Immunomodulatory potential of Nisin A with application in wound healing

Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them attractive as therapeutic treatment of difficult wounds. Nisin A is widely known for its antimicrobial activity, and a preliminary study demonstrate...

Full description

Saved in:
Bibliographic Details
Published inWound repair and regeneration Vol. 27; no. 6; pp. 650 - 660
Main Authors Mouritzen, Michelle V., Andrea, Athina, Qvist, Katrine, Poulsen, Steen S., Jenssen, Håvard
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2019
Online AccessGet full text
ISSN1067-1927
1524-475X
1524-475X
DOI10.1111/wrr.12743

Cover

Abstract Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them attractive as therapeutic treatment of difficult wounds. Nisin A is widely known for its antimicrobial activity, and a preliminary study demonstrated that it increased wound closure, but the mechanism behind its effect is unknown. The aim of this study is to elucidate the wound healing potential of Nisin A and the mechanism behind. First, an epithelial and endothelial cell line, human keratinocyte (HaCaT) and human umbilical vein endothelial cell, were used to demonstrate migration and proliferation effects in vitro. From HaCaT cells and peripheral blood mononuclear cell, changes in cytokine levels were shown by quantitative polymerase chain reaction and enzyme‐linked immunosorbent assay. Second, the ex vivo porcine wound healing model was used to investigate the re‐epithelization potential of Nisin A. Finally, the model Galleria mellonella was used to confirm antimicrobial activity and to investigate potential immunomodulatory effects in vivo. Here, we demonstrated that Nisin A affected migration significantly of both human umbilical vein endothelial cell and HaCaT cells (p < 0.05) but not proliferation, potentially by decreasing the levels of proinflammatory cytokines tumor necrosis factor‐α, interleukin‐6, and interleukin‐8 (p < 0.001). Furthermore, Nisin A treatment diminished lipopolysaccharide‐induced tumor necrosis factor‐α levels from peripheral blood mononuclear cells and monocyte chemoattractant protein‐1 from HaCaT cells (p < 0.001). Furthermore, Nisin A did not affect proliferation ex vivo either but increased re‐epithelization of the porcine skin. Nisin A improved survival of G. mellonella significantly from Staphylococcus epidermidis (p < 0.001) but not from Escherichia coli, indicating that Nisin A did not help the larvae to survive the infection in a different than direct antimicrobial way. All together this makes Nisin A a potential treatment to use in wound healing, as it increases the mobility of skin cells, dampens the effect of lipopolysaccharide and proinflammatory cytokines, and decreases bacterial growth.
AbstractList Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them attractive as therapeutic treatment of difficult wounds. Nisin A is widely known for its antimicrobial activity, and a preliminary study demonstrated that it increased wound closure, but the mechanism behind its effect is unknown. The aim of this study is to elucidate the wound healing potential of Nisin A and the mechanism behind. First, an epithelial and endothelial cell line, human keratinocyte (HaCaT) and human umbilical vein endothelial cell, were used to demonstrate migration and proliferation effects in vitro. From HaCaT cells and peripheral blood mononuclear cell, changes in cytokine levels were shown by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Second, the ex vivo porcine wound healing model was used to investigate the re-epithelization potential of Nisin A. Finally, the model Galleria mellonella was used to confirm antimicrobial activity and to investigate potential immunomodulatory effects in vivo. Here, we demonstrated that Nisin A affected migration significantly of both human umbilical vein endothelial cell and HaCaT cells (p < 0.05) but not proliferation, potentially by decreasing the levels of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-8 (p < 0.001). Furthermore, Nisin A treatment diminished lipopolysaccharide-induced tumor necrosis factor-α levels from peripheral blood mononuclear cells and monocyte chemoattractant protein-1 from HaCaT cells (p < 0.001). Furthermore, Nisin A did not affect proliferation ex vivo either but increased re-epithelization of the porcine skin. Nisin A improved survival of G. mellonella significantly from Staphylococcus epidermidis (p < 0.001) but not from Escherichia coli, indicating that Nisin A did not help the larvae to survive the infection in a different than direct antimicrobial way. All together this makes Nisin A a potential treatment to use in wound healing, as it increases the mobility of skin cells, dampens the effect of lipopolysaccharide and proinflammatory cytokines, and decreases bacterial growth.Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them attractive as therapeutic treatment of difficult wounds. Nisin A is widely known for its antimicrobial activity, and a preliminary study demonstrated that it increased wound closure, but the mechanism behind its effect is unknown. The aim of this study is to elucidate the wound healing potential of Nisin A and the mechanism behind. First, an epithelial and endothelial cell line, human keratinocyte (HaCaT) and human umbilical vein endothelial cell, were used to demonstrate migration and proliferation effects in vitro. From HaCaT cells and peripheral blood mononuclear cell, changes in cytokine levels were shown by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Second, the ex vivo porcine wound healing model was used to investigate the re-epithelization potential of Nisin A. Finally, the model Galleria mellonella was used to confirm antimicrobial activity and to investigate potential immunomodulatory effects in vivo. Here, we demonstrated that Nisin A affected migration significantly of both human umbilical vein endothelial cell and HaCaT cells (p < 0.05) but not proliferation, potentially by decreasing the levels of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-8 (p < 0.001). Furthermore, Nisin A treatment diminished lipopolysaccharide-induced tumor necrosis factor-α levels from peripheral blood mononuclear cells and monocyte chemoattractant protein-1 from HaCaT cells (p < 0.001). Furthermore, Nisin A did not affect proliferation ex vivo either but increased re-epithelization of the porcine skin. Nisin A improved survival of G. mellonella significantly from Staphylococcus epidermidis (p < 0.001) but not from Escherichia coli, indicating that Nisin A did not help the larvae to survive the infection in a different than direct antimicrobial way. All together this makes Nisin A a potential treatment to use in wound healing, as it increases the mobility of skin cells, dampens the effect of lipopolysaccharide and proinflammatory cytokines, and decreases bacterial growth.
Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them attractive as therapeutic treatment of difficult wounds. Nisin A is widely known for its antimicrobial activity, and a preliminary study demonstrated that it increased wound closure, but the mechanism behind its effect is unknown. The aim of this study is to elucidate the wound healing potential of Nisin A and the mechanism behind. First, an epithelial and endothelial cell line, human keratinocyte (HaCaT) and human umbilical vein endothelial cell, were used to demonstrate migration and proliferation effects in vitro. From HaCaT cells and peripheral blood mononuclear cell, changes in cytokine levels were shown by quantitative polymerase chain reaction and enzyme‐linked immunosorbent assay. Second, the ex vivo porcine wound healing model was used to investigate the re‐epithelization potential of Nisin A. Finally, the model Galleria mellonella was used to confirm antimicrobial activity and to investigate potential immunomodulatory effects in vivo. Here, we demonstrated that Nisin A affected migration significantly of both human umbilical vein endothelial cell and HaCaT cells ( p  < 0.05) but not proliferation, potentially by decreasing the levels of proinflammatory cytokines tumor necrosis factor‐α, interleukin‐6, and interleukin‐8 ( p  < 0.001). Furthermore, Nisin A treatment diminished lipopolysaccharide‐induced tumor necrosis factor‐α levels from peripheral blood mononuclear cells and monocyte chemoattractant protein‐1 from HaCaT cells ( p  < 0.001). Furthermore, Nisin A did not affect proliferation ex vivo either but increased re‐epithelization of the porcine skin. Nisin A improved survival of G. mellonella significantly from Staphylococcus epidermidis ( p  < 0.001) but not from Escherichia coli , indicating that Nisin A did not help the larvae to survive the infection in a different than direct antimicrobial way. All together this makes Nisin A a potential treatment to use in wound healing, as it increases the mobility of skin cells, dampens the effect of lipopolysaccharide and proinflammatory cytokines, and decreases bacterial growth.
Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them attractive as therapeutic treatment of difficult wounds. Nisin A is widely known for its antimicrobial activity, and a preliminary study demonstrated that it increased wound closure, but the mechanism behind its effect is unknown. The aim of this study is to elucidate the wound healing potential of Nisin A and the mechanism behind. First, an epithelial and endothelial cell line, human keratinocyte (HaCaT) and human umbilical vein endothelial cell, were used to demonstrate migration and proliferation effects in vitro. From HaCaT cells and peripheral blood mononuclear cell, changes in cytokine levels were shown by quantitative polymerase chain reaction and enzyme‐linked immunosorbent assay. Second, the ex vivo porcine wound healing model was used to investigate the re‐epithelization potential of Nisin A. Finally, the model Galleria mellonella was used to confirm antimicrobial activity and to investigate potential immunomodulatory effects in vivo. Here, we demonstrated that Nisin A affected migration significantly of both human umbilical vein endothelial cell and HaCaT cells (p < 0.05) but not proliferation, potentially by decreasing the levels of proinflammatory cytokines tumor necrosis factor‐α, interleukin‐6, and interleukin‐8 (p < 0.001). Furthermore, Nisin A treatment diminished lipopolysaccharide‐induced tumor necrosis factor‐α levels from peripheral blood mononuclear cells and monocyte chemoattractant protein‐1 from HaCaT cells (p < 0.001). Furthermore, Nisin A did not affect proliferation ex vivo either but increased re‐epithelization of the porcine skin. Nisin A improved survival of G. mellonella significantly from Staphylococcus epidermidis (p < 0.001) but not from Escherichia coli, indicating that Nisin A did not help the larvae to survive the infection in a different than direct antimicrobial way. All together this makes Nisin A a potential treatment to use in wound healing, as it increases the mobility of skin cells, dampens the effect of lipopolysaccharide and proinflammatory cytokines, and decreases bacterial growth.
Author Andrea, Athina
Poulsen, Steen S.
Mouritzen, Michelle V.
Jenssen, Håvard
Qvist, Katrine
Author_xml – sequence: 1
  givenname: Michelle V.
  orcidid: 0000-0003-3870-5113
  surname: Mouritzen
  fullname: Mouritzen, Michelle V.
  organization: Roskilde University
– sequence: 2
  givenname: Athina
  surname: Andrea
  fullname: Andrea, Athina
  organization: Roskilde University
– sequence: 3
  givenname: Katrine
  surname: Qvist
  fullname: Qvist, Katrine
  organization: Roskilde University
– sequence: 4
  givenname: Steen S.
  surname: Poulsen
  fullname: Poulsen, Steen S.
  organization: University of Copenhagen
– sequence: 5
  givenname: Håvard
  orcidid: 0000-0003-0007-0335
  surname: Jenssen
  fullname: Jenssen, Håvard
  email: jenssen@ruc.dk
  organization: Roskilde University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31287619$$D View this record in MEDLINE/PubMed
BookMark eNp9kN9LwzAQx4NM3A998B-QPupDt6RN2uVxDJ2DoTAUfSvXLHWRNKlJS9l_b92mD4Leyx3H53twnyHqGWskQpcEj0lXk9a5MYlSGp-gAWERDWnKXnvdjJM0JDxK-2jo_TvGmDE-PUP9mETTNCF8gBbLsmyMLe2m0VBbtwsqW0tTK9CBLYIH5ZUJZkGr6m0AVaWVgFpZE3Tb1jZmE2wlaGXeztFpAdrLi2Mfoee726f5fbh6XCzns1Uo4ojFYS4o5HmMIc0p4QBcME5kwZkgQoIACjLmnElJaExxSjFlES4KMpUCSAFJPELXh7uVsx-N9HVWKi-k1mCkbXwWRYwyklCOO_TqiDZ5KTdZ5VQJbpd9P98BNwdAOOu9k8UPQnD2JTbrxGZ7sR07-cUKVe9V1A6U_i_RKi13f5_OXtbrQ-ITckaKOw
CitedBy_id crossref_primary_10_12968_jowc_2023_32_5_318
crossref_primary_10_1007_s10989_022_10452_8
crossref_primary_10_3390_pharmaceutics14122716
crossref_primary_10_3390_biom11070952
crossref_primary_10_3390_polym15244701
crossref_primary_10_3168_jds_2021_21356
crossref_primary_10_1016_j_omtm_2021_02_008
crossref_primary_10_1039_D4NP00042K
crossref_primary_10_3390_antibiotics13010049
crossref_primary_10_1155_2021_5518825
crossref_primary_10_1186_s12917_024_04105_9
crossref_primary_10_3390_antibiotics12010141
crossref_primary_10_1016_j_peptides_2021_170707
crossref_primary_10_3390_antibiotics9060305
crossref_primary_10_1155_2022_2914210
crossref_primary_10_5851_kosfa_2023_e34
crossref_primary_10_5115_acb_21_168
crossref_primary_10_1016_j_jddst_2023_105246
crossref_primary_10_3390_foods11111575
crossref_primary_10_1007_s00203_024_04152_8
crossref_primary_10_1016_j_carpta_2025_100762
crossref_primary_10_1016_j_ijbiomac_2024_131329
crossref_primary_10_1111_wrr_12909
crossref_primary_10_1002_jobm_202400510
crossref_primary_10_1016_j_peptides_2024_171220
crossref_primary_10_1007_s00203_024_03948_y
crossref_primary_10_1016_j_heliyon_2025_e42510
crossref_primary_10_1016_j_peptides_2020_170479
crossref_primary_10_1007_s12223_022_01030_y
crossref_primary_10_1016_j_bpc_2021_106603
crossref_primary_10_3390_fermentation8060255
crossref_primary_10_34172_apb_2022_047
crossref_primary_10_3390_nu13124265
crossref_primary_10_1016_j_jconrel_2023_08_061
crossref_primary_10_3390_pharmaceutics14010076
crossref_primary_10_3390_ijms23010321
crossref_primary_10_1016_j_pharmthera_2021_107990
crossref_primary_10_3390_membranes12121253
crossref_primary_10_1093_jac_dkab040
Cites_doi 10.1128/AAC.00622-13
10.3892/etm.2011.402
10.1089/adt.2014.573
10.1089/wound.2012.0381
10.1016/S0378-5173(00)00665-7
10.1242/jcs.079509
10.1002/psc.3093
10.1007/s12602-013-9141-3
10.1016/j.ijpharm.2017.04.071
10.1002/psc.1341
10.1002/psc.3080
10.1016/S0928-8244(99)00004-8
10.3390/microorganisms7030085
10.1007/s00018-011-0710-x
10.12703/P6-13
10.1155/2017/7435621
10.1093/ilar/ilv016
10.3389/fmicb.2015.00617
10.1046/j.1469-7580.1997.19040601.x
10.1038/nprot.2008.73
10.1038/nrm1619
10.1016/j.it.2018.01.010
10.1186/1471-2180-13-23
10.1128/AAC.00888-13
10.1165/rcmb.2009-0250OC
10.1159/000336630
10.1189/jlb.0802397
10.1126/scitranslmed.3009337
10.1016/j.det.2007.06.003
10.1089/wound.2015.0635
10.1093/jac/dkf190
10.1016/j.peptides.2018.01.010
10.1038/srep11458
10.1096/fj.01-0776com
10.1371/journal.pone.0184164
10.1371/journal.pone.0131008
10.1177/1753425912461456
10.1111/j.1524-475X.2009.00543.x
10.1016/S1349-0079(09)80024-8
10.1016/j.cytogfr.2014.07.016
10.4049/jimmunol.167.9.5067
ContentType Journal Article
Copyright 2019 by the Wound Healing Society
2019 by the Wound Healing Society.
Copyright_xml – notice: 2019 by the Wound Healing Society
– notice: 2019 by the Wound Healing Society.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1111/wrr.12743
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1524-475X
EndPage 660
ExternalDocumentID 31287619
10_1111_wrr_12743
WRR12743
Genre article
Journal Article
GrantInformation_xml – fundername: Danish Council for Independent Research, Technology and Production
  funderid: 4005‐00029
– fundername: Danish Council for Independent Research, Technology and Production
  grantid: 4005-00029
GroupedDBID ---
.3N
.GA
.Y3
04C
05W
0R~
10A
123
1OB
1OC
29R
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOJX
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3253-bc4abb30a7b419aa9c591ef95c1ceaca4ae3995ee143407404520ff18eca1fa63
IEDL.DBID DR2
ISSN 1067-1927
1524-475X
IngestDate Fri Jul 11 02:54:08 EDT 2025
Wed Feb 19 02:31:39 EST 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 03:01:38 EDT 2025
Wed Jan 22 16:38:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2019 by the Wound Healing Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3253-bc4abb30a7b419aa9c591ef95c1ceaca4ae3995ee143407404520ff18eca1fa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3870-5113
0000-0003-0007-0335
PMID 31287619
PQID 2254516490
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2254516490
pubmed_primary_31287619
crossref_primary_10_1111_wrr_12743
crossref_citationtrail_10_1111_wrr_12743
wiley_primary_10_1111_wrr_12743_WRR12743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2019
2019-11-00
2019-Nov
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November/December 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Wound repair and regeneration
PublicationTitleAlternate Wound Repair Regen
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2002; 16
2019; 7
2015; 56
2001; 167
2015; 6
2015; 5
2015; 4
2013; 2
2017; 2017
2002; 50
2010; 17
2018; 101
2015; 10
1999; 24
2008; 15
2014; 25
2008; 3
2015; 5979
2011; 17
2012; 125
2013; 5
2003; 73
2018; 24
2013; 19
2017; 526
2010; 43
2018; 39
2009; 51
2018; 138
2013; 57
2013; 13
2017; 12
2005; 6
2011; 68
1997; 190
2012; 4
2014; 6
2014; 12
2007; 25
2014; 32
2012; 8
2001; 215
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Field D (e_1_2_6_13_1) 2015; 5979
e_1_2_6_30_1
Harper D (e_1_2_6_2_1) 2014; 32
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Müller U (e_1_2_6_46_1) 2008; 15
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Mouritzen MV (e_1_2_6_18_1) 2018; 138
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 526
  start-page: 244
  year: 2017
  end-page: 53
  article-title: Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity
  publication-title: Int J Pharm
– volume: 2
  start-page: 389
  year: 2013
  end-page: 99
  article-title: Biofilms and inflammation in chronic wounds
  publication-title: Adv Wound Care
– volume: 6
  start-page: 1
  year: 2014
  end-page: 13
  article-title: The M1 and M2 paradigm of macrophage activation: time for reassessment
  publication-title: F1000Prime Rep
– volume: 6
  start-page: 265sr6
  year: 2014
  article-title: Wound repair and regeneration: mechanisms, signaling, and translation
  publication-title: Sci Transl Med
– volume: 4
  start-page: 560
  year: 2015
  end-page: 82
  article-title: Challenges in the treatment of chronic wounds
  publication-title: Adv Wound Care
– volume: 56
  start-page: 127
  year: 2015
  end-page: 38
  article-title: Porcine models of cutaneous wound healing
  publication-title: ILAR J
– volume: 4
  start-page: 361
  year: 2012
  end-page: 70
  article-title: Cationic host defence peptides: multifaceted role in immune modulation and inflammation
  publication-title: J Innate Immun
– volume: 24
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Neurotensin, substance P, and insulin enhance cell migration
  publication-title: J Pept Sci
– volume: 167
  start-page: 5067
  year: 2001
  end-page: 76
  article-title: Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo
  publication-title: J Immunol
– volume: 57
  start-page: 3928
  year: 2013
  end-page: 35
  article-title: Evaluation of a nisin‐eluting nanofiber scaffold to treat ‐induced skin infections in mice
  publication-title: Antimicrob Agents Chemother
– volume: 12
  start-page: 207
  year: 2014
  end-page: 18
  article-title: Three‐dimensional cell culture systems and their applications in drug discovery and cell‐based biosensors
  publication-title: Assay Drug Dev Technol
– volume: 138
  start-page: 1
  year: 2018
  end-page: 6
  article-title: Optimized scratch assay for in vitro testing of cell migration with an automated optical camera
  publication-title: J Vis Exp
– volume: 3
  start-page: 1101
  year: 2008
  end-page: 8
  article-title: Analyzing real‐time PCR data by the comparative CT method
  publication-title: Nat Protoc
– volume: 12
  start-page: e0184164
  year: 2017
  article-title: Correction: differential regulation of innate immune cytokine production through pharmacological activation of nuclear factor‐erythroid‐2‐related factor 2 (NRF2) in burn patient immune cells and monocytes
  publication-title: PLoS One
– volume: 68
  start-page: 2161
  year: 2011
  end-page: 76
  article-title: Multifunctional cationic host defence peptides and their clinical applications
  publication-title: Cell Mol Life Sci
– volume: 10
  start-page: 1
  year: 2015
  end-page: 20
  article-title: Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival
  publication-title: PLoS One
– volume: 39
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Immunomodulation as rescue for chronic atonic skin wounds
  publication-title: Trends Immunol
– volume: 17
  start-page: 763
  year: 2010
  end-page: 71
  article-title: Human skin wounds: a major Snoballing threat to public health and economy
  publication-title: Wound Repair Regen
– volume: 6
  start-page: 328
  year: 2005
  end-page: 40
  article-title: The cornified envelope: a model of cell death in the skin
  publication-title: Nat Rev Mol Cell Biol
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  article-title: HaCaT cells as a reliable in vitro differentiation model to dissect the inflammatory/repair response of human keratinocytes
  publication-title: Mediat Inflamm
– volume: 17
  start-page: 438
  year: 2011
  end-page: 44
  article-title: Immunomodulatory efficacy of nisin‐a bacterial lantibiotic peptide
  publication-title: J Pept Sci
– volume: 15
  start-page: 21
  year: 2008
  end-page: 44
  article-title: The innate immune system of mammals and insects
  publication-title: Contrib Microbiol
– volume: 73
  start-page: 713
  year: 2003
  end-page: 21
  article-title: Essential involvement of IL‐6 in the skin wound‐healing process as evidenced by delayed wound healing in IL‐6‐deficient mice
  publication-title: J Leukoc Biol
– volume: 7
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Methods and challenges of using the Greater Wax Moth ( ) as a model organism in antimicrobial compound discovery
  publication-title: Microorganisms
– volume: 5
  start-page: 279
  year: 2013
  end-page: 86
  article-title: The effects of continuous in vivo administration of Nisin on infection and immune response in mice
  publication-title: Probiot Antimicrob Proteins
– volume: 190
  start-page: 601
  year: 1997
  end-page: 11
  article-title: Confocal laser scanning microscopy of porcine skin : implications for human wound healing studies
  publication-title: J Anat
– volume: 43
  start-page: 692
  year: 2010
  end-page: 702
  article-title: The human cathelicidin LL‐37 preferentially promotes apoptosis of infected airway epithelium
  publication-title: Am J Respir Cell Mol Biol
– volume: 19
  start-page: 315
  year: 2013
  end-page: 27
  article-title: Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory
  publication-title: Innate Immun
– volume: 101
  start-page: 135
  year: 2018
  end-page: 44
  article-title: Induction by innate defence regulator peptide 1018 of pro‐angiogenic molecules and endothelial cell migration in a high glucose environment
  publication-title: Peptides
– volume: 125
  start-page: 3015
  year: 2012
  end-page: 24
  article-title: Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues
  publication-title: J Cell Sci
– volume: 5979
  start-page: 37
  year: 2015
  end-page: 41
  article-title: Bioengineering of the model lantibiotic nisin
  publication-title: Bioengineered
– volume: 24
  start-page: 35
  year: 1999
  end-page: 42
  article-title: Evaluation of immunomodulatory effects of nisin‐containing diets on mice
  publication-title: FEMS Immunol Med Microbiol
– volume: 25
  start-page: 453
  year: 2014
  end-page: 72
  article-title: TNF and TNF‐receptors: from mediators of cell death and inflammation to therapeutic giants ‐ past, present and future
  publication-title: Cytokine Growth Factor Rev
– volume: 215
  start-page: 51
  year: 2001
  end-page: 6
  article-title: Comparison of human skin or epidermis models with human and animal skin in in‐vitro percutaneous absorption
  publication-title: Int J Pharm
– volume: 32
  start-page: 445
  year: 2014
  end-page: 50
  article-title: The physiology of wound healing
  publication-title: Surg (United Kingdom)
– volume: 57
  start-page: 5572
  year: 2013
  end-page: 9
  article-title: Effects of bacteriocins on methicillin‐resistant biofilm
  publication-title: Antimicrob Agents Chemother
– volume: 24
  start-page: e3080
  year: 2018
  article-title: LL‐37 fragments have antimicrobial activity against biofilms and wound healing potential in HaCaT cell line
  publication-title: J Pept Sci
– volume: 6
  start-page: 1
  year: 2015
  end-page: 14
  article-title: Antimicrobial nisin acts against saliva derived multi‐species biofilms without cytotoxicity to human oral cells
  publication-title: Front Microbiol
– volume: 13
  start-page: 23
  year: 2013
  article-title: In vivo activity of nisin A and nisin V against in mice
  publication-title: BMC Microbiol
– volume: 50
  start-page: 731
  year: 2002
  end-page: 4
  article-title: Nisin, alone and combined with peptidoglycan‐modulating antibiotics: activity against methicillin‐resistant Staphylococcus aureus and vancomycin‐resistant enterococci
  publication-title: J Antimicrob Chemother
– volume: 16
  start-page: 963
  year: 2002
  end-page: 74
  article-title: Accelerated wound healing in tumor necrosis factor receptor p55‐deficient mice with reduced leukocyte infiltration
  publication-title: FASEB J
– volume: 25
  start-page: 467
  year: 2007
  end-page: 76
  article-title: Keratinocyte cytokine and chemokine receptors
  publication-title: Dermatol Clin
– volume: 5
  start-page: 11458
  year: 2015
  article-title: Dynamic tensile forces drive collective cell migration through three‐dimensional extracellular matrices
  publication-title: Sci Rep
– volume: 8
  start-page: 231
  year: 2012
  end-page: 6
– volume: 51
  start-page: 158
  year: 2009
  end-page: 64
  article-title: Properties and applications of lantibiotics, a class of bacteriocins produced by gram‐positive bacteria
  publication-title: J Oral Biosci
– ident: e_1_2_6_15_1
  doi: 10.1128/AAC.00622-13
– ident: e_1_2_6_36_1
  doi: 10.3892/etm.2011.402
– ident: e_1_2_6_31_1
  doi: 10.1089/adt.2014.573
– ident: e_1_2_6_39_1
  doi: 10.1089/wound.2012.0381
– ident: e_1_2_6_44_1
  doi: 10.1016/S0378-5173(00)00665-7
– ident: e_1_2_6_32_1
  doi: 10.1242/jcs.079509
– ident: e_1_2_6_19_1
  doi: 10.1002/psc.3093
– ident: e_1_2_6_17_1
  doi: 10.1007/s12602-013-9141-3
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ijpharm.2017.04.071
– ident: e_1_2_6_11_1
  doi: 10.1002/psc.1341
– ident: e_1_2_6_21_1
  doi: 10.1002/psc.3080
– ident: e_1_2_6_16_1
  doi: 10.1016/S0928-8244(99)00004-8
– ident: e_1_2_6_22_1
  doi: 10.3390/microorganisms7030085
– volume: 32
  start-page: 445
  year: 2014
  ident: e_1_2_6_2_1
  article-title: The physiology of wound healing
  publication-title: Surg (United Kingdom)
– ident: e_1_2_6_10_1
  doi: 10.1007/s00018-011-0710-x
– ident: e_1_2_6_42_1
  doi: 10.12703/P6-13
– ident: e_1_2_6_30_1
  doi: 10.1155/2017/7435621
– ident: e_1_2_6_45_1
  doi: 10.1093/ilar/ilv016
– ident: e_1_2_6_23_1
  doi: 10.3389/fmicb.2015.00617
– volume: 15
  start-page: 21
  year: 2008
  ident: e_1_2_6_46_1
  article-title: The innate immune system of mammals and insects
  publication-title: Contrib Microbiol
– ident: e_1_2_6_43_1
  doi: 10.1046/j.1469-7580.1997.19040601.x
– ident: e_1_2_6_20_1
  doi: 10.1038/nprot.2008.73
– ident: e_1_2_6_29_1
  doi: 10.1038/nrm1619
– ident: e_1_2_6_3_1
  doi: 10.1016/j.it.2018.01.010
– ident: e_1_2_6_28_1
  doi: 10.1186/1471-2180-13-23
– ident: e_1_2_6_14_1
  doi: 10.1128/AAC.00888-13
– volume: 138
  start-page: 1
  year: 2018
  ident: e_1_2_6_18_1
  article-title: Optimized scratch assay for in vitro testing of cell migration with an automated optical camera
  publication-title: J Vis Exp
– ident: e_1_2_6_7_1
  doi: 10.1165/rcmb.2009-0250OC
– ident: e_1_2_6_6_1
  doi: 10.1159/000336630
– ident: e_1_2_6_35_1
  doi: 10.1189/jlb.0802397
– ident: e_1_2_6_5_1
  doi: 10.1126/scitranslmed.3009337
– volume: 5979
  start-page: 37
  year: 2015
  ident: e_1_2_6_13_1
  article-title: Bioengineering of the model lantibiotic nisin
  publication-title: Bioengineered
– ident: e_1_2_6_4_1
  doi: 10.1016/j.det.2007.06.003
– ident: e_1_2_6_9_1
  doi: 10.1089/wound.2015.0635
– ident: e_1_2_6_25_1
  doi: 10.1093/jac/dkf190
– ident: e_1_2_6_37_1
  doi: 10.1016/j.peptides.2018.01.010
– ident: e_1_2_6_33_1
  doi: 10.1038/srep11458
– ident: e_1_2_6_40_1
  doi: 10.1096/fj.01-0776com
– ident: e_1_2_6_34_1
  doi: 10.1371/journal.pone.0184164
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pone.0131008
– ident: e_1_2_6_8_1
  doi: 10.1177/1753425912461456
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1524-475X.2009.00543.x
– ident: e_1_2_6_12_1
  doi: 10.1016/S1349-0079(09)80024-8
– ident: e_1_2_6_38_1
  doi: 10.1016/j.cytogfr.2014.07.016
– ident: e_1_2_6_41_1
  doi: 10.4049/jimmunol.167.9.5067
SSID ssj0005598
Score 2.4606729
Snippet Antimicrobial peptides can have a dual role with both antimicrobial activity against a broad range of bacteria and immunomodulatory effect, making them...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 650
Title Immunomodulatory potential of Nisin A with application in wound healing
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fwrr.12743
https://www.ncbi.nlm.nih.gov/pubmed/31287619
https://www.proquest.com/docview/2254516490
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KJy8-8FVfrOLBS0q22aQNnopaq2APxWIPQtjd7kJRk5K2FP31zmwetj5APCWEyWazszPz7esbQs6URH9YHzpMNYTDfeM7oZG4R0wMpVRNoyyZzn036PT53cAfVMhFcRYm44coJ9zQMqy_RgMXcrJg5PM0rTEYUyHTJ_MC5M2_6n1SRyHxuF3pBEcAKKaRswrhLp7yzeVY9A1gLuNVG3Da6-SpqGq2z-S5NpvKmnr_wuL4z3_ZIGs5EKWtrOdskoqOt8jNLR4XSV6TIWb1StI3Ok6muJ8IJBNDu6PJKKYtipO3dGHpm8LTOeZnoog7IRhuk377-uGy4-SpFhzl1X3PkYoLKT1XNCRnoRCh8kOmTegrpsA1Cy40noHVGuAVDAE5ErG7xrCmVoIZEXg7ZCVOYr1HKIyPAsWE6xtuOPQEULfRdUAWrivg6lbJedHokcp5yDEdxktUjEegNSLbGlVyWoqOM_KNn4ROCs1FYBq43iFincwmEbgqTEPMQ_jmbqbSshgP4jLO4EBtrGJ-Lz967PXszf7fRQ_IKgCrMDuzeEhWpulMHwF4mcpj20s_ADDn67s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3rxI37hZzUevIxsrAOWeCFGBAUOBCIXs7SlTYi6ERgh-tf7XscQ_EiMpy1L13V9fa-_tu_9HiGXUqA9LPQtR5a4xTztWb4W6CPG-0LIspaGTKfZKta67L7n9TLkOo2FSfgh5htuqBnGXqOC44b0gpZPR6O8A4sqd4WsmvM5hETtT_IopB43Z51gCgDHlGa8QujHM391eTb6BjGXEauZcqqb5CltbOJp8pyfxCIv37_wOP73b7bIxgyL0koyeLZJRoU75K6OESPRa9THxF7R6I0OoxhdiqBkpGlrMB6EtEJx_5YunH5TeDrFFE0UoSfMh7ukW73t3NSsWbYFS7oFz7WEZFwI1-YlwRyfc196vqO070lHgnXmjCsMg1UKEBasAhlysdtaO2UluaN50d0j2TAK1QGhsEQqSofbnmaawWAAiWtVAHBh2xyudo5cpb0eyBkVOWbEeAnSJQn0RmB6I0cu5kWHCf_GT4XOU9EFoB145MFDFU3GAVgrzETMfPjmfiLTeTUuTM24iQOtMZL5vf7gsd02N4d_L3pG1mqdZiNo1FsPR2QdcJafhDAek2w8mqgTwDKxODVD9gPwFu_Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zgvjiBW_zGsUHXzqaNd1WfBrqnLchw-EehJJkCQy1HV3H0F_vOe06Ny8gPrWU0zRNcs75Ti7fIeRYSbSHpa7FVEVY3DWu5RmJe8REV0pVNSoh07lrlhttft1xOzlymp2FSfkhJhNuqBmJvUYF73fNlJKPoqjIIKZy5sg8L4ObRETU-uSOQubxZKkTLAHAmMqYVgi38UxenXVG3xDmLGBNPE59mTxldU03mjwXh7EsqvcvNI7__JkVsjRGorSWDp1VktPBGrm8wvMi4WvYxbReYfRG-2GMG4pAMjS02Rv0AlqjOHtLp9a-KTwdYYImisATvOE6adcvHs4a1jjXgqWckutYUnEhpWOLiuTME8JTrse08VzFFNhmwYXGQ7BaA76CGJAjE7ttDKtqJZgRZWeD5IMw0FuEQoBUVkzYruGGw1CA_ja6BNDCtgVc7QI5yRrdV2MicsyH8eJnAQm0hp-0RoEcTUT7KfvGT0KHWc_5oBu44CECHQ4HPtgqzEPMPfjmZtqlk2IccMw4hQO1STrm9_L9x1Yrudn-u-gBWbg_r_u3V82bHbIIIMtLzy_uknwcDfUeAJlY7icD9gM2te6I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immunomodulatory+potential+of+Nisin+A+with+application+in+wound+healing&rft.jtitle=Wound+repair+and+regeneration&rft.au=Mouritzen%2C+Michelle+V.&rft.au=Andrea%2C+Athina&rft.au=Qvist%2C+Katrine&rft.au=Poulsen%2C+Steen+S.&rft.date=2019-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1067-1927&rft.eissn=1524-475X&rft.volume=27&rft.issue=6&rft.spage=650&rft.epage=660&rft_id=info:doi/10.1111%2Fwrr.12743&rft.externalDBID=10.1111%252Fwrr.12743&rft.externalDocID=WRR12743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-1927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-1927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-1927&client=summon