to the pre‐fibrillar aggregates of Cu/Zn superoxide 2 dismutase (SOD1) and alters its amyloidogenic pathway 3 resulting in reduced cytotoxicity publication-title: Biochim. Biophys. Acta. – volume: 457 start-page: 473 year: 2015 end-page: 478 article-title: Sir2 links the unfolded protein response and the heat shock response in a stress response network publication-title: Biochem. Biophys. Res. Commun. – volume: 82 start-page: 363 year: 2014 end-page: 371 article-title: Evaluation of the antiprion activity of 6‐aminophenanthridines and related heterocycles publication-title: Eur. J. Med. Chem. – volume: 21 start-page: 228 year: 2006 end-page: 236 article-title: Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL‐135 as therapeutics for Huntington's disease publication-title: Neurobiol. Dis. – volume: 23 start-page: 6015 year: 2013 end-page: 6018 article-title: 4‐Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor publication-title: Bioorg. Med. Chem. Lett. – volume: 22 start-page: 2789 year: 2012 end-page: 2793 article-title: 3(N‐Arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2) publication-title: Bioorg. Med. Chem. Lett. – volume: 15 start-page: 649 year: 2009 end-page: 654 article-title: A chemical chaperone, sodium 4‐phenylbutyric acid, attenuates the pathogenic potency in human a‐synuclein A30P þA53T transgenic mice publication-title: Parkinsonism Relat. Disord. – volume: 49 start-page: 603 year: 2013 end-page: 613 article-title: 1,4‐Substituted 4‐(1H)‐pyridylene‐hydrazone‐type inhibitors of AChE, BuChE, and amyloid‐b aggregation crossing the blood–brain barrier publication-title: Eur. J. Pharm. Sci. – volume: 63 start-page: 299 year: 2013 end-page: 312 article-title: Synthesis and evaluation of 7,8‐dehydrorutaecarpine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease publication-title: Eur. J. Med. Chem. – volume: 4 start-page: 89 year: 2013 end-page: 1000 article-title: The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice publication-title: Gastrology – volume: 67 start-page: 27 year: 2006 end-page: 37 article-title: Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism publication-title: Chem. Biol. Drug Des. – volume: 85 start-page: 228 year: 2014 end-page: 234 article-title: Development of dual targeting inhibitors against aggregations of amyloid ß and tau protein publication-title: Eur. J. Med. Chem. – volume: 23 start-page: 670 year: 2011 end-page: 678 article-title: Histone/protein deacetylases control Foxp3 expression and the heat shock response of T‐regulatory cells publication-title: Curr. Opin. Immunol. – volume: 2011 start-page: 1 year: 2011 end-page: 9 article-title: The role of HDACs inhibitors in childhood and adolescence acute leukemias publication-title: J. Biomed. Biotechnol. – volume: 18 start-page: 291 year: 2008 end-page: 297 article-title: HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions publication-title: Trends Cell Biol. – volume: 61 start-page: 45 year: 2015 end-page: 52 article-title: The therapeutic effects of 4‐phenylbutyric acid in maintaining proteostasis publication-title: Int. J. Biochem. Cell Biol. – volume: 475 start-page: 109 year: 2008 end-page: 114 article-title: A chemical chaperone 4‐PBA ameliorates palmitate‐induced inhibition of glucose‐stimulated insulin secretion (GSIS) publication-title: Arch. Biochem. Biophys. – volume: 19 start-page: 4303 year: 2009 end-page: 4307 article-title: Pyrimido[5,4‐e][1,2,4]triazine‐5,7(1H,6H)‐dione derivatives as novel small molecule chaperone amplifiers publication-title: Bioorg. Med. Chem. Lett. – volume: 26 start-page: 287 year: 2014 end-page: 294 article-title: Sustained IRE1 and ATF6 signaling is important for survival ofmelanoma cells undergoing ER stress publication-title: Cell. Signal. – volume: 2 start-page: 1492 year: 2012 end-page: 1497 article-title: The sirtuin 2 inhibitor AK‐7 is neuroprotective in Huntington's disease mouse models publication-title: Cell Rep. – volume: 58 start-page: 10 year: 2008 end-page: 14 article-title: Paths of convergence: sirtuins in aging and neurodegeneration publication-title: Neuron – volume: 585 start-page: 2744 year: 2011 end-page: 2748 article-title: Regulation of chaperone gene expression by heat shock transcription factor in : importance in normal cell growth, stress resistance, and longevity publication-title: FEBS Lett. – volume: 20 start-page: 1456 year: 2013 end-page: 1468 article-title: SAHA enhances proteostasis of epilepsy‐associated a1(A322D)b2g2 GABAA receptors publication-title: Chem. Biol. – volume: 92 start-page: 738 year: 2015 end-page: 749 article-title: Development of multifunctional, heterodimeric isoindoline‐1,3‐dione derivatives as cholinesterase and b‐amyloid aggregation inhibitors with neuroprotective properties publication-title: Eur. J. Med. Chem. – volume: 23 start-page: 231 year: 2011 end-page: 238 article-title: Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases publication-title: Curr. Opin. Cell Biol. – volume: 19 start-page: 6114 year: 2009 end-page: 6118 article-title: Pyrimido[5,4‐e][1,2,4]triazine‐5,7(1H,6H)‐dione derivatives: their cytoprotection effect from rotenone toxicity and preliminary DMPK properties publication-title: Bioorg. Med. Chem. Lett. – volume: 90 start-page: 306 year: 2008 end-page: 312 article-title: Regulation of protein turnover by acetyltransferases and deacetylases publication-title: Biochimie – volume: 18 start-page: 716 year: 2007 end-page: 731 article-title: The endoplasmic reticulum and the unfolded protein response publication-title: Semin. Cell Dev. Biol. – volume: 1854 start-page: 291 year: 2015 end-page: 319 article-title: Small heat shock proteins: role in cellular functions and pathology publication-title: Biochim. Biophys. Acta – volume: 115 start-page: 727 year: 2003 end-page: 738 article-title: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress publication-title: Cell – volume: 19 start-page: 3128 year: 2009 end-page: 3135 article-title: Chloro‐oxime derivatives as novel small molecule chaperone amplifiers publication-title: Bioorg. Med. Chem. Lett. – volume: 390 start-page: 925 year: 2009 end-page: 930 article-title: Identification of small‐molecule HSF1 amplifiers by high content screening in protection of cells from stress induced injury publication-title: Biochem. Biophys. Res. Commun. – volume: 425 start-page: 4614 year: 2013 end-page: 4628 article-title: Hsp90 inhibits α‐synuclein aggregation by interacting with soluble oligomers publication-title: J. Mol. Biol. – volume: 83 start-page: 355 year: 2014 end-page: 365 article-title: Synthesis of a, b‐unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: characterization, molecular modeling, QSAR studies and effect against amyloid ß‐induced cytotoxicity publication-title: Eur. J. Med. Chem. – volume: 25 start-page: 811 year: 2015 end-page: 814 article-title: Evaluation of synthetic naphthalene derivatives as novel chemical chaperones that mimic 4‐phenylbutyric acid publication-title: Bioorg. Med. Chem. Lett. – volume: 140 start-page: 900 year: 2010 end-page: 917 article-title: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease publication-title: Cell – volume: 427 start-page: 1644 year: 2015 end-page: 1654 article-title: Lysine deacetylases regulate the heat shock response including the age‐associated impairment of HSF1 publication-title: J. Mol. Biol. – volume: 24 start-page: 3108 year: 2014 end-page: 3112 article-title: Naturally occurring polyphenolic inhibitors of amyloid beta aggregation publication-title: Bioorg. Med. Chem. Lett. – volume: 280 start-page: 222 year: 2009 end-page: 232 article-title: Histone deacetylase inhibitors that target tubulin publication-title: Cancer Lett. – ident: e_1_2_9_13_1 doi: 10.1016/j.neurobiolaging.2014.04.031 – ident: e_1_2_9_20_1 doi: 10.1016/j.ejmech.2014.07.095 – ident: e_1_2_9_8_1 doi: 10.1016/j.bbrc.2006.10.085 – ident: e_1_2_9_43_1 doi: 10.1016/j.neuron.2008.03.015 – ident: e_1_2_9_9_1 doi: 10.1016/j.ceb.2010.11.002 – ident: e_1_2_9_7_1 doi: 10.1593/neo.91422 – ident: e_1_2_9_41_1 doi: 10.1016/j.jmb.2013.08.006 – ident: e_1_2_9_25_1 doi: 10.1016/j.ejmech.2013.05.015 – ident: e_1_2_9_4_1 doi: 10.1016/j.nbd.2005.07.007 – ident: e_1_2_9_11_1 doi: 10.1016/j.febslet.2011.07.041 – ident: e_1_2_9_39_1 doi: 10.1016/j.bbapap.2015.01.014 – ident: e_1_2_9_18_1 doi: 10.1016/j.bmcl.2014.05.008 – ident: e_1_2_9_15_1 doi: 10.1111/j.1747-0285.2005.00318.x – ident: e_1_2_9_30_1 doi: 10.1016/j.biocel.2015.01.015 – ident: e_1_2_9_16_1 doi: 10.1016/j.ejmech.2015.01.027 – ident: e_1_2_9_2_1 doi: 10.1016/j.semcdb.2007.09.003 – ident: e_1_2_9_46_1 doi: 10.1016/S0092-8674(03)00939-5 – ident: e_1_2_9_22_1 doi: 10.1016/j.ejmech.2014.05.083 – ident: e_1_2_9_38_1 doi: 10.1016/j.bmcl.2012.02.089 – ident: e_1_2_9_10_1 doi: 10.1016/j.bbrc.2015.01.021 – ident: e_1_2_9_44_1 doi: 10.1016/j.jmb.2015.02.010 – ident: e_1_2_9_26_1 doi: 10.1016/j.bbamem.2013.11.002 – ident: e_1_2_9_28_1 doi: 10.1016/j.chembiol.2013.09.020 – ident: e_1_2_9_36_1 doi: 10.1016/j.celrep.2012.11.001 – ident: e_1_2_9_19_1 doi: 10.1016/j.ejmech.2014.06.034 – ident: e_1_2_9_27_1 doi: 10.1016/j.biochi.2007.06.009 – ident: e_1_2_9_45_1 doi: 10.1016/j.tcb.2008.04.003 – ident: e_1_2_9_3_1 doi: 10.1016/j.bmcl.2009.03.011 – ident: e_1_2_9_24_1 doi: 10.1016/j.ejps.2013.04.024 – ident: e_1_2_9_5_1 doi: 10.1016/j.bbrc.2009.10.079 – ident: e_1_2_9_12_1 doi: 10.1016/j.parkreldis.2009.03.002 – ident: e_1_2_9_21_1 doi: 10.1016/j.ejmech.2013.02.014 – ident: e_1_2_9_34_1 doi: 10.1016/j.bmcl.2009.09.021 – volume: 4 start-page: 89 year: 2013 ident: e_1_2_9_29_1 article-title: The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice publication-title: Gastrology – ident: e_1_2_9_14_1 doi: 10.1016/j.cellsig.2013.11.008 – ident: e_1_2_9_17_1 doi: 10.1016/j.bbapap.2014.12.019 – ident: e_1_2_9_31_1 doi: 10.1016/j.abb.2008.04.015 – ident: e_1_2_9_23_1 doi: 10.1016/j.bmcl.2013.11.039 – ident: e_1_2_9_35_1 doi: 10.1155/2011/148046 – ident: e_1_2_9_40_1 doi: 10.1016/j.coi.2011.07.002 – ident: e_1_2_9_33_1 doi: 10.1016/j.bmcl.2014.12.080 – ident: e_1_2_9_6_1 doi: 10.1016/j.bmcl.2009.05.073 – ident: e_1_2_9_42_1 doi: 10.1016/j.cell.2010.02.034 – ident: e_1_2_9_32_1 doi: 10.1016/j.bmcl.2013.08.001 – ident: e_1_2_9_37_1 doi: 10.1016/j.canlet.2009.01.040 |
SSID | ssj0013048 |
Score | 2.2666836 |
SecondaryResourceType | review_article |
Snippet | Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 737 |
SubjectTerms | Amyloidogenic Proteins - antagonists & inhibitors Amyloidogenic Proteins - chemistry Amyloidogenic Proteins - genetics Amyloidogenic Proteins - metabolism Animals cell proteostasis network Chalcones - chemistry Chalcones - pharmacology chemical and/or biochemical therapeutic approches Endoplasmic Reticulum - drug effects Endoplasmic Reticulum - metabolism Gene Expression Regulation Heat-Shock Response - drug effects Humans Hydrazones - chemistry Hydrazones - pharmacology Molecular Chaperones - chemistry Molecular Chaperones - genetics Molecular Chaperones - metabolism Neurodegenerative Diseases - drug therapy Neurodegenerative Diseases - genetics Neurodegenerative Diseases - metabolism Neurodegenerative Diseases - pathology Neuroprotective Agents - chemistry Neuroprotective Agents - pharmacology Protein Aggregation, Pathological - genetics Protein Aggregation, Pathological - metabolism Protein Aggregation, Pathological - pathology Protein Aggregation, Pathological - prevention & control Protein Folding - drug effects protein misfolding Proteostasis - drug effects Proteostasis Deficiencies - drug therapy Proteostasis Deficiencies - genetics Proteostasis Deficiencies - metabolism Proteostasis Deficiencies - pathology Pyrimidinones - chemistry Pyrimidinones - pharmacology Thiophenes - chemistry Thiophenes - pharmacology Unfolded Protein Response - drug effects |
Title | Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiof.1264 https://www.ncbi.nlm.nih.gov/pubmed/26899445 https://www.proquest.com/docview/1826654607 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAvCDYu5SaDEEKq0uWe9rEdiwrsgrROqniJnNhZCk2D1lRifUP8cc6xc6tapMFLlFqWa_n7Yh_7-HyHkLd62Pc8XRda6ODRjR7Z2gAsXw2MCTGIgSCOwHjn0zN3fGl_mjrTVut349bSKg970XpnXMn_oAplgCtGyf4DslWjUADvgC88AWF43gpjmbRoLgOVUoEhvLNlqjSXo0IHANoOZ1n5q9uItqrUxJXGA0vFHKP1cwycyjAFZhcYECvfVFeqXnJxJTWq5WWjwrGz3HAKzzK_SN-DIqY_1b356qRhLL6jeZxmVwlMd4qIF-JG8AQWajGrWPqVXQvtcwLG9Gwt7xqcZglLGcZRrqtF5AueXbJvTLqTfOh2KpLmCQYSoTrBUJNu34NZWVepW3piR1kxUytBp4KRzWnXU8IxW8uBkpeFcY57hqnU0jclt8_OA__y5CSYHE8nd8ie6YEB1iZ7w9GHkV87o3SZhK3qUilQpZuHVdObZs3WXmVz6yNtl8kDcr_YdNChYtBD0hKLfXIwXLA8S2_oOyqvAUv_yj65e1SmADwgv2qC0ZpgFAhGS0odNuhFG_SiNb1ontGaXrSgF63pRbfoRUt6PSIX_vHkaKwVOTu0yDIdW7MGwjOMiLk6N6IoZrB88NDkTmzFPLKZw0LLYNwM7RgMVwN1tVxuQn0WCsPzrMekvcgW4imhjPcjh8eGZbuWzQTruxbDvbUJq0bscL1D3pcDHkSFnD1mVZkHSojbDBCbALHpkDdV1R9Kw2VXpdclagEMALrN2EJkq2WAO3AM-dO9Dnmi4KyaMd3-YGDbDvRG4vv39oPRx3MfX57d4o-ek3v1h_KCtPPrlXgJxm8evirI-Qdel7oG |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underlying+mechanisms+and+chemical%2Fbiochemical+therapeutic+approaches+to+ameliorate+protein+misfolding+neurodegenerative+diseases&rft.jtitle=BioFactors+%28Oxford%29&rft.au=Hekmatimoghaddam%2C+Seyedhossein&rft.au=Zare-Khormizi%2C+Mohamad+Reza&rft.au=Pourrajab%2C+Fatemeh&rft.date=2017-11-01&rft.issn=1872-8081&rft.eissn=1872-8081&rft.volume=43&rft.issue=6&rft.spage=737&rft_id=info:doi/10.1002%2Fbiof.1264&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-6433&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-6433&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-6433&client=summon |