Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases

Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as “protein misfolding neurodegenerative diseases” (PMNDs). These phenotypically diverse but b...

Full description

Saved in:
Bibliographic Details
Published inBioFactors (Oxford) Vol. 43; no. 6; pp. 737 - 759
Main Authors Hekmatimoghaddam, Seyedhossein, Zare‐Khormizi, Mohamad Reza, Pourrajab, Fatemeh
Format Journal Article
LanguageEnglish
Published Netherlands 01.11.2017
Subjects
Online AccessGet full text
ISSN0951-6433
1872-8081
1872-8081
DOI10.1002/biof.1264

Cover

Abstract Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as “protein misfolding neurodegenerative diseases” (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post‐transcriptional programs that up‐regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737–759, 2017
AbstractList Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as "protein misfolding neurodegenerative diseases" (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post-transcriptional programs that up-regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737-759, 2017.Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as "protein misfolding neurodegenerative diseases" (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post-transcriptional programs that up-regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737-759, 2017.
Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as "protein misfolding neurodegenerative diseases" (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post-transcriptional programs that up-regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737-759, 2017.
Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or outside of neurons, and are commonly referred to as “protein misfolding neurodegenerative diseases” (PMNDs). These phenotypically diverse but biochemically similar aggregates suggest a highly conserved molecular mechanism of pathogenesis. These challenges are magnified by presence of mutations that render individual proteins subject to misfolding and/or aggregation. Cell proteostasis network and molecular chaperoning are maintaining cell proteome to preserve the protein folding, refolding, oligomerization, or disaggregation, and play formidable tasks to maintain the health of organism in the face of developmental changes, environmental insults, and rigors of aging. Maintenance of cell proteome requires the orchestration of major pathways of the cellular proteostasis network (heat shock response (HSR) in the cytosol and the unfolded protein response (UPR) in the endoplasmic reticulum). Proteostasis responses culminate in transcriptional and post‐transcriptional programs that up‐regulate the homeostatic mechanisms. Proteostasis is strongly influenced by the general properties of individual proteins for folding, misfolding, and aggregation. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We first try to introduce some new chemical approaches to prevent the misfolding or aggregation of specific proteins via direct binding interactions. We then start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organ proteostasis. © 2016 BioFactors, 43(6):737–759, 2017
Author Hekmatimoghaddam, Seyedhossein
Zare‐Khormizi, Mohamad Reza
Pourrajab, Fatemeh
Author_xml – sequence: 1
  givenname: Seyedhossein
  surname: Hekmatimoghaddam
  fullname: Hekmatimoghaddam, Seyedhossein
  organization: School of Paramedicine, Shahid Sadoughi University of Medical Sciences
– sequence: 2
  givenname: Mohamad Reza
  surname: Zare‐Khormizi
  fullname: Zare‐Khormizi, Mohamad Reza
  organization: School of Medicine, Shahid Sadoughi University of Medical Sciences
– sequence: 3
  givenname: Fatemeh
  surname: Pourrajab
  fullname: Pourrajab, Fatemeh
  email: mina_poorrajab@yahoo.com
  organization: School of Medicine, Shahid Sadoughi University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26899445$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1OHDEUha0IBAuhyAtELpNiwH_zs2WCQoKERJGktu7Yd1hHHntjzxBtmTfHA7tNFCpb9nc-XfuckaMQAxLyjrNLzpi46l0cLrlo1Buy4l0rqo51_Iis2LrmVaOkPCVnOf9ijEumuhNyKppuvVaqXpG_P4PF5HcuPNARzQaCy2OmECw1GxydAb_oD3s6bTDBFufJGQrbbYpQrjKdIoURvYsJJqTleEIX6OjyEL1d3AHnFC0-YCj5yT0itS4jZMxvyfEAPuPFfj0n32--_Lj-Vt3df729_nRXGSlqVck1tpwbaJjlxgzAOLe9sPUgB2sU1NBLDlb0apC85Uq2srGi8NAjb1t5Tj68WMtsv2fMky7DGfQeAsY5a96JpqlVwxb0_R6d-xGt3iY3Qtrpw6cV4OoFMCnmnHDQxk3lUTFMCZzXnOmlFr3UopdaSuLjP4mD9H_s3v7Hedy9DurPt_c3z4kn0iSg-w
CitedBy_id crossref_primary_10_1134_S1819712422030114
crossref_primary_10_1016_j_nbd_2018_05_010
crossref_primary_10_1007_s11356_021_13687_y
crossref_primary_10_1134_S0003683822100179
crossref_primary_10_2174_1874609812666190620124324
crossref_primary_10_3390_cells11071205
crossref_primary_10_3389_fnins_2025_1475376
crossref_primary_10_1515_revneuro_2016_0035
crossref_primary_10_1016_j_mcn_2018_11_002
crossref_primary_10_1038_s41392_023_01343_5
crossref_primary_10_1007_s00018_019_03428_3
crossref_primary_10_2147_JEP_S254334
crossref_primary_10_4155_fmc_2017_0031
Cites_doi 10.1016/j.neurobiolaging.2014.04.031
10.1016/j.ejmech.2014.07.095
10.1016/j.bbrc.2006.10.085
10.1016/j.neuron.2008.03.015
10.1016/j.ceb.2010.11.002
10.1593/neo.91422
10.1016/j.jmb.2013.08.006
10.1016/j.ejmech.2013.05.015
10.1016/j.nbd.2005.07.007
10.1016/j.febslet.2011.07.041
10.1016/j.bbapap.2015.01.014
10.1016/j.bmcl.2014.05.008
10.1111/j.1747-0285.2005.00318.x
10.1016/j.biocel.2015.01.015
10.1016/j.ejmech.2015.01.027
10.1016/j.semcdb.2007.09.003
10.1016/S0092-8674(03)00939-5
10.1016/j.ejmech.2014.05.083
10.1016/j.bmcl.2012.02.089
10.1016/j.bbrc.2015.01.021
10.1016/j.jmb.2015.02.010
10.1016/j.bbamem.2013.11.002
10.1016/j.chembiol.2013.09.020
10.1016/j.celrep.2012.11.001
10.1016/j.ejmech.2014.06.034
10.1016/j.biochi.2007.06.009
10.1016/j.tcb.2008.04.003
10.1016/j.bmcl.2009.03.011
10.1016/j.ejps.2013.04.024
10.1016/j.bbrc.2009.10.079
10.1016/j.parkreldis.2009.03.002
10.1016/j.ejmech.2013.02.014
10.1016/j.bmcl.2009.09.021
10.1016/j.cellsig.2013.11.008
10.1016/j.bbapap.2014.12.019
10.1016/j.abb.2008.04.015
10.1016/j.bmcl.2013.11.039
10.1155/2011/148046
10.1016/j.coi.2011.07.002
10.1016/j.bmcl.2014.12.080
10.1016/j.bmcl.2009.05.073
10.1016/j.cell.2010.02.034
10.1016/j.bmcl.2013.08.001
10.1016/j.canlet.2009.01.040
ContentType Journal Article
Copyright 2016 International Union of Biochemistry and Molecular Biology
2016 International Union of Biochemistry and Molecular Biology.
Copyright_xml – notice: 2016 International Union of Biochemistry and Molecular Biology
– notice: 2016 International Union of Biochemistry and Molecular Biology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/biof.1264
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1872-8081
EndPage 759
ExternalDocumentID 26899445
10_1002_biof_1264
BIOF1264
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-~X
.GJ
05W
0R~
10A
1OC
23N
31~
33P
36B
3SF
4.4
4P2
52S
52U
52V
53G
5GY
5RE
8-1
A8Z
AAESR
AAEVG
AAHBH
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABQWH
ABUBZ
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPQW
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRHK
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
C45
CAG
COF
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
ESX
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IOS
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MET
MEWTI
MIO
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
O66
O9-
OIG
OVD
P2P
P2W
QB0
ROL
SUPJJ
SV3
TEORI
TUS
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
AAFNC
AAHHS
AAYXX
ACCFJ
ADZMO
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AJNRN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
ID FETCH-LOGICAL-c3254-39e711ca60d1ccfa011db2d5f3fdc4a5ab31ad2b4f317143736d21caabe1773
ISSN 0951-6433
1872-8081
IngestDate Mon Sep 08 16:05:13 EDT 2025
Thu Apr 03 07:05:28 EDT 2025
Thu Apr 24 22:52:03 EDT 2025
Tue Jul 01 01:27:04 EDT 2025
Wed Aug 20 07:25:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords cell proteostasis network
chemical and/or biochemical therapeutic approches
protein misfolding
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 International Union of Biochemistry and Molecular Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3254-39e711ca60d1ccfa011db2d5f3fdc4a5ab31ad2b4f317143736d21caabe1773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26899445
PQID 1826654607
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_1826654607
pubmed_primary_26899445
crossref_citationtrail_10_1002_biof_1264
crossref_primary_10_1002_biof_1264
wiley_primary_10_1002_biof_1264_BIOF1264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2017
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November/December 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle BioFactors (Oxford)
PublicationTitleAlternate Biofactors
PublicationYear 2017
References 2010; 12
2007; 18
2013; 4
2013; 49
2013; 66
2015; 92
2009; 280
2013; 23
2008; 18
2013; 20
2013; 63
2013; 425
2008; 58
2014; 26
2006; 351
2014; 24
2015; 1854
2010; 140
2015; 427
2014; 85
2003; 115
2014; 83
2014; 82
2008; 90
2014; 1838
2011; 2011
2015; 25
2012; 2
2015; 457
2006; 67
2006; 21
2009; 390
2015; 61
2014; 35
2011; 23
2008; 475
2009; 19
2012; 22
2011; 585
2009; 15
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
SiyanCao S. (e_1_2_9_29_1) 2013; 4
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – volume: 351
  start-page: 631
  year: 2006
  end-page: 638
  article-title: Small heat shock proteins protect against a‐synuclein‐induced toxicity and aggregation
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 35
  start-page: 2272
  year: 2014
  end-page: 2281
  article-title: PERK mediates eIF2a phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 66
  start-page: 22
  year: 2013
  end-page: 31
  article-title: Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid‐beta aggregation and 5‐lipoxygenase
  publication-title: Eur. J. Med. Chem.
– volume: 1838
  start-page: 756
  year: 2014
  end-page: 765
  article-title: Differential functional rescue of Lys513 and Lys516 processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain–domain interactions of the transporter
  publication-title: Biochim. Biophys. Acta
– volume: 12
  start-page: 80
  year: 2010
  end-page: 86
  article-title: Activation of the unfolded protein response contributes toward the antitumor activity of vorinostat 1
  publication-title: Neoplasia
– volume: 24
  start-page: 685
  year: 2014
  end-page: 690
  article-title: Synthesis and evaluation of curcumin derivatives toward an inhibitor of beta‐site amyloid precursor protein cleaving enzyme 1
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 1854
  start-page: 426
  year: 2015
  end-page: 436
  article-title: Curcumin binds to the pre‐fibrillar aggregates of Cu/Zn superoxide 2 dismutase (SOD1) and alters its amyloidogenic pathway 3 resulting in reduced cytotoxicity
  publication-title: Biochim. Biophys. Acta.
– volume: 457
  start-page: 473
  year: 2015
  end-page: 478
  article-title: Sir2 links the unfolded protein response and the heat shock response in a stress response network
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 82
  start-page: 363
  year: 2014
  end-page: 371
  article-title: Evaluation of the antiprion activity of 6‐aminophenanthridines and related heterocycles
  publication-title: Eur. J. Med. Chem.
– volume: 21
  start-page: 228
  year: 2006
  end-page: 236
  article-title: Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL‐135 as therapeutics for Huntington's disease
  publication-title: Neurobiol. Dis.
– volume: 23
  start-page: 6015
  year: 2013
  end-page: 6018
  article-title: 4‐Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical chaperone rather than histone deacetylase inhibitor
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 22
  start-page: 2789
  year: 2012
  end-page: 2793
  article-title: 3(N‐Arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2)
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 15
  start-page: 649
  year: 2009
  end-page: 654
  article-title: A chemical chaperone, sodium 4‐phenylbutyric acid, attenuates the pathogenic potency in human a‐synuclein A30P þA53T transgenic mice
  publication-title: Parkinsonism Relat. Disord.
– volume: 49
  start-page: 603
  year: 2013
  end-page: 613
  article-title: 1,4‐Substituted 4‐(1H)‐pyridylene‐hydrazone‐type inhibitors of AChE, BuChE, and amyloid‐b aggregation crossing the blood–brain barrier
  publication-title: Eur. J. Pharm. Sci.
– volume: 63
  start-page: 299
  year: 2013
  end-page: 312
  article-title: Synthesis and evaluation of 7,8‐dehydrorutaecarpine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease
  publication-title: Eur. J. Med. Chem.
– volume: 4
  start-page: 89
  year: 2013
  end-page: 1000
  article-title: The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice
  publication-title: Gastrology
– volume: 67
  start-page: 27
  year: 2006
  end-page: 37
  article-title: Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism
  publication-title: Chem. Biol. Drug Des.
– volume: 85
  start-page: 228
  year: 2014
  end-page: 234
  article-title: Development of dual targeting inhibitors against aggregations of amyloid ß and tau protein
  publication-title: Eur. J. Med. Chem.
– volume: 23
  start-page: 670
  year: 2011
  end-page: 678
  article-title: Histone/protein deacetylases control Foxp3 expression and the heat shock response of T‐regulatory cells
  publication-title: Curr. Opin. Immunol.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: The role of HDACs inhibitors in childhood and adolescence acute leukemias
  publication-title: J. Biomed. Biotechnol.
– volume: 18
  start-page: 291
  year: 2008
  end-page: 297
  article-title: HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions
  publication-title: Trends Cell Biol.
– volume: 61
  start-page: 45
  year: 2015
  end-page: 52
  article-title: The therapeutic effects of 4‐phenylbutyric acid in maintaining proteostasis
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 475
  start-page: 109
  year: 2008
  end-page: 114
  article-title: A chemical chaperone 4‐PBA ameliorates palmitate‐induced inhibition of glucose‐stimulated insulin secretion (GSIS)
  publication-title: Arch. Biochem. Biophys.
– volume: 19
  start-page: 4303
  year: 2009
  end-page: 4307
  article-title: Pyrimido[5,4‐e][1,2,4]triazine‐5,7(1H,6H)‐dione derivatives as novel small molecule chaperone amplifiers
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 26
  start-page: 287
  year: 2014
  end-page: 294
  article-title: Sustained IRE1 and ATF6 signaling is important for survival ofmelanoma cells undergoing ER stress
  publication-title: Cell. Signal.
– volume: 2
  start-page: 1492
  year: 2012
  end-page: 1497
  article-title: The sirtuin 2 inhibitor AK‐7 is neuroprotective in Huntington's disease mouse models
  publication-title: Cell Rep.
– volume: 58
  start-page: 10
  year: 2008
  end-page: 14
  article-title: Paths of convergence: sirtuins in aging and neurodegeneration
  publication-title: Neuron
– volume: 585
  start-page: 2744
  year: 2011
  end-page: 2748
  article-title: Regulation of chaperone gene expression by heat shock transcription factor in : importance in normal cell growth, stress resistance, and longevity
  publication-title: FEBS Lett.
– volume: 20
  start-page: 1456
  year: 2013
  end-page: 1468
  article-title: SAHA enhances proteostasis of epilepsy‐associated a1(A322D)b2g2 GABAA receptors
  publication-title: Chem. Biol.
– volume: 92
  start-page: 738
  year: 2015
  end-page: 749
  article-title: Development of multifunctional, heterodimeric isoindoline‐1,3‐dione derivatives as cholinesterase and b‐amyloid aggregation inhibitors with neuroprotective properties
  publication-title: Eur. J. Med. Chem.
– volume: 23
  start-page: 231
  year: 2011
  end-page: 238
  article-title: Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases
  publication-title: Curr. Opin. Cell Biol.
– volume: 19
  start-page: 6114
  year: 2009
  end-page: 6118
  article-title: Pyrimido[5,4‐e][1,2,4]triazine‐5,7(1H,6H)‐dione derivatives: their cytoprotection effect from rotenone toxicity and preliminary DMPK properties
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 90
  start-page: 306
  year: 2008
  end-page: 312
  article-title: Regulation of protein turnover by acetyltransferases and deacetylases
  publication-title: Biochimie
– volume: 18
  start-page: 716
  year: 2007
  end-page: 731
  article-title: The endoplasmic reticulum and the unfolded protein response
  publication-title: Semin. Cell Dev. Biol.
– volume: 1854
  start-page: 291
  year: 2015
  end-page: 319
  article-title: Small heat shock proteins: role in cellular functions and pathology
  publication-title: Biochim. Biophys. Acta
– volume: 115
  start-page: 727
  year: 2003
  end-page: 738
  article-title: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress
  publication-title: Cell
– volume: 19
  start-page: 3128
  year: 2009
  end-page: 3135
  article-title: Chloro‐oxime derivatives as novel small molecule chaperone amplifiers
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 390
  start-page: 925
  year: 2009
  end-page: 930
  article-title: Identification of small‐molecule HSF1 amplifiers by high content screening in protection of cells from stress induced injury
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 425
  start-page: 4614
  year: 2013
  end-page: 4628
  article-title: Hsp90 inhibits α‐synuclein aggregation by interacting with soluble oligomers
  publication-title: J. Mol. Biol.
– volume: 83
  start-page: 355
  year: 2014
  end-page: 365
  article-title: Synthesis of a, b‐unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: characterization, molecular modeling, QSAR studies and effect against amyloid ß‐induced cytotoxicity
  publication-title: Eur. J. Med. Chem.
– volume: 25
  start-page: 811
  year: 2015
  end-page: 814
  article-title: Evaluation of synthetic naphthalene derivatives as novel chemical chaperones that mimic 4‐phenylbutyric acid
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 140
  start-page: 900
  year: 2010
  end-page: 917
  article-title: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
  publication-title: Cell
– volume: 427
  start-page: 1644
  year: 2015
  end-page: 1654
  article-title: Lysine deacetylases regulate the heat shock response including the age‐associated impairment of HSF1
  publication-title: J. Mol. Biol.
– volume: 24
  start-page: 3108
  year: 2014
  end-page: 3112
  article-title: Naturally occurring polyphenolic inhibitors of amyloid beta aggregation
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 280
  start-page: 222
  year: 2009
  end-page: 232
  article-title: Histone deacetylase inhibitors that target tubulin
  publication-title: Cancer Lett.
– ident: e_1_2_9_13_1
  doi: 10.1016/j.neurobiolaging.2014.04.031
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ejmech.2014.07.095
– ident: e_1_2_9_8_1
  doi: 10.1016/j.bbrc.2006.10.085
– ident: e_1_2_9_43_1
  doi: 10.1016/j.neuron.2008.03.015
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ceb.2010.11.002
– ident: e_1_2_9_7_1
  doi: 10.1593/neo.91422
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jmb.2013.08.006
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ejmech.2013.05.015
– ident: e_1_2_9_4_1
  doi: 10.1016/j.nbd.2005.07.007
– ident: e_1_2_9_11_1
  doi: 10.1016/j.febslet.2011.07.041
– ident: e_1_2_9_39_1
  doi: 10.1016/j.bbapap.2015.01.014
– ident: e_1_2_9_18_1
  doi: 10.1016/j.bmcl.2014.05.008
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1747-0285.2005.00318.x
– ident: e_1_2_9_30_1
  doi: 10.1016/j.biocel.2015.01.015
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ejmech.2015.01.027
– ident: e_1_2_9_2_1
  doi: 10.1016/j.semcdb.2007.09.003
– ident: e_1_2_9_46_1
  doi: 10.1016/S0092-8674(03)00939-5
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ejmech.2014.05.083
– ident: e_1_2_9_38_1
  doi: 10.1016/j.bmcl.2012.02.089
– ident: e_1_2_9_10_1
  doi: 10.1016/j.bbrc.2015.01.021
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jmb.2015.02.010
– ident: e_1_2_9_26_1
  doi: 10.1016/j.bbamem.2013.11.002
– ident: e_1_2_9_28_1
  doi: 10.1016/j.chembiol.2013.09.020
– ident: e_1_2_9_36_1
  doi: 10.1016/j.celrep.2012.11.001
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ejmech.2014.06.034
– ident: e_1_2_9_27_1
  doi: 10.1016/j.biochi.2007.06.009
– ident: e_1_2_9_45_1
  doi: 10.1016/j.tcb.2008.04.003
– ident: e_1_2_9_3_1
  doi: 10.1016/j.bmcl.2009.03.011
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ejps.2013.04.024
– ident: e_1_2_9_5_1
  doi: 10.1016/j.bbrc.2009.10.079
– ident: e_1_2_9_12_1
  doi: 10.1016/j.parkreldis.2009.03.002
– ident: e_1_2_9_21_1
  doi: 10.1016/j.ejmech.2013.02.014
– ident: e_1_2_9_34_1
  doi: 10.1016/j.bmcl.2009.09.021
– volume: 4
  start-page: 89
  year: 2013
  ident: e_1_2_9_29_1
  article-title: The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice
  publication-title: Gastrology
– ident: e_1_2_9_14_1
  doi: 10.1016/j.cellsig.2013.11.008
– ident: e_1_2_9_17_1
  doi: 10.1016/j.bbapap.2014.12.019
– ident: e_1_2_9_31_1
  doi: 10.1016/j.abb.2008.04.015
– ident: e_1_2_9_23_1
  doi: 10.1016/j.bmcl.2013.11.039
– ident: e_1_2_9_35_1
  doi: 10.1155/2011/148046
– ident: e_1_2_9_40_1
  doi: 10.1016/j.coi.2011.07.002
– ident: e_1_2_9_33_1
  doi: 10.1016/j.bmcl.2014.12.080
– ident: e_1_2_9_6_1
  doi: 10.1016/j.bmcl.2009.05.073
– ident: e_1_2_9_42_1
  doi: 10.1016/j.cell.2010.02.034
– ident: e_1_2_9_32_1
  doi: 10.1016/j.bmcl.2013.08.001
– ident: e_1_2_9_37_1
  doi: 10.1016/j.canlet.2009.01.040
SSID ssj0013048
Score 2.2666836
SecondaryResourceType review_article
Snippet Protein misfolding and inclusion body formations are common events in neurodegenerative diseases characterized by deposition of misfolded proteins inside or...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 737
SubjectTerms Amyloidogenic Proteins - antagonists & inhibitors
Amyloidogenic Proteins - chemistry
Amyloidogenic Proteins - genetics
Amyloidogenic Proteins - metabolism
Animals
cell proteostasis network
Chalcones - chemistry
Chalcones - pharmacology
chemical and/or biochemical therapeutic approches
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - metabolism
Gene Expression Regulation
Heat-Shock Response - drug effects
Humans
Hydrazones - chemistry
Hydrazones - pharmacology
Molecular Chaperones - chemistry
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Neurodegenerative Diseases - drug therapy
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - metabolism
Neurodegenerative Diseases - pathology
Neuroprotective Agents - chemistry
Neuroprotective Agents - pharmacology
Protein Aggregation, Pathological - genetics
Protein Aggregation, Pathological - metabolism
Protein Aggregation, Pathological - pathology
Protein Aggregation, Pathological - prevention & control
Protein Folding - drug effects
protein misfolding
Proteostasis - drug effects
Proteostasis Deficiencies - drug therapy
Proteostasis Deficiencies - genetics
Proteostasis Deficiencies - metabolism
Proteostasis Deficiencies - pathology
Pyrimidinones - chemistry
Pyrimidinones - pharmacology
Thiophenes - chemistry
Thiophenes - pharmacology
Unfolded Protein Response - drug effects
Title Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiof.1264
https://www.ncbi.nlm.nih.gov/pubmed/26899445
https://www.proquest.com/docview/1826654607
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAvCDYu5SaDEEKq0uWe9rEdiwrsgrROqniJnNhZCk2D1lRifUP8cc6xc6tapMFLlFqWa_n7Yh_7-HyHkLd62Pc8XRda6ODRjR7Z2gAsXw2MCTGIgSCOwHjn0zN3fGl_mjrTVut349bSKg970XpnXMn_oAplgCtGyf4DslWjUADvgC88AWF43gpjmbRoLgOVUoEhvLNlqjSXo0IHANoOZ1n5q9uItqrUxJXGA0vFHKP1cwycyjAFZhcYECvfVFeqXnJxJTWq5WWjwrGz3HAKzzK_SN-DIqY_1b356qRhLL6jeZxmVwlMd4qIF-JG8AQWajGrWPqVXQvtcwLG9Gwt7xqcZglLGcZRrqtF5AueXbJvTLqTfOh2KpLmCQYSoTrBUJNu34NZWVepW3piR1kxUytBp4KRzWnXU8IxW8uBkpeFcY57hqnU0jclt8_OA__y5CSYHE8nd8ie6YEB1iZ7w9GHkV87o3SZhK3qUilQpZuHVdObZs3WXmVz6yNtl8kDcr_YdNChYtBD0hKLfXIwXLA8S2_oOyqvAUv_yj65e1SmADwgv2qC0ZpgFAhGS0odNuhFG_SiNb1ontGaXrSgF63pRbfoRUt6PSIX_vHkaKwVOTu0yDIdW7MGwjOMiLk6N6IoZrB88NDkTmzFPLKZw0LLYNwM7RgMVwN1tVxuQn0WCsPzrMekvcgW4imhjPcjh8eGZbuWzQTruxbDvbUJq0bscL1D3pcDHkSFnD1mVZkHSojbDBCbALHpkDdV1R9Kw2VXpdclagEMALrN2EJkq2WAO3AM-dO9Dnmi4KyaMd3-YGDbDvRG4vv39oPRx3MfX57d4o-ek3v1h_KCtPPrlXgJxm8evirI-Qdel7oG
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underlying+mechanisms+and+chemical%2Fbiochemical+therapeutic+approaches+to+ameliorate+protein+misfolding+neurodegenerative+diseases&rft.jtitle=BioFactors+%28Oxford%29&rft.au=Hekmatimoghaddam%2C+Seyedhossein&rft.au=Zare-Khormizi%2C+Mohamad+Reza&rft.au=Pourrajab%2C+Fatemeh&rft.date=2017-11-01&rft.issn=1872-8081&rft.eissn=1872-8081&rft.volume=43&rft.issue=6&rft.spage=737&rft_id=info:doi/10.1002%2Fbiof.1264&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-6433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-6433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-6433&client=summon