Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism
Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced perf...
Saved in:
Published in | Cell reports physical science Vol. 2; no. 12; p. 100653 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
22.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-3864 2666-3864 |
DOI | 10.1016/j.xcrp.2021.100653 |
Cover
Abstract | Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced performance, significant technical advancements in fundamental chemical insights are essential. Here, we report that the phosphorus pentoxide (P2O5)-catalyzed condensation of biphenyl-based amide and nitrile monomers can produce ordered pCTF-2. The pCTF-2A directly synthesized from amide monomers showed unusually higher crystallinity and porosity than the pCTF-2N synthesized from nitrile monomers. Based on experimental results, density functional theory (DFT) calculations revealed that amide groups can be directly trimerized into triazine rings in the presence of P2O5, which is a more thermodynamically favorable reaction than those from nitrile groups. Based on this mechanistic insight, the efficient and better synthesis strategy provides an effective pathway for the formation of crystalline CTFs.
[Display omitted]
•Synthesis of an ordered covalent triazine framework (pCTF) directly from amide monomers•Mechanistic pathway proposal for the synthesis of pCTFs from amide monomers•High performance of ordered pCTFs with well-defined micropores
To expand monomer availability and synthetic pathways, Yu et al. present the syntheses of covalent triazine frameworks (pCTFs) using both amide and nitrile monomers in the presence of phosphorus pentoxide as a catalyst. They present a highly ordered pCTF-2 structure with well-defined micropores constructed from the direct condensation of amide monomers. |
---|---|
AbstractList | Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced performance, significant technical advancements in fundamental chemical insights are essential. Here, we report that the phosphorus pentoxide (P2O5)-catalyzed condensation of biphenyl-based amide and nitrile monomers can produce ordered pCTF-2. The pCTF-2A directly synthesized from amide monomers showed unusually higher crystallinity and porosity than the pCTF-2N synthesized from nitrile monomers. Based on experimental results, density functional theory (DFT) calculations revealed that amide groups can be directly trimerized into triazine rings in the presence of P2O5, which is a more thermodynamically favorable reaction than those from nitrile groups. Based on this mechanistic insight, the efficient and better synthesis strategy provides an effective pathway for the formation of crystalline CTFs. Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced performance, significant technical advancements in fundamental chemical insights are essential. Here, we report that the phosphorus pentoxide (P2O5)-catalyzed condensation of biphenyl-based amide and nitrile monomers can produce ordered pCTF-2. The pCTF-2A directly synthesized from amide monomers showed unusually higher crystallinity and porosity than the pCTF-2N synthesized from nitrile monomers. Based on experimental results, density functional theory (DFT) calculations revealed that amide groups can be directly trimerized into triazine rings in the presence of P2O5, which is a more thermodynamically favorable reaction than those from nitrile groups. Based on this mechanistic insight, the efficient and better synthesis strategy provides an effective pathway for the formation of crystalline CTFs. [Display omitted] •Synthesis of an ordered covalent triazine framework (pCTF) directly from amide monomers•Mechanistic pathway proposal for the synthesis of pCTFs from amide monomers•High performance of ordered pCTFs with well-defined micropores To expand monomer availability and synthetic pathways, Yu et al. present the syntheses of covalent triazine frameworks (pCTFs) using both amide and nitrile monomers in the presence of phosphorus pentoxide as a catalyst. They present a highly ordered pCTF-2 structure with well-defined micropores constructed from the direct condensation of amide monomers. |
ArticleNumber | 100653 |
Author | Im, Yoon-Kwang Noh, Hyuk-Jun Mahmood, Javeed Baek, Jong-Beom Kim, Jin Chul Yu, Soo-Young Kwak, Sang Kyu Jeon, In-Yup |
Author_xml | – sequence: 1 givenname: Soo-Young surname: Yu fullname: Yu, Soo-Young organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea – sequence: 2 givenname: Jin Chul surname: Kim fullname: Kim, Jin Chul organization: Department of Energy Engineering, School of Energy and Chemical Engineering, UNIST, 50 UNIST, Ulsan 44919, South Korea – sequence: 3 givenname: Hyuk-Jun surname: Noh fullname: Noh, Hyuk-Jun organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea – sequence: 4 givenname: Yoon-Kwang surname: Im fullname: Im, Yoon-Kwang organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea – sequence: 5 givenname: Javeed orcidid: 0000-0002-9159-3336 surname: Mahmood fullname: Mahmood, Javeed organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea – sequence: 6 givenname: In-Yup surname: Jeon fullname: Jeon, In-Yup email: iyjeon79@wku.ac.kr organization: Department of Chemical Engineering, Wonkwang University, Iksandae-ro 460, Iksan, Jeonbuk 54538, South Korea – sequence: 7 givenname: Sang Kyu surname: Kwak fullname: Kwak, Sang Kyu email: skkwak@unist.ac.kr organization: Department of Energy Engineering, School of Energy and Chemical Engineering, UNIST, 50 UNIST, Ulsan 44919, South Korea – sequence: 8 givenname: Jong-Beom orcidid: 0000-0003-4785-2326 surname: Baek fullname: Baek, Jong-Beom email: jbbaek@unist.ac.kr organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea |
BookMark | eNp9kc1KAzEUhYMoqLUv4Cov0JqfmcwU3Ej9KwhudB1uMzeaOpNIMlTr05tpRcRFVwmHez4455ySQx88EnLO2ZQzri5W008T36eCCZ4Fpkp5QE6EUmoia1Uc_vkfk3FKK8aYKDmvanZC_LWLaHpqgl9jTC54GiyFGDronaHQuQYTdb4P1MRN6qFtncd8voYWfU_76OBrUGyEDj9CfEt0uaEwABv0KVMyskPzCt6l7owcWWgTjn_eEXm-vXma308eHu8W86uHiZGilBPBOEhpZyBmgBVrZFmDrJAzY6t6Vkne2ArrxirBoKiWqEo0Vc4kDCiUTMkRWey4TYCVfo-ug7jRAZzeCiG-aIg5YIt6lntjZVlaWRQFQANcKrYsMt0a5DCwxI5lYkgpov3lcaaHAfRKDwPoYQC9GyCb6n8m4_ptGX0E1-63Xu6smAtaO4w6GYfeYLOdKidw--zfcc-lDQ |
CitedBy_id | crossref_primary_10_1039_D3CC00712J crossref_primary_10_1007_s13762_024_06039_z crossref_primary_10_1002_ange_202421251 crossref_primary_10_1002_admi_202201413 crossref_primary_10_1039_D2NR04727F crossref_primary_10_1002_anie_202421251 crossref_primary_10_1038_s41598_023_28285_w |
Cites_doi | 10.1021/ja304879c 10.1002/anie.201914424 10.1038/s41467-020-16006-0 10.1038/s42004-020-0278-1 10.1021/acscatal.9b02195 10.1039/C8TA12442F 10.1021/acs.chemrev.9b00550 10.1016/j.jcat.2019.06.001 10.1063/1.446996 10.1021/cm303751n 10.1063/1.458452 10.1002/anie.201801128 10.1021/jo01059a114 10.1006/jcat.1999.2789 10.1016/S0896-8446(97)00004-1 10.1039/D0QO00843E 10.1021/acsami.9b21903 10.1002/adma.200903436 10.1063/1.1316015 10.1002/anie.201708548 10.1039/C9CS00315K 10.1103/PhysRevLett.77.3865 10.1016/0009-2614(77)80574-5 10.1002/adma.201200751 10.1039/C6TA11226A 10.1002/smsc.202000007 10.1021/acs.chemrev.9b00399 10.1002/anie.200705710 10.1039/C7CC01827D 10.1021/jacs.0c00923 10.1021/ja508693y 10.1021/acsanm.0c00155 10.1103/PhysRevLett.102.073005 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.xcrp.2021.100653 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2666-3864 |
ExternalDocumentID | oai_doaj_org_article_92020555f3444aada1360b48dffce1a6 10_1016_j_xcrp_2021_100653 S2666386421003751 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AAMRU AAXUO ACLIJ ADVLN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c3253-201a33f9a29ae70d358a37e10cf789731df7e8df620a47be65ec72512ca6e3063 |
IEDL.DBID | DOA |
ISSN | 2666-3864 |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Tue Jul 01 03:20:28 EDT 2025 Sun Apr 06 06:54:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | phosphorus pentoxide reaction mechanisms covalent triazine frameworks cyclotrimerization crystalline organic networks |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3253-201a33f9a29ae70d358a37e10cf789731df7e8df620a47be65ec72512ca6e3063 |
ORCID | 0000-0003-4785-2326 0000-0002-9159-3336 |
OpenAccessLink | https://doaj.org/article/92020555f3444aada1360b48dffce1a6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92020555f3444aada1360b48dffce1a6 crossref_primary_10_1016_j_xcrp_2021_100653 crossref_citationtrail_10_1016_j_xcrp_2021_100653 elsevier_sciencedirect_doi_10_1016_j_xcrp_2021_100653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-22 |
PublicationDateYYYYMMDD | 2021-12-22 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Cell reports physical science |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Noh, Im, Yu, Seo, Mahmood, Yildirim, Baek (bib2) 2020; 11 Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (bib3) 2020; 120 Rickborn, Jensen (bib25) 1962; 27 Liu, Wang, Liu, Wang, Jin, Tan (bib14) 2020; 12 Tahir, Wang, Onyshchenko, De Geyter, Leus, Morent, Van Der Voort (bib12) 2019; 375 Hao, Ning, Luo, Wang, Zhang, Tang, Yang, Thomas, Zhi (bib23) 2015; 137 Kuhn, Antonietti, Thomas (bib19) 2008; 47 Tkatchenko, Scheffler (bib32) 2009; 102 Lee, Cooper (bib7) 2020; 120 Barbosa, van Santen (bib28) 2000; 191 Perdew, Burke, Ernzerhof (bib31) 1996; 77 Katekomol, Roeser, Bojdys, Weber, Thomas (bib11) 2013; 25 Wang, Liu, Pan, Wu, Hao, Xu, Chen, Liu, Li, Zhao (bib17) 2020; 142 Zhang, Cheng, Guo, Wang, Tan, Jin (bib18) 2020; 59 Wang, Yang, Wang, Guo, Cheng, Zhang, Jin, Tan, Cooper (bib21) 2017; 56 Ahmad, Mahmood, Baek (bib6) 2021; 1 Park, Lee, Kim, Ganesan, Cho, Jeong, Yoon (bib9) 2017; 5 Taylor, Dalgarno, Xu, Vilela (bib1) 2020; 49 Halgren, Lipscomb (bib33) 1977; 49 Yu, Mahmood, Noh, Seo, Jung, Shin, Im, Jeon, Baek (bib24) 2018; 57 Kuecken, Acharjya, Zhi, Schwarze, Schomäcker, Thomas (bib15) 2017; 53 Mahmood, Ahmad, Jung, Seo, Yu, Noh, Kim, Shin, Baek (bib4) 2020; 3 Delley (bib29) 1990; 92 Ren, Bojdys, Dawson, Laybourn, Khimyak, Adams, Cooper (bib20) 2012; 24 Bell, Crighton (bib34) 1984; 80 Bojdys, Jeromenok, Thomas, Antonietti (bib22) 2010; 22 Zhu, Tian, Mahurin, Chai, Wang, Brown, Veith, Luo, Liu, Dai (bib8) 2012; 134 Kato, Iwase, Harada, Nakanishi, Kamiya (bib13) 2020; 12 Liao, Liang, Liu, Chen, Wang, Li (bib10) 2020; 3 Ganesan, Nagaraaj (bib26) 2020; 7 Kong, Han, Xie, Ruan, Windle, Gadipelli, Shen, Bai, Guo, Tang (bib16) 2019; 9 Iyer, Klein (bib27) 1997; 10 Liu, Guo, Jin, Tan (bib5) 2019; 7 Delley (bib30) 2000; 113 Ren (10.1016/j.xcrp.2021.100653_bib20) 2012; 24 Geng (10.1016/j.xcrp.2021.100653_bib3) 2020; 120 Iyer (10.1016/j.xcrp.2021.100653_bib27) 1997; 10 Park (10.1016/j.xcrp.2021.100653_bib9) 2017; 5 Halgren (10.1016/j.xcrp.2021.100653_bib33) 1977; 49 Kuhn (10.1016/j.xcrp.2021.100653_bib19) 2008; 47 Hao (10.1016/j.xcrp.2021.100653_bib23) 2015; 137 Tahir (10.1016/j.xcrp.2021.100653_bib12) 2019; 375 Mahmood (10.1016/j.xcrp.2021.100653_bib4) 2020; 3 Liu (10.1016/j.xcrp.2021.100653_bib14) 2020; 12 Ahmad (10.1016/j.xcrp.2021.100653_bib6) 2021; 1 Wang (10.1016/j.xcrp.2021.100653_bib17) 2020; 142 Delley (10.1016/j.xcrp.2021.100653_bib30) 2000; 113 Perdew (10.1016/j.xcrp.2021.100653_bib31) 1996; 77 Delley (10.1016/j.xcrp.2021.100653_bib29) 1990; 92 Kato (10.1016/j.xcrp.2021.100653_bib13) 2020; 12 Bojdys (10.1016/j.xcrp.2021.100653_bib22) 2010; 22 Wang (10.1016/j.xcrp.2021.100653_bib21) 2017; 56 Liu (10.1016/j.xcrp.2021.100653_bib5) 2019; 7 Noh (10.1016/j.xcrp.2021.100653_bib2) 2020; 11 Katekomol (10.1016/j.xcrp.2021.100653_bib11) 2013; 25 Barbosa (10.1016/j.xcrp.2021.100653_bib28) 2000; 191 Rickborn (10.1016/j.xcrp.2021.100653_bib25) 1962; 27 Tkatchenko (10.1016/j.xcrp.2021.100653_bib32) 2009; 102 Bell (10.1016/j.xcrp.2021.100653_bib34) 1984; 80 Ganesan (10.1016/j.xcrp.2021.100653_bib26) 2020; 7 Taylor (10.1016/j.xcrp.2021.100653_bib1) 2020; 49 Zhu (10.1016/j.xcrp.2021.100653_bib8) 2012; 134 Yu (10.1016/j.xcrp.2021.100653_bib24) 2018; 57 Kong (10.1016/j.xcrp.2021.100653_bib16) 2019; 9 Kuecken (10.1016/j.xcrp.2021.100653_bib15) 2017; 53 Liao (10.1016/j.xcrp.2021.100653_bib10) 2020; 3 Zhang (10.1016/j.xcrp.2021.100653_bib18) 2020; 59 Lee (10.1016/j.xcrp.2021.100653_bib7) 2020; 120 |
References_xml | – volume: 191 start-page: 200 year: 2000 end-page: 217 ident: bib28 article-title: Study of the hydrolysis of acetonitrile using different Brønsted acid models: zeolite-type and HCl(H publication-title: J. Catal. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib31 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 10 start-page: 191 year: 1997 end-page: 200 ident: bib27 article-title: Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water publication-title: J. Supercrit. Fluids – volume: 49 start-page: 3981 year: 2020 end-page: 4042 ident: bib1 article-title: Conjugated porous polymers: incredibly versatile materials with far-reaching applications publication-title: Chem. Soc. Rev. – volume: 3 start-page: 31 year: 2020 ident: bib4 article-title: Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework publication-title: Commun. Chem. – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: bib19 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. Engl. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 ident: bib3 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. – volume: 53 start-page: 5854 year: 2017 end-page: 5857 ident: bib15 article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution publication-title: Chem. Commun. (Camb.) – volume: 7 start-page: 3792 year: 2020 end-page: 3814 ident: bib26 article-title: Recent developments in dehydration of primary amides to nitriles publication-title: Org. Chem. Front. – volume: 375 start-page: 242 year: 2019 end-page: 248 ident: bib12 article-title: High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction publication-title: J. Catal. – volume: 12 start-page: 12774 year: 2020 end-page: 12782 ident: bib14 article-title: Palladium as a superior cocatalyst to platinum for hydrogen evolution using covalent triazine frameworks as a support publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 2021 year: 2020 ident: bib2 article-title: Vertical two-dimensional layered fused aromatic ladder structure publication-title: Nat. Commun. – volume: 24 start-page: 2357 year: 2012 end-page: 2361 ident: bib20 article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis publication-title: Adv. Mater. – volume: 7 start-page: 5153 year: 2019 end-page: 5172 ident: bib5 article-title: Covalent triazine frameworks: synthesis and applications publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 142 start-page: 5958 year: 2020 end-page: 5963 ident: bib17 article-title: Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 2171 year: 2020 end-page: 2214 ident: bib7 article-title: Advances in conjugated microporous polymers publication-title: Chem. Rev. – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: bib30 article-title: From molecules to solids with the DMol publication-title: J. Chem. Phys. – volume: 22 start-page: 2202 year: 2010 end-page: 2205 ident: bib22 article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity publication-title: Adv. Mater. – volume: 25 start-page: 1542 year: 2013 end-page: 1548 ident: bib11 article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene publication-title: Chem. Mater. – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: bib29 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. – volume: 137 start-page: 219 year: 2015 end-page: 225 ident: bib23 article-title: Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2889 year: 2020 end-page: 2898 ident: bib10 article-title: Phenylamino-, phenoxy-, and benzenesulfenyl-linked covalent triazine frameworks for CO publication-title: ACS Appl. Nano Mater. – volume: 27 start-page: 4608 year: 1962 end-page: 4610 ident: bib25 article-title: α-carbon isomerization in amide dehydrations publication-title: J. Org. Chem. – volume: 1 start-page: 2000007 year: 2021 ident: bib6 article-title: Recent progress in porous fused aromatic networks and their applications publication-title: Small Sci. – volume: 80 start-page: 2464 year: 1984 end-page: 2475 ident: bib34 article-title: Locating transition states publication-title: J. Chem. Phys. – volume: 134 start-page: 10478 year: 2012 end-page: 10484 ident: bib8 article-title: A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 6007 year: 2020 end-page: 6014 ident: bib18 article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting publication-title: Angew. Chem. Int. Ed. Engl. – volume: 49 start-page: 225 year: 1977 end-page: 232 ident: bib33 article-title: The synchronous-transit method for determining reaction pathways and locating molecular transition states publication-title: Chem. Phys. Lett. – volume: 56 start-page: 14149 year: 2017 end-page: 14153 ident: bib21 article-title: Covalent triazine frameworks via a low-temperature polycondensation approach publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 29376 year: 2020 end-page: 29382 ident: bib13 article-title: Aqueous electrochemical partial oxidation of gaseous ethylbenzene by a Ru-modified covalent triazine framework publication-title: ACS Appl. Mater. Interfaces – volume: 102 start-page: 073005 year: 2009 ident: bib32 article-title: Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data publication-title: Phys. Rev. Lett. – volume: 5 start-page: 8576 year: 2017 end-page: 8582 ident: bib9 article-title: Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 9 start-page: 7697 year: 2019 end-page: 7707 ident: bib16 article-title: Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting publication-title: ACS Catal. – volume: 57 start-page: 8438 year: 2018 end-page: 8442 ident: bib24 article-title: Direct synthesis of a covalent triazine-based framework from aromatic amides publication-title: Angew. Chem. Int. Ed. Engl. – volume: 134 start-page: 10478 year: 2012 ident: 10.1016/j.xcrp.2021.100653_bib8 article-title: A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304879c – volume: 59 start-page: 6007 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib18 article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201914424 – volume: 11 start-page: 2021 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib2 article-title: Vertical two-dimensional layered fused aromatic ladder structure publication-title: Nat. Commun. doi: 10.1038/s41467-020-16006-0 – volume: 3 start-page: 31 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib4 article-title: Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework publication-title: Commun. Chem. doi: 10.1038/s42004-020-0278-1 – volume: 9 start-page: 7697 year: 2019 ident: 10.1016/j.xcrp.2021.100653_bib16 article-title: Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.9b02195 – volume: 7 start-page: 5153 year: 2019 ident: 10.1016/j.xcrp.2021.100653_bib5 article-title: Covalent triazine frameworks: synthesis and applications publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C8TA12442F – volume: 120 start-page: 8814 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib3 article-title: Covalent organic frameworks: design, synthesis, and functions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 375 start-page: 242 year: 2019 ident: 10.1016/j.xcrp.2021.100653_bib12 article-title: High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction publication-title: J. Catal. doi: 10.1016/j.jcat.2019.06.001 – volume: 80 start-page: 2464 year: 1984 ident: 10.1016/j.xcrp.2021.100653_bib34 article-title: Locating transition states publication-title: J. Chem. Phys. doi: 10.1063/1.446996 – volume: 25 start-page: 1542 year: 2013 ident: 10.1016/j.xcrp.2021.100653_bib11 article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene publication-title: Chem. Mater. doi: 10.1021/cm303751n – volume: 12 start-page: 29376 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib13 article-title: Aqueous electrochemical partial oxidation of gaseous ethylbenzene by a Ru-modified covalent triazine framework publication-title: ACS Appl. Mater. Interfaces – volume: 92 start-page: 508 year: 1990 ident: 10.1016/j.xcrp.2021.100653_bib29 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 57 start-page: 8438 year: 2018 ident: 10.1016/j.xcrp.2021.100653_bib24 article-title: Direct synthesis of a covalent triazine-based framework from aromatic amides publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201801128 – volume: 27 start-page: 4608 year: 1962 ident: 10.1016/j.xcrp.2021.100653_bib25 article-title: α-carbon isomerization in amide dehydrations publication-title: J. Org. Chem. doi: 10.1021/jo01059a114 – volume: 191 start-page: 200 year: 2000 ident: 10.1016/j.xcrp.2021.100653_bib28 article-title: Study of the hydrolysis of acetonitrile using different Brønsted acid models: zeolite-type and HCl(H2O)x clusters publication-title: J. Catal. doi: 10.1006/jcat.1999.2789 – volume: 10 start-page: 191 year: 1997 ident: 10.1016/j.xcrp.2021.100653_bib27 article-title: Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water publication-title: J. Supercrit. Fluids doi: 10.1016/S0896-8446(97)00004-1 – volume: 7 start-page: 3792 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib26 article-title: Recent developments in dehydration of primary amides to nitriles publication-title: Org. Chem. Front. doi: 10.1039/D0QO00843E – volume: 12 start-page: 12774 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib14 article-title: Palladium as a superior cocatalyst to platinum for hydrogen evolution using covalent triazine frameworks as a support publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21903 – volume: 22 start-page: 2202 year: 2010 ident: 10.1016/j.xcrp.2021.100653_bib22 article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity publication-title: Adv. Mater. doi: 10.1002/adma.200903436 – volume: 113 start-page: 7756 year: 2000 ident: 10.1016/j.xcrp.2021.100653_bib30 article-title: From molecules to solids with the DMol3 approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 56 start-page: 14149 year: 2017 ident: 10.1016/j.xcrp.2021.100653_bib21 article-title: Covalent triazine frameworks via a low-temperature polycondensation approach publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201708548 – volume: 49 start-page: 3981 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib1 article-title: Conjugated porous polymers: incredibly versatile materials with far-reaching applications publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00315K – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.xcrp.2021.100653_bib31 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 49 start-page: 225 year: 1977 ident: 10.1016/j.xcrp.2021.100653_bib33 article-title: The synchronous-transit method for determining reaction pathways and locating molecular transition states publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(77)80574-5 – volume: 24 start-page: 2357 year: 2012 ident: 10.1016/j.xcrp.2021.100653_bib20 article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis publication-title: Adv. Mater. doi: 10.1002/adma.201200751 – volume: 5 start-page: 8576 year: 2017 ident: 10.1016/j.xcrp.2021.100653_bib9 article-title: Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO2 capture publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C6TA11226A – volume: 1 start-page: 2000007 year: 2021 ident: 10.1016/j.xcrp.2021.100653_bib6 article-title: Recent progress in porous fused aromatic networks and their applications publication-title: Small Sci. doi: 10.1002/smsc.202000007 – volume: 120 start-page: 2171 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib7 article-title: Advances in conjugated microporous polymers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00399 – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.xcrp.2021.100653_bib19 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200705710 – volume: 53 start-page: 5854 year: 2017 ident: 10.1016/j.xcrp.2021.100653_bib15 article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution publication-title: Chem. Commun. (Camb.) doi: 10.1039/C7CC01827D – volume: 142 start-page: 5958 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib17 article-title: Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00923 – volume: 137 start-page: 219 year: 2015 ident: 10.1016/j.xcrp.2021.100653_bib23 article-title: Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508693y – volume: 3 start-page: 2889 year: 2020 ident: 10.1016/j.xcrp.2021.100653_bib10 article-title: Phenylamino-, phenoxy-, and benzenesulfenyl-linked covalent triazine frameworks for CO2 capture publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00155 – volume: 102 start-page: 073005 year: 2009 ident: 10.1016/j.xcrp.2021.100653_bib32 article-title: Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.073005 |
SSID | ssj0002511780 |
Score | 2.2262857 |
Snippet | Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100653 |
SubjectTerms | covalent triazine frameworks crystalline organic networks cyclotrimerization phosphorus pentoxide reaction mechanisms |
Title | Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism |
URI | https://dx.doi.org/10.1016/j.xcrp.2021.100653 https://doaj.org/article/92020555f3444aada1360b48dffce1a6 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy5VF1p1W0A-cGhVRSTxV3IExAoh0VNX4haNv6Stutlqd5Hgwm9nxs6ulgu9cMkhssfReOx5jp7fMHZmpPSWyrf7ElQhPS5F2xhRVAGxhq9JLZBuI9_90jdTeXuv7ndKfREnLMsDZ8edt3g6J1GqKKSUAB4qoUsrGx-jCxUkse2yLXcOU7QHE3A2qWwaJiBdiEbL4cZMJnc9uiRWWVfEEtBKvMpKSbx_JzntJJzJR_ZhQIr8In_hiO2F_pCNhrW44t8HwegfR6zP-xZPDPL0-4svIoflIsmxcpjPPHaY9esFd8snhIOkwx2wOUYZ5hxOlTtIZJrHDVNrxe0TBzKI21Lm-_B5oEvCs9X8E5tOrn9f3RRDHYXCiVoJXAgVCBFbqFsIpvRCNSBMqEoXTUOlq3w0AR2q6xKksUGr4AzhHgc64JFCfGb7_aIPXxgPykV0G1gLiAWjbFqQCry1aEeLKMas2vixc4PIONW6-Ntt2GR_OvJ9R77vsu_H7Oe2z78ssfFm60uanm1LksdOLzBouiFouv8FzZipzeR2A9LICAJNzd4Y_Ot7DP6NHZBJ4sTU9THbXy8fwgkim7U9TUGMz7vn6xcdg_Ya |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+conversion+of+aromatic+amides+into+crystalline+covalent+triazine+frameworks+by+a+condensation+mechanism&rft.jtitle=Cell+reports+physical+science&rft.au=Yu%2C+Soo-Young&rft.au=Kim%2C+Jin+Chul&rft.au=Noh%2C+Hyuk-Jun&rft.au=Im%2C+Yoon-Kwang&rft.date=2021-12-22&rft.issn=2666-3864&rft.eissn=2666-3864&rft.volume=2&rft.issue=12&rft.spage=100653&rft_id=info:doi/10.1016%2Fj.xcrp.2021.100653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xcrp_2021_100653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3864&client=summon |