Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism

Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced perf...

Full description

Saved in:
Bibliographic Details
Published inCell reports physical science Vol. 2; no. 12; p. 100653
Main Authors Yu, Soo-Young, Kim, Jin Chul, Noh, Hyuk-Jun, Im, Yoon-Kwang, Mahmood, Javeed, Jeon, In-Yup, Kwak, Sang Kyu, Baek, Jong-Beom
Format Journal Article
LanguageEnglish
Published Elsevier Inc 22.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2666-3864
2666-3864
DOI10.1016/j.xcrp.2021.100653

Cover

Abstract Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced performance, significant technical advancements in fundamental chemical insights are essential. Here, we report that the phosphorus pentoxide (P2O5)-catalyzed condensation of biphenyl-based amide and nitrile monomers can produce ordered pCTF-2. The pCTF-2A directly synthesized from amide monomers showed unusually higher crystallinity and porosity than the pCTF-2N synthesized from nitrile monomers. Based on experimental results, density functional theory (DFT) calculations revealed that amide groups can be directly trimerized into triazine rings in the presence of P2O5, which is a more thermodynamically favorable reaction than those from nitrile groups. Based on this mechanistic insight, the efficient and better synthesis strategy provides an effective pathway for the formation of crystalline CTFs. [Display omitted] •Synthesis of an ordered covalent triazine framework (pCTF) directly from amide monomers•Mechanistic pathway proposal for the synthesis of pCTFs from amide monomers•High performance of ordered pCTFs with well-defined micropores To expand monomer availability and synthetic pathways, Yu et al. present the syntheses of covalent triazine frameworks (pCTFs) using both amide and nitrile monomers in the presence of phosphorus pentoxide as a catalyst. They present a highly ordered pCTF-2 structure with well-defined micropores constructed from the direct condensation of amide monomers.
AbstractList Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced performance, significant technical advancements in fundamental chemical insights are essential. Here, we report that the phosphorus pentoxide (P2O5)-catalyzed condensation of biphenyl-based amide and nitrile monomers can produce ordered pCTF-2. The pCTF-2A directly synthesized from amide monomers showed unusually higher crystallinity and porosity than the pCTF-2N synthesized from nitrile monomers. Based on experimental results, density functional theory (DFT) calculations revealed that amide groups can be directly trimerized into triazine rings in the presence of P2O5, which is a more thermodynamically favorable reaction than those from nitrile groups. Based on this mechanistic insight, the efficient and better synthesis strategy provides an effective pathway for the formation of crystalline CTFs.
Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs with high crystallinity using novel synthesis strategies and different building blocks. To construct highly crystalline CTFs with enhanced performance, significant technical advancements in fundamental chemical insights are essential. Here, we report that the phosphorus pentoxide (P2O5)-catalyzed condensation of biphenyl-based amide and nitrile monomers can produce ordered pCTF-2. The pCTF-2A directly synthesized from amide monomers showed unusually higher crystallinity and porosity than the pCTF-2N synthesized from nitrile monomers. Based on experimental results, density functional theory (DFT) calculations revealed that amide groups can be directly trimerized into triazine rings in the presence of P2O5, which is a more thermodynamically favorable reaction than those from nitrile groups. Based on this mechanistic insight, the efficient and better synthesis strategy provides an effective pathway for the formation of crystalline CTFs. [Display omitted] •Synthesis of an ordered covalent triazine framework (pCTF) directly from amide monomers•Mechanistic pathway proposal for the synthesis of pCTFs from amide monomers•High performance of ordered pCTFs with well-defined micropores To expand monomer availability and synthetic pathways, Yu et al. present the syntheses of covalent triazine frameworks (pCTFs) using both amide and nitrile monomers in the presence of phosphorus pentoxide as a catalyst. They present a highly ordered pCTF-2 structure with well-defined micropores constructed from the direct condensation of amide monomers.
ArticleNumber 100653
Author Im, Yoon-Kwang
Noh, Hyuk-Jun
Mahmood, Javeed
Baek, Jong-Beom
Kim, Jin Chul
Yu, Soo-Young
Kwak, Sang Kyu
Jeon, In-Yup
Author_xml – sequence: 1
  givenname: Soo-Young
  surname: Yu
  fullname: Yu, Soo-Young
  organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
– sequence: 2
  givenname: Jin Chul
  surname: Kim
  fullname: Kim, Jin Chul
  organization: Department of Energy Engineering, School of Energy and Chemical Engineering, UNIST, 50 UNIST, Ulsan 44919, South Korea
– sequence: 3
  givenname: Hyuk-Jun
  surname: Noh
  fullname: Noh, Hyuk-Jun
  organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
– sequence: 4
  givenname: Yoon-Kwang
  surname: Im
  fullname: Im, Yoon-Kwang
  organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
– sequence: 5
  givenname: Javeed
  orcidid: 0000-0002-9159-3336
  surname: Mahmood
  fullname: Mahmood, Javeed
  organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
– sequence: 6
  givenname: In-Yup
  surname: Jeon
  fullname: Jeon, In-Yup
  email: iyjeon79@wku.ac.kr
  organization: Department of Chemical Engineering, Wonkwang University, Iksandae-ro 460, Iksan, Jeonbuk 54538, South Korea
– sequence: 7
  givenname: Sang Kyu
  surname: Kwak
  fullname: Kwak, Sang Kyu
  email: skkwak@unist.ac.kr
  organization: Department of Energy Engineering, School of Energy and Chemical Engineering, UNIST, 50 UNIST, Ulsan 44919, South Korea
– sequence: 8
  givenname: Jong-Beom
  orcidid: 0000-0003-4785-2326
  surname: Baek
  fullname: Baek, Jong-Beom
  email: jbbaek@unist.ac.kr
  organization: Center for Dimension-Controllable Organic Frameworks, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea
BookMark eNp9kc1KAzEUhYMoqLUv4Cov0JqfmcwU3Ej9KwhudB1uMzeaOpNIMlTr05tpRcRFVwmHez4455ySQx88EnLO2ZQzri5W008T36eCCZ4Fpkp5QE6EUmoia1Uc_vkfk3FKK8aYKDmvanZC_LWLaHpqgl9jTC54GiyFGDronaHQuQYTdb4P1MRN6qFtncd8voYWfU_76OBrUGyEDj9CfEt0uaEwABv0KVMyskPzCt6l7owcWWgTjn_eEXm-vXma308eHu8W86uHiZGilBPBOEhpZyBmgBVrZFmDrJAzY6t6Vkne2ArrxirBoKiWqEo0Vc4kDCiUTMkRWey4TYCVfo-ug7jRAZzeCiG-aIg5YIt6lntjZVlaWRQFQANcKrYsMt0a5DCwxI5lYkgpov3lcaaHAfRKDwPoYQC9GyCb6n8m4_ptGX0E1-63Xu6smAtaO4w6GYfeYLOdKidw--zfcc-lDQ
CitedBy_id crossref_primary_10_1039_D3CC00712J
crossref_primary_10_1007_s13762_024_06039_z
crossref_primary_10_1002_ange_202421251
crossref_primary_10_1002_admi_202201413
crossref_primary_10_1039_D2NR04727F
crossref_primary_10_1002_anie_202421251
crossref_primary_10_1038_s41598_023_28285_w
Cites_doi 10.1021/ja304879c
10.1002/anie.201914424
10.1038/s41467-020-16006-0
10.1038/s42004-020-0278-1
10.1021/acscatal.9b02195
10.1039/C8TA12442F
10.1021/acs.chemrev.9b00550
10.1016/j.jcat.2019.06.001
10.1063/1.446996
10.1021/cm303751n
10.1063/1.458452
10.1002/anie.201801128
10.1021/jo01059a114
10.1006/jcat.1999.2789
10.1016/S0896-8446(97)00004-1
10.1039/D0QO00843E
10.1021/acsami.9b21903
10.1002/adma.200903436
10.1063/1.1316015
10.1002/anie.201708548
10.1039/C9CS00315K
10.1103/PhysRevLett.77.3865
10.1016/0009-2614(77)80574-5
10.1002/adma.201200751
10.1039/C6TA11226A
10.1002/smsc.202000007
10.1021/acs.chemrev.9b00399
10.1002/anie.200705710
10.1039/C7CC01827D
10.1021/jacs.0c00923
10.1021/ja508693y
10.1021/acsanm.0c00155
10.1103/PhysRevLett.102.073005
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.xcrp.2021.100653
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2666-3864
ExternalDocumentID oai_doaj_org_article_92020555f3444aada1360b48dffce1a6
10_1016_j_xcrp_2021_100653
S2666386421003751
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AAMRU
AAXUO
ACLIJ
ADVLN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3253-201a33f9a29ae70d358a37e10cf789731df7e8df620a47be65ec72512ca6e3063
IEDL.DBID DOA
ISSN 2666-3864
IngestDate Wed Aug 27 01:30:55 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Tue Jul 01 03:20:28 EDT 2025
Sun Apr 06 06:54:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords phosphorus pentoxide
reaction mechanisms
covalent triazine frameworks
cyclotrimerization
crystalline organic networks
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3253-201a33f9a29ae70d358a37e10cf789731df7e8df620a47be65ec72512ca6e3063
ORCID 0000-0003-4785-2326
0000-0002-9159-3336
OpenAccessLink https://doaj.org/article/92020555f3444aada1360b48dffce1a6
ParticipantIDs doaj_primary_oai_doaj_org_article_92020555f3444aada1360b48dffce1a6
crossref_primary_10_1016_j_xcrp_2021_100653
crossref_citationtrail_10_1016_j_xcrp_2021_100653
elsevier_sciencedirect_doi_10_1016_j_xcrp_2021_100653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-22
PublicationDateYYYYMMDD 2021-12-22
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-22
  day: 22
PublicationDecade 2020
PublicationTitle Cell reports physical science
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Noh, Im, Yu, Seo, Mahmood, Yildirim, Baek (bib2) 2020; 11
Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (bib3) 2020; 120
Rickborn, Jensen (bib25) 1962; 27
Liu, Wang, Liu, Wang, Jin, Tan (bib14) 2020; 12
Tahir, Wang, Onyshchenko, De Geyter, Leus, Morent, Van Der Voort (bib12) 2019; 375
Hao, Ning, Luo, Wang, Zhang, Tang, Yang, Thomas, Zhi (bib23) 2015; 137
Kuhn, Antonietti, Thomas (bib19) 2008; 47
Tkatchenko, Scheffler (bib32) 2009; 102
Lee, Cooper (bib7) 2020; 120
Barbosa, van Santen (bib28) 2000; 191
Perdew, Burke, Ernzerhof (bib31) 1996; 77
Katekomol, Roeser, Bojdys, Weber, Thomas (bib11) 2013; 25
Wang, Liu, Pan, Wu, Hao, Xu, Chen, Liu, Li, Zhao (bib17) 2020; 142
Zhang, Cheng, Guo, Wang, Tan, Jin (bib18) 2020; 59
Wang, Yang, Wang, Guo, Cheng, Zhang, Jin, Tan, Cooper (bib21) 2017; 56
Ahmad, Mahmood, Baek (bib6) 2021; 1
Park, Lee, Kim, Ganesan, Cho, Jeong, Yoon (bib9) 2017; 5
Taylor, Dalgarno, Xu, Vilela (bib1) 2020; 49
Halgren, Lipscomb (bib33) 1977; 49
Yu, Mahmood, Noh, Seo, Jung, Shin, Im, Jeon, Baek (bib24) 2018; 57
Kuecken, Acharjya, Zhi, Schwarze, Schomäcker, Thomas (bib15) 2017; 53
Mahmood, Ahmad, Jung, Seo, Yu, Noh, Kim, Shin, Baek (bib4) 2020; 3
Delley (bib29) 1990; 92
Ren, Bojdys, Dawson, Laybourn, Khimyak, Adams, Cooper (bib20) 2012; 24
Bell, Crighton (bib34) 1984; 80
Bojdys, Jeromenok, Thomas, Antonietti (bib22) 2010; 22
Zhu, Tian, Mahurin, Chai, Wang, Brown, Veith, Luo, Liu, Dai (bib8) 2012; 134
Kato, Iwase, Harada, Nakanishi, Kamiya (bib13) 2020; 12
Liao, Liang, Liu, Chen, Wang, Li (bib10) 2020; 3
Ganesan, Nagaraaj (bib26) 2020; 7
Kong, Han, Xie, Ruan, Windle, Gadipelli, Shen, Bai, Guo, Tang (bib16) 2019; 9
Iyer, Klein (bib27) 1997; 10
Liu, Guo, Jin, Tan (bib5) 2019; 7
Delley (bib30) 2000; 113
Ren (10.1016/j.xcrp.2021.100653_bib20) 2012; 24
Geng (10.1016/j.xcrp.2021.100653_bib3) 2020; 120
Iyer (10.1016/j.xcrp.2021.100653_bib27) 1997; 10
Park (10.1016/j.xcrp.2021.100653_bib9) 2017; 5
Halgren (10.1016/j.xcrp.2021.100653_bib33) 1977; 49
Kuhn (10.1016/j.xcrp.2021.100653_bib19) 2008; 47
Hao (10.1016/j.xcrp.2021.100653_bib23) 2015; 137
Tahir (10.1016/j.xcrp.2021.100653_bib12) 2019; 375
Mahmood (10.1016/j.xcrp.2021.100653_bib4) 2020; 3
Liu (10.1016/j.xcrp.2021.100653_bib14) 2020; 12
Ahmad (10.1016/j.xcrp.2021.100653_bib6) 2021; 1
Wang (10.1016/j.xcrp.2021.100653_bib17) 2020; 142
Delley (10.1016/j.xcrp.2021.100653_bib30) 2000; 113
Perdew (10.1016/j.xcrp.2021.100653_bib31) 1996; 77
Delley (10.1016/j.xcrp.2021.100653_bib29) 1990; 92
Kato (10.1016/j.xcrp.2021.100653_bib13) 2020; 12
Bojdys (10.1016/j.xcrp.2021.100653_bib22) 2010; 22
Wang (10.1016/j.xcrp.2021.100653_bib21) 2017; 56
Liu (10.1016/j.xcrp.2021.100653_bib5) 2019; 7
Noh (10.1016/j.xcrp.2021.100653_bib2) 2020; 11
Katekomol (10.1016/j.xcrp.2021.100653_bib11) 2013; 25
Barbosa (10.1016/j.xcrp.2021.100653_bib28) 2000; 191
Rickborn (10.1016/j.xcrp.2021.100653_bib25) 1962; 27
Tkatchenko (10.1016/j.xcrp.2021.100653_bib32) 2009; 102
Bell (10.1016/j.xcrp.2021.100653_bib34) 1984; 80
Ganesan (10.1016/j.xcrp.2021.100653_bib26) 2020; 7
Taylor (10.1016/j.xcrp.2021.100653_bib1) 2020; 49
Zhu (10.1016/j.xcrp.2021.100653_bib8) 2012; 134
Yu (10.1016/j.xcrp.2021.100653_bib24) 2018; 57
Kong (10.1016/j.xcrp.2021.100653_bib16) 2019; 9
Kuecken (10.1016/j.xcrp.2021.100653_bib15) 2017; 53
Liao (10.1016/j.xcrp.2021.100653_bib10) 2020; 3
Zhang (10.1016/j.xcrp.2021.100653_bib18) 2020; 59
Lee (10.1016/j.xcrp.2021.100653_bib7) 2020; 120
References_xml – volume: 191
  start-page: 200
  year: 2000
  end-page: 217
  ident: bib28
  article-title: Study of the hydrolysis of acetonitrile using different Brønsted acid models: zeolite-type and HCl(H
  publication-title: J. Catal.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib31
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 191
  year: 1997
  end-page: 200
  ident: bib27
  article-title: Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water
  publication-title: J. Supercrit. Fluids
– volume: 49
  start-page: 3981
  year: 2020
  end-page: 4042
  ident: bib1
  article-title: Conjugated porous polymers: incredibly versatile materials with far-reaching applications
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 31
  year: 2020
  ident: bib4
  article-title: Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
  publication-title: Commun. Chem.
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: bib19
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  ident: bib3
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
– volume: 53
  start-page: 5854
  year: 2017
  end-page: 5857
  ident: bib15
  article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution
  publication-title: Chem. Commun. (Camb.)
– volume: 7
  start-page: 3792
  year: 2020
  end-page: 3814
  ident: bib26
  article-title: Recent developments in dehydration of primary amides to nitriles
  publication-title: Org. Chem. Front.
– volume: 375
  start-page: 242
  year: 2019
  end-page: 248
  ident: bib12
  article-title: High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction
  publication-title: J. Catal.
– volume: 12
  start-page: 12774
  year: 2020
  end-page: 12782
  ident: bib14
  article-title: Palladium as a superior cocatalyst to platinum for hydrogen evolution using covalent triazine frameworks as a support
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 2021
  year: 2020
  ident: bib2
  article-title: Vertical two-dimensional layered fused aromatic ladder structure
  publication-title: Nat. Commun.
– volume: 24
  start-page: 2357
  year: 2012
  end-page: 2361
  ident: bib20
  article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis
  publication-title: Adv. Mater.
– volume: 7
  start-page: 5153
  year: 2019
  end-page: 5172
  ident: bib5
  article-title: Covalent triazine frameworks: synthesis and applications
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 142
  start-page: 5958
  year: 2020
  end-page: 5963
  ident: bib17
  article-title: Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 2171
  year: 2020
  end-page: 2214
  ident: bib7
  article-title: Advances in conjugated microporous polymers
  publication-title: Chem. Rev.
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: bib30
  article-title: From molecules to solids with the DMol
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 2202
  year: 2010
  end-page: 2205
  ident: bib22
  article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1542
  year: 2013
  end-page: 1548
  ident: bib11
  article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene
  publication-title: Chem. Mater.
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: bib29
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
– volume: 137
  start-page: 219
  year: 2015
  end-page: 225
  ident: bib23
  article-title: Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2889
  year: 2020
  end-page: 2898
  ident: bib10
  article-title: Phenylamino-, phenoxy-, and benzenesulfenyl-linked covalent triazine frameworks for CO
  publication-title: ACS Appl. Nano Mater.
– volume: 27
  start-page: 4608
  year: 1962
  end-page: 4610
  ident: bib25
  article-title: α-carbon isomerization in amide dehydrations
  publication-title: J. Org. Chem.
– volume: 1
  start-page: 2000007
  year: 2021
  ident: bib6
  article-title: Recent progress in porous fused aromatic networks and their applications
  publication-title: Small Sci.
– volume: 80
  start-page: 2464
  year: 1984
  end-page: 2475
  ident: bib34
  article-title: Locating transition states
  publication-title: J. Chem. Phys.
– volume: 134
  start-page: 10478
  year: 2012
  end-page: 10484
  ident: bib8
  article-title: A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 6007
  year: 2020
  end-page: 6014
  ident: bib18
  article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 49
  start-page: 225
  year: 1977
  end-page: 232
  ident: bib33
  article-title: The synchronous-transit method for determining reaction pathways and locating molecular transition states
  publication-title: Chem. Phys. Lett.
– volume: 56
  start-page: 14149
  year: 2017
  end-page: 14153
  ident: bib21
  article-title: Covalent triazine frameworks via a low-temperature polycondensation approach
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 29376
  year: 2020
  end-page: 29382
  ident: bib13
  article-title: Aqueous electrochemical partial oxidation of gaseous ethylbenzene by a Ru-modified covalent triazine framework
  publication-title: ACS Appl. Mater. Interfaces
– volume: 102
  start-page: 073005
  year: 2009
  ident: bib32
  article-title: Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 8576
  year: 2017
  end-page: 8582
  ident: bib9
  article-title: Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 9
  start-page: 7697
  year: 2019
  end-page: 7707
  ident: bib16
  article-title: Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting
  publication-title: ACS Catal.
– volume: 57
  start-page: 8438
  year: 2018
  end-page: 8442
  ident: bib24
  article-title: Direct synthesis of a covalent triazine-based framework from aromatic amides
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 134
  start-page: 10478
  year: 2012
  ident: 10.1016/j.xcrp.2021.100653_bib8
  article-title: A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304879c
– volume: 59
  start-page: 6007
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib18
  article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201914424
– volume: 11
  start-page: 2021
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib2
  article-title: Vertical two-dimensional layered fused aromatic ladder structure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16006-0
– volume: 3
  start-page: 31
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib4
  article-title: Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-020-0278-1
– volume: 9
  start-page: 7697
  year: 2019
  ident: 10.1016/j.xcrp.2021.100653_bib16
  article-title: Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02195
– volume: 7
  start-page: 5153
  year: 2019
  ident: 10.1016/j.xcrp.2021.100653_bib5
  article-title: Covalent triazine frameworks: synthesis and applications
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C8TA12442F
– volume: 120
  start-page: 8814
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib3
  article-title: Covalent organic frameworks: design, synthesis, and functions
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00550
– volume: 375
  start-page: 242
  year: 2019
  ident: 10.1016/j.xcrp.2021.100653_bib12
  article-title: High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.06.001
– volume: 80
  start-page: 2464
  year: 1984
  ident: 10.1016/j.xcrp.2021.100653_bib34
  article-title: Locating transition states
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.446996
– volume: 25
  start-page: 1542
  year: 2013
  ident: 10.1016/j.xcrp.2021.100653_bib11
  article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene
  publication-title: Chem. Mater.
  doi: 10.1021/cm303751n
– volume: 12
  start-page: 29376
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib13
  article-title: Aqueous electrochemical partial oxidation of gaseous ethylbenzene by a Ru-modified covalent triazine framework
  publication-title: ACS Appl. Mater. Interfaces
– volume: 92
  start-page: 508
  year: 1990
  ident: 10.1016/j.xcrp.2021.100653_bib29
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 57
  start-page: 8438
  year: 2018
  ident: 10.1016/j.xcrp.2021.100653_bib24
  article-title: Direct synthesis of a covalent triazine-based framework from aromatic amides
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201801128
– volume: 27
  start-page: 4608
  year: 1962
  ident: 10.1016/j.xcrp.2021.100653_bib25
  article-title: α-carbon isomerization in amide dehydrations
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01059a114
– volume: 191
  start-page: 200
  year: 2000
  ident: 10.1016/j.xcrp.2021.100653_bib28
  article-title: Study of the hydrolysis of acetonitrile using different Brønsted acid models: zeolite-type and HCl(H2O)x clusters
  publication-title: J. Catal.
  doi: 10.1006/jcat.1999.2789
– volume: 10
  start-page: 191
  year: 1997
  ident: 10.1016/j.xcrp.2021.100653_bib27
  article-title: Effect of pressure on the rate of butyronitrile hydrolysis in high-temperature water
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/S0896-8446(97)00004-1
– volume: 7
  start-page: 3792
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib26
  article-title: Recent developments in dehydration of primary amides to nitriles
  publication-title: Org. Chem. Front.
  doi: 10.1039/D0QO00843E
– volume: 12
  start-page: 12774
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib14
  article-title: Palladium as a superior cocatalyst to platinum for hydrogen evolution using covalent triazine frameworks as a support
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21903
– volume: 22
  start-page: 2202
  year: 2010
  ident: 10.1016/j.xcrp.2021.100653_bib22
  article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903436
– volume: 113
  start-page: 7756
  year: 2000
  ident: 10.1016/j.xcrp.2021.100653_bib30
  article-title: From molecules to solids with the DMol3 approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 56
  start-page: 14149
  year: 2017
  ident: 10.1016/j.xcrp.2021.100653_bib21
  article-title: Covalent triazine frameworks via a low-temperature polycondensation approach
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201708548
– volume: 49
  start-page: 3981
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib1
  article-title: Conjugated porous polymers: incredibly versatile materials with far-reaching applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00315K
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.xcrp.2021.100653_bib31
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 49
  start-page: 225
  year: 1977
  ident: 10.1016/j.xcrp.2021.100653_bib33
  article-title: The synchronous-transit method for determining reaction pathways and locating molecular transition states
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(77)80574-5
– volume: 24
  start-page: 2357
  year: 2012
  ident: 10.1016/j.xcrp.2021.100653_bib20
  article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200751
– volume: 5
  start-page: 8576
  year: 2017
  ident: 10.1016/j.xcrp.2021.100653_bib9
  article-title: Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO2 capture
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C6TA11226A
– volume: 1
  start-page: 2000007
  year: 2021
  ident: 10.1016/j.xcrp.2021.100653_bib6
  article-title: Recent progress in porous fused aromatic networks and their applications
  publication-title: Small Sci.
  doi: 10.1002/smsc.202000007
– volume: 120
  start-page: 2171
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib7
  article-title: Advances in conjugated microporous polymers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00399
– volume: 47
  start-page: 3450
  year: 2008
  ident: 10.1016/j.xcrp.2021.100653_bib19
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200705710
– volume: 53
  start-page: 5854
  year: 2017
  ident: 10.1016/j.xcrp.2021.100653_bib15
  article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C7CC01827D
– volume: 142
  start-page: 5958
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib17
  article-title: Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00923
– volume: 137
  start-page: 219
  year: 2015
  ident: 10.1016/j.xcrp.2021.100653_bib23
  article-title: Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508693y
– volume: 3
  start-page: 2889
  year: 2020
  ident: 10.1016/j.xcrp.2021.100653_bib10
  article-title: Phenylamino-, phenoxy-, and benzenesulfenyl-linked covalent triazine frameworks for CO2 capture
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00155
– volume: 102
  start-page: 073005
  year: 2009
  ident: 10.1016/j.xcrp.2021.100653_bib32
  article-title: Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.073005
SSID ssj0002511780
Score 2.2262857
Snippet Multiple studies have recently been conducted to develop well-ordered covalent triazine-based frameworks (CTFs). To date, few studies have demonstrated CTFs...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100653
SubjectTerms covalent triazine frameworks
crystalline organic networks
cyclotrimerization
phosphorus pentoxide
reaction mechanisms
Title Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism
URI https://dx.doi.org/10.1016/j.xcrp.2021.100653
https://doaj.org/article/92020555f3444aada1360b48dffce1a6
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy5VF1p1W0A-cGhVRSTxV3IExAoh0VNX4haNv6Stutlqd5Hgwm9nxs6ulgu9cMkhssfReOx5jp7fMHZmpPSWyrf7ElQhPS5F2xhRVAGxhq9JLZBuI9_90jdTeXuv7ndKfREnLMsDZ8edt3g6J1GqKKSUAB4qoUsrGx-jCxUkse2yLXcOU7QHE3A2qWwaJiBdiEbL4cZMJnc9uiRWWVfEEtBKvMpKSbx_JzntJJzJR_ZhQIr8In_hiO2F_pCNhrW44t8HwegfR6zP-xZPDPL0-4svIoflIsmxcpjPPHaY9esFd8snhIOkwx2wOUYZ5hxOlTtIZJrHDVNrxe0TBzKI21Lm-_B5oEvCs9X8E5tOrn9f3RRDHYXCiVoJXAgVCBFbqFsIpvRCNSBMqEoXTUOlq3w0AR2q6xKksUGr4AzhHgc64JFCfGb7_aIPXxgPykV0G1gLiAWjbFqQCry1aEeLKMas2vixc4PIONW6-Ntt2GR_OvJ9R77vsu_H7Oe2z78ssfFm60uanm1LksdOLzBouiFouv8FzZipzeR2A9LICAJNzd4Y_Ot7DP6NHZBJ4sTU9THbXy8fwgkim7U9TUGMz7vn6xcdg_Ya
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+conversion+of+aromatic+amides+into+crystalline+covalent+triazine+frameworks+by+a+condensation+mechanism&rft.jtitle=Cell+reports+physical+science&rft.au=Yu%2C+Soo-Young&rft.au=Kim%2C+Jin+Chul&rft.au=Noh%2C+Hyuk-Jun&rft.au=Im%2C+Yoon-Kwang&rft.date=2021-12-22&rft.issn=2666-3864&rft.eissn=2666-3864&rft.volume=2&rft.issue=12&rft.spage=100653&rft_id=info:doi/10.1016%2Fj.xcrp.2021.100653&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xcrp_2021_100653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3864&client=summon