String Submodular Functions With Curvature Constraints

Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 61; no. 3; pp. 601 - 616
Main Authors Zhenliang Zhang, Chong, Edwin K. P., Pezeshki, Ali, Moran, William
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2015.2440566

Cover

Abstract Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a (1 - e -1 )-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, totalforward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature ϵ, then the greedy strategy achieves at least a (1/σ)(1 - e -σ )-approximation of the optimal strategy. If the objective function has total forward curvature e, then the greedy strategy achieves at least a (1 - ϵ)-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized.
AbstractList Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a $(1-e-1})$-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, total forward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature $\sigma$, then the greedy strategy achieves at least a $(1/\sigma)(1-e-\sigma})$-approximation of the optimal strategy. If the objective function has total forward curvature $\epsilon$, then the greedy strategy achieves at least a $(1-\epsilon)$-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized.
Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a [Formula Omitted]-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, total forward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature [Formula Omitted], then the greedy strategy achieves at least a [Formula Omitted]-approximation of the optimal strategy. If the objective function has total forward curvature [Formula Omitted], then the greedy strategy achieves at least a [Formula Omitted]-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized.
Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a (1 - e -1 )-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, totalforward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature ϵ, then the greedy strategy achieves at least a (1/σ)(1 - e -σ )-approximation of the optimal strategy. If the objective function has total forward curvature e, then the greedy strategy achieves at least a (1 - ϵ)-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized.
Author Chong, Edwin K. P.
Zhenliang Zhang
Pezeshki, Ali
Moran, William
Author_xml – sequence: 1
  surname: Zhenliang Zhang
  fullname: Zhenliang Zhang
  email: zzl.csu@gmail.com
  organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
– sequence: 2
  givenname: Edwin K. P.
  surname: Chong
  fullname: Chong, Edwin K. P.
  email: edwin.chong@colostate.edu
  organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
– sequence: 3
  givenname: Ali
  surname: Pezeshki
  fullname: Pezeshki, Ali
  email: ali.pezeshki@colostate.edu
  organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA
– sequence: 4
  givenname: William
  surname: Moran
  fullname: Moran, William
  email: wmoran@unimelb.edu.au
  organization: Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia
BookMark eNp9kM1Lw0AQxRepYFu9C14CXryk7uxXNscSrAoFD614XLabraakSd0Pwf_eDRUPPXgaZvi9mXlvgkZd31mErgHPAHB5v55XM4KBzwhjmAtxhsbAucwJJ3SExhiDzEsixQWaeL9LrWAMxkisgmu692wVN_u-jq122SJ2JjR957O3JnxkVXRfOkRnsyrNgtNNF_wlOt_q1tur3zpFr4uHdfWUL18en6v5MjeUsJBbbRnXGm8kFgUpDNQMoMaYWGJFKTUIvq21IJgauaGEGGtqq2UisZa83NApujvuPbj-M1of1L7xxrat7mwfvQIJvJSUS57Q2xN010fXpe8UFDJdp5SxRIkjZVzvvbNbZZqgB7uDs1YBVkOcKsWphjjVb5xJiE-EB9fstfv-T3JzlDTW2j-8AChoUdAfOSWAvg
CODEN IETAA9
CitedBy_id crossref_primary_10_1007_s10626_019_00308_7
crossref_primary_10_1016_j_tcs_2022_12_011
crossref_primary_10_1109_TSP_2016_2634544
crossref_primary_10_1016_j_ifacol_2018_08_038
crossref_primary_10_1109_TNSE_2024_3400288
crossref_primary_10_1016_j_artint_2021_103486
crossref_primary_10_1109_TCNS_2016_2562507
crossref_primary_10_1109_TCNS_2021_3128546
crossref_primary_10_1287_mnsc_2020_3820
crossref_primary_10_1007_s10878_018_0345_z
crossref_primary_10_1080_23307706_2017_1393355
crossref_primary_10_1109_LCSYS_2020_3003477
crossref_primary_10_1111_poms_13359
crossref_primary_10_1016_j_automatica_2018_11_020
crossref_primary_10_1109_TAES_2018_2881366
crossref_primary_10_1109_TMC_2022_3151908
crossref_primary_10_1109_TETCI_2023_3306362
crossref_primary_10_1016_j_future_2024_06_059
crossref_primary_10_1109_LCSYS_2020_3043991
crossref_primary_10_1007_s10957_017_1177_1
Cites_doi 10.1109/9.395
10.1137/1.9781611973068.60
10.1109/TAC.1972.1100034
10.1109/TAC.2011.2164010
10.1007/s10626-009-0071-x
10.1145/1250790.1250811
10.1109/TIT.2014.2308258
10.1109/FOCS.2012.73
10.1145/1993636.1993740
10.1287/moor.3.3.177
10.1109/FOCS.2006.14
10.1023/B:JOCO.0000038913.96607.c2
10.1145/285055.285059
10.1137/120878380
10.1109/CDC.2012.6427057
10.6028/jres.069B.001
10.1109/FOCS.2012.55
10.1145/1109557.1109675
10.1111/j.1467-9965.1991.tb00002.x
10.1109/TAC.1964.1105763
10.1109/CDC.2010.5717225
10.1145/1536414.1536459
10.1109/TAC.2014.2321683
10.1016/S0167-6377(03)00062-2
10.1016/j.automatica.2015.05.014
10.1145/1374376.1374389
10.1109/CDC.2013.6760699
10.1007/978-3-540-30570-5_6
10.4086/toc.2010.v006a011
10.1109/TAC.2011.2141550
10.1287/moor.1100.0463
10.1016/0166-218X(84)90003-9
10.1137/080735503
10.1007/BF01588971
10.1007/s00453-004-1110-5
10.1109/9.53528
10.1137/080733991
10.1109/TAC.2008.2007858
10.1007/BFb0121195
10.1109/TAC.2013.2258791
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2015.2440566
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 616
ExternalDocumentID 4047984761
10_1109_TAC_2015_2440566
7117377
Genre orig-research
GrantInformation_xml – fundername: AFOSR
  grantid: FA9550-09-1-0518
  funderid: 10.13039/100000181
– fundername: AFOSR/ASU
  grantid: FA9550-12-1-0418
– fundername: NSF
  grantid: CCF-09163144; CCF-1018472; CCF-1422658
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
F28
ID FETCH-LOGICAL-c324t-eae45aa0b806727c1d411d002e2e698a165fda6203c8b322cecdea827c0a859b3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Sun Sep 28 10:02:17 EDT 2025
Mon Jun 30 10:22:22 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
Wed Oct 01 04:15:09 EDT 2025
Wed Aug 27 02:52:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords greedy
optimal control
Combinatorial optimization
matroid
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-eae45aa0b806727c1d411d002e2e698a165fda6203c8b322cecdea827c0a859b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1787273344
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_1787273344
proquest_miscellaneous_1815983585
crossref_primary_10_1109_TAC_2015_2440566
ieee_primary_7117377
crossref_citationtrail_10_1109_TAC_2015_2440566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-March
2016-3-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
golovin (ref16) 2011; 42
ref11
ref10
ref19
ref18
krause (ref49) 0; 22
lu (ref39) 0
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
streeter (ref15) 0
ref9
ref4
kempe (ref38) 0
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref24
bertsekas (ref3) 2000
ref23
ref26
ref25
ref20
ref22
wang (ref14) 2014
ref21
ref28
ref27
ref29
vondrák (ref13) 2010; 23
alaei (ref17) 2010
References_xml – start-page: 117
  year: 0
  ident: ref39
  article-title: Coverage-aware self-scheduling in sensor networks
  publication-title: Proc IEEE 18th Annual Workshop on Comp Commun
– ident: ref43
  doi: 10.1109/9.395
– ident: ref27
  doi: 10.1137/1.9781611973068.60
– ident: ref42
  doi: 10.1109/TAC.1972.1100034
– ident: ref8
  doi: 10.1109/TAC.2011.2164010
– start-page: 1127
  year: 0
  ident: ref38
  article-title: Influential nodes in a diffusion model for social networks
  publication-title: Proc 32nd Int Conf Automata Languages Program
– ident: ref5
  doi: 10.1007/s10626-009-0071-x
– ident: ref7
  doi: 10.1145/1250790.1250811
– ident: ref47
  doi: 10.1109/TIT.2014.2308258
– ident: ref18
  doi: 10.1109/FOCS.2012.73
– ident: ref21
  doi: 10.1145/1993636.1993740
– ident: ref30
  doi: 10.1287/moor.3.3.177
– ident: ref24
  doi: 10.1109/FOCS.2006.14
– ident: ref34
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– ident: ref23
  doi: 10.1145/285055.285059
– ident: ref48
  doi: 10.1137/120878380
– ident: ref1
  doi: 10.1109/CDC.2012.6427057
– ident: ref9
  doi: 10.6028/jres.069B.001
– ident: ref26
  doi: 10.1109/FOCS.2012.55
– ident: ref22
  doi: 10.1145/1109557.1109675
– ident: ref4
  doi: 10.1111/j.1467-9965.1991.tb00002.x
– ident: ref41
  doi: 10.1109/TAC.1964.1105763
– ident: ref33
  doi: 10.1109/CDC.2010.5717225
– ident: ref28
  doi: 10.1145/1536414.1536459
– ident: ref35
  doi: 10.1109/TAC.2014.2321683
– ident: ref31
  doi: 10.1016/S0167-6377(03)00062-2
– ident: ref6
  doi: 10.1016/j.automatica.2015.05.014
– ident: ref32
  doi: 10.1145/1374376.1374389
– ident: ref2
  doi: 10.1109/CDC.2013.6760699
– ident: ref37
  doi: 10.1007/978-3-540-30570-5_6
– volume: 42
  start-page: 427
  year: 2011
  ident: ref16
  article-title: Adaptive submodularity: Theory and applications in active learning and stochastic optimization
  publication-title: J Artif Intell Res
– year: 2014
  ident: ref14
  article-title: Approximation for maximizing monotone non-decreasing set functions with a greedy method
  publication-title: J Combinatorial Optim
– year: 2000
  ident: ref3
  publication-title: Dynamic Programming and Optimal Control
– ident: ref25
  doi: 10.4086/toc.2010.v006a011
– ident: ref46
  doi: 10.1109/TAC.2011.2141550
– ident: ref29
  doi: 10.1287/moor.1100.0463
– ident: ref12
  doi: 10.1016/0166-218X(84)90003-9
– ident: ref20
  doi: 10.1137/080735503
– ident: ref10
  doi: 10.1007/BF01588971
– ident: ref36
  doi: 10.1007/s00453-004-1110-5
– volume: 23
  start-page: 253
  year: 2010
  ident: ref13
  article-title: Submodularity and curvature: The optimal algorithm
  publication-title: RIMS Kokyuroku Bessatsu
– ident: ref44
  doi: 10.1109/9.53528
– volume: 22
  start-page: 1650
  year: 0
  ident: ref49
  article-title: Near-optimal observation selection using submodular functions
  publication-title: Proc Nat Conf Artif Intell
– ident: ref19
  doi: 10.1137/080733991
– ident: ref45
  doi: 10.1109/TAC.2008.2007858
– ident: ref11
  doi: 10.1007/BFb0121195
– year: 2010
  ident: ref17
  article-title: Maximizing sequence-submodular functions and its application to online advertising
– start-page: 1577
  year: 0
  ident: ref15
  article-title: An online algorithm for maximizing submodular functions
  publication-title: Proc 22nd Annu Conf Neural Inform Processing Syst
– ident: ref40
  doi: 10.1109/TAC.2013.2258791
SSID ssj0016441
Score 2.443646
Snippet Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Approximation
Curvature
Frequency modulation
Gain
Mathematical analysis
Optimization
Strategy
Strings
Tasks
Title String Submodular Functions With Curvature Constraints
URI https://ieeexplore.ieee.org/document/7117377
https://www.proquest.com/docview/1787273344
https://www.proquest.com/docview/1815983585
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSsQwcFBPevAtri8qeBHsbrppHj3K4iKCXlT0VtJkFkXdlbW9-PVO0m7xhXgLdJKGmcwjmRfAkTGOY-bTz9DKONVsFGeiP6Jba2GNZMgV-gTnyyt5fpte3Iv7OThpc2EQMQSfYdcPgy_fTWzln8p6KkkUV2oe5pWWda5W6zHwer2WusTAfd26JFnWuzkd-Bgu0SVVRvpeflFBoafKD0EctMtwBS5n-6qDSp66VVl07fu3ko3_3fgqLDdmZnRan4s1mMPxOix9Kj64AfK69IOIRMfLxPlo1GhISi6cw-jusXyIBpV_sK2mGPm2nqGZRPm2CbfDs5vBedx0UYgtGUtljAZTYQwrdPC62sSlSeJIEGIfZaZNIsXIGdln3OqC2NuidWg0QTKjRVbwLVgYT8a4DRFdfqRwkjtmknTkVCFUQeshF04LxlUHejPE5rYpMe4395yHqwbLciJF7kmRN6TowHE747Uur_EH7IbHbAvXILUDezPa5Q3_veUJySEyzHiaduCw_Uyc490hZoyTimA0mXJkgGqx8_vKu7BI_5d1xNkeLJTTCvfJBCmLg3D2PgBrs9b-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTttAcMTjUDgUKFSkpeBKXCrhZJ19eH1EUaPwCJcGwc1a705E1ZIgsC98PbNrxypQIW4rebwa7Tx35wVwaIzjmPnyM7QqFppN40z2p3RrLaxRDHmKvsB5fKFGl-L0Wl4vwVFbC4OIIfkMu34ZYvlubiv_VNZLkyTlaboMq1IIIetqrTZm4C17rXdJhPu6DUqyrDc5HvgsLtklY0YWXz0zQmGqyitVHOzLcAPGC8zqtJI_3aosuvbxRdPG96K-CR8bRzM6rjljC5Zw9gnW_2k_uA3qV-kXESmP27nz-ajRkMxc4MTo6nd5Ew0q_2Rb3WPkB3uGcRLlww5cDn9OBqO4maMQW3KXyhgNCmkMK3SIu9rEiSRxpAqxjyrTJlFy6ozqM251QQJu0To0miCZ0TIr-GdYmc1nuAsRXX-UdIo7ZhIxdWkh04L2Qy6dloynHegtDja3TZNxj9zfPFw2WJYTKXJPirwhRQd-tH_c1Q023oDd9ifbwjWH2oG9Be3yRgIf8oQ0EblmXIgOfG8_k-z4gIiZ4bwiGE3OHLmgWn75_84H8GE0GZ_n5ycXZ19hjXBRdf7ZHqyU9xV-I4ekLPYDHz4B2KvaSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=String+Submodular+Functions+With+Curvature+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zhang%2C+Zhenliang&rft.au=Chong%2C+Edwin+KP&rft.au=Pezeshki%2C+Ali&rft.au=Moran%2C+William&rft.date=2016-03-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=61&rft.issue=3&rft.spage=601&rft.epage=616&rft_id=info:doi/10.1109%2FTAC.2015.2440566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon