String Submodular Functions With Curvature Constraints
Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 61; no. 3; pp. 601 - 616 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2015.2440566 |
Cover
| Abstract | Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a (1 - e -1 )-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, totalforward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature ϵ, then the greedy strategy achieves at least a (1/σ)(1 - e -σ )-approximation of the optimal strategy. If the objective function has total forward curvature e, then the greedy strategy achieves at least a (1 - ϵ)-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized. |
|---|---|
| AbstractList | Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a $(1-e-1})$-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, total forward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature $\sigma$, then the greedy strategy achieves at least a $(1/\sigma)(1-e-\sigma})$-approximation of the optimal strategy. If the objective function has total forward curvature $\epsilon$, then the greedy strategy achieves at least a $(1-\epsilon)$-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized. Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a [Formula Omitted]-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, total forward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature [Formula Omitted], then the greedy strategy achieves at least a [Formula Omitted]-approximation of the optimal strategy. If the objective function has total forward curvature [Formula Omitted], then the greedy strategy achieves at least a [Formula Omitted]-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized. Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the greedy strategy, consisting of a string of actions that only locally maximizes the step-wise gain in the objective function, achieves at least a (1 - e -1 )-approximation to the optimal strategy. This paper improves this approximation by introducing additional constraints on curvature, namely, total backward curvature, totalforward curvature, and elemental forward curvature. We show that if the objective function has total backward curvature ϵ, then the greedy strategy achieves at least a (1/σ)(1 - e -σ )-approximation of the optimal strategy. If the objective function has total forward curvature e, then the greedy strategy achieves at least a (1 - ϵ)-approximation of the optimal strategy. Moreover, we consider a generalization of the diminishing-return property by defining the elemental forward curvature. We also introduce the notion of string-matroid and consider the problem of maximizing the objective function subject to a string-matroid constraint. We investigate two applications of string submodular functions with curvature constraints: 1) choosing a string of actions to maximize the expected fraction of accomplished tasks; and 2) designing a string of measurement matrices such that the information gain is maximized. |
| Author | Chong, Edwin K. P. Zhenliang Zhang Pezeshki, Ali Moran, William |
| Author_xml | – sequence: 1 surname: Zhenliang Zhang fullname: Zhenliang Zhang email: zzl.csu@gmail.com organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA – sequence: 2 givenname: Edwin K. P. surname: Chong fullname: Chong, Edwin K. P. email: edwin.chong@colostate.edu organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA – sequence: 3 givenname: Ali surname: Pezeshki fullname: Pezeshki, Ali email: ali.pezeshki@colostate.edu organization: Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA – sequence: 4 givenname: William surname: Moran fullname: Moran, William email: wmoran@unimelb.edu.au organization: Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia |
| BookMark | eNp9kM1Lw0AQxRepYFu9C14CXryk7uxXNscSrAoFD614XLabraakSd0Pwf_eDRUPPXgaZvi9mXlvgkZd31mErgHPAHB5v55XM4KBzwhjmAtxhsbAucwJJ3SExhiDzEsixQWaeL9LrWAMxkisgmu692wVN_u-jq122SJ2JjR957O3JnxkVXRfOkRnsyrNgtNNF_wlOt_q1tur3zpFr4uHdfWUL18en6v5MjeUsJBbbRnXGm8kFgUpDNQMoMaYWGJFKTUIvq21IJgauaGEGGtqq2UisZa83NApujvuPbj-M1of1L7xxrat7mwfvQIJvJSUS57Q2xN010fXpe8UFDJdp5SxRIkjZVzvvbNbZZqgB7uDs1YBVkOcKsWphjjVb5xJiE-EB9fstfv-T3JzlDTW2j-8AChoUdAfOSWAvg |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1007_s10626_019_00308_7 crossref_primary_10_1016_j_tcs_2022_12_011 crossref_primary_10_1109_TSP_2016_2634544 crossref_primary_10_1016_j_ifacol_2018_08_038 crossref_primary_10_1109_TNSE_2024_3400288 crossref_primary_10_1016_j_artint_2021_103486 crossref_primary_10_1109_TCNS_2016_2562507 crossref_primary_10_1109_TCNS_2021_3128546 crossref_primary_10_1287_mnsc_2020_3820 crossref_primary_10_1007_s10878_018_0345_z crossref_primary_10_1080_23307706_2017_1393355 crossref_primary_10_1109_LCSYS_2020_3003477 crossref_primary_10_1111_poms_13359 crossref_primary_10_1016_j_automatica_2018_11_020 crossref_primary_10_1109_TAES_2018_2881366 crossref_primary_10_1109_TMC_2022_3151908 crossref_primary_10_1109_TETCI_2023_3306362 crossref_primary_10_1016_j_future_2024_06_059 crossref_primary_10_1109_LCSYS_2020_3043991 crossref_primary_10_1007_s10957_017_1177_1 |
| Cites_doi | 10.1109/9.395 10.1137/1.9781611973068.60 10.1109/TAC.1972.1100034 10.1109/TAC.2011.2164010 10.1007/s10626-009-0071-x 10.1145/1250790.1250811 10.1109/TIT.2014.2308258 10.1109/FOCS.2012.73 10.1145/1993636.1993740 10.1287/moor.3.3.177 10.1109/FOCS.2006.14 10.1023/B:JOCO.0000038913.96607.c2 10.1145/285055.285059 10.1137/120878380 10.1109/CDC.2012.6427057 10.6028/jres.069B.001 10.1109/FOCS.2012.55 10.1145/1109557.1109675 10.1111/j.1467-9965.1991.tb00002.x 10.1109/TAC.1964.1105763 10.1109/CDC.2010.5717225 10.1145/1536414.1536459 10.1109/TAC.2014.2321683 10.1016/S0167-6377(03)00062-2 10.1016/j.automatica.2015.05.014 10.1145/1374376.1374389 10.1109/CDC.2013.6760699 10.1007/978-3-540-30570-5_6 10.4086/toc.2010.v006a011 10.1109/TAC.2011.2141550 10.1287/moor.1100.0463 10.1016/0166-218X(84)90003-9 10.1137/080735503 10.1007/BF01588971 10.1007/s00453-004-1110-5 10.1109/9.53528 10.1137/080733991 10.1109/TAC.2008.2007858 10.1007/BFb0121195 10.1109/TAC.2013.2258791 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
| DOI | 10.1109/TAC.2015.2440566 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 616 |
| ExternalDocumentID | 4047984761 10_1109_TAC_2015_2440566 7117377 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: AFOSR grantid: FA9550-09-1-0518 funderid: 10.13039/100000181 – fundername: AFOSR/ASU grantid: FA9550-12-1-0418 – fundername: NSF grantid: CCF-09163144; CCF-1018472; CCF-1422658 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D RIG F28 |
| ID | FETCH-LOGICAL-c324t-eae45aa0b806727c1d411d002e2e698a165fda6203c8b322cecdea827c0a859b3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9286 |
| IngestDate | Sun Sep 28 10:02:17 EDT 2025 Mon Jun 30 10:22:22 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Oct 01 04:15:09 EDT 2025 Wed Aug 27 02:52:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | greedy optimal control Combinatorial optimization matroid |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-eae45aa0b806727c1d411d002e2e698a165fda6203c8b322cecdea827c0a859b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1787273344 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_1787273344 proquest_miscellaneous_1815983585 crossref_primary_10_1109_TAC_2015_2440566 ieee_primary_7117377 crossref_citationtrail_10_1109_TAC_2015_2440566 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-March 2016-3-00 20160301 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-March |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 golovin (ref16) 2011; 42 ref11 ref10 ref19 ref18 krause (ref49) 0; 22 lu (ref39) 0 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 streeter (ref15) 0 ref9 ref4 kempe (ref38) 0 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref24 bertsekas (ref3) 2000 ref23 ref26 ref25 ref20 ref22 wang (ref14) 2014 ref21 ref28 ref27 ref29 vondrák (ref13) 2010; 23 alaei (ref17) 2010 |
| References_xml | – start-page: 117 year: 0 ident: ref39 article-title: Coverage-aware self-scheduling in sensor networks publication-title: Proc IEEE 18th Annual Workshop on Comp Commun – ident: ref43 doi: 10.1109/9.395 – ident: ref27 doi: 10.1137/1.9781611973068.60 – ident: ref42 doi: 10.1109/TAC.1972.1100034 – ident: ref8 doi: 10.1109/TAC.2011.2164010 – start-page: 1127 year: 0 ident: ref38 article-title: Influential nodes in a diffusion model for social networks publication-title: Proc 32nd Int Conf Automata Languages Program – ident: ref5 doi: 10.1007/s10626-009-0071-x – ident: ref7 doi: 10.1145/1250790.1250811 – ident: ref47 doi: 10.1109/TIT.2014.2308258 – ident: ref18 doi: 10.1109/FOCS.2012.73 – ident: ref21 doi: 10.1145/1993636.1993740 – ident: ref30 doi: 10.1287/moor.3.3.177 – ident: ref24 doi: 10.1109/FOCS.2006.14 – ident: ref34 doi: 10.1023/B:JOCO.0000038913.96607.c2 – ident: ref23 doi: 10.1145/285055.285059 – ident: ref48 doi: 10.1137/120878380 – ident: ref1 doi: 10.1109/CDC.2012.6427057 – ident: ref9 doi: 10.6028/jres.069B.001 – ident: ref26 doi: 10.1109/FOCS.2012.55 – ident: ref22 doi: 10.1145/1109557.1109675 – ident: ref4 doi: 10.1111/j.1467-9965.1991.tb00002.x – ident: ref41 doi: 10.1109/TAC.1964.1105763 – ident: ref33 doi: 10.1109/CDC.2010.5717225 – ident: ref28 doi: 10.1145/1536414.1536459 – ident: ref35 doi: 10.1109/TAC.2014.2321683 – ident: ref31 doi: 10.1016/S0167-6377(03)00062-2 – ident: ref6 doi: 10.1016/j.automatica.2015.05.014 – ident: ref32 doi: 10.1145/1374376.1374389 – ident: ref2 doi: 10.1109/CDC.2013.6760699 – ident: ref37 doi: 10.1007/978-3-540-30570-5_6 – volume: 42 start-page: 427 year: 2011 ident: ref16 article-title: Adaptive submodularity: Theory and applications in active learning and stochastic optimization publication-title: J Artif Intell Res – year: 2014 ident: ref14 article-title: Approximation for maximizing monotone non-decreasing set functions with a greedy method publication-title: J Combinatorial Optim – year: 2000 ident: ref3 publication-title: Dynamic Programming and Optimal Control – ident: ref25 doi: 10.4086/toc.2010.v006a011 – ident: ref46 doi: 10.1109/TAC.2011.2141550 – ident: ref29 doi: 10.1287/moor.1100.0463 – ident: ref12 doi: 10.1016/0166-218X(84)90003-9 – ident: ref20 doi: 10.1137/080735503 – ident: ref10 doi: 10.1007/BF01588971 – ident: ref36 doi: 10.1007/s00453-004-1110-5 – volume: 23 start-page: 253 year: 2010 ident: ref13 article-title: Submodularity and curvature: The optimal algorithm publication-title: RIMS Kokyuroku Bessatsu – ident: ref44 doi: 10.1109/9.53528 – volume: 22 start-page: 1650 year: 0 ident: ref49 article-title: Near-optimal observation selection using submodular functions publication-title: Proc Nat Conf Artif Intell – ident: ref19 doi: 10.1137/080733991 – ident: ref45 doi: 10.1109/TAC.2008.2007858 – ident: ref11 doi: 10.1007/BFb0121195 – year: 2010 ident: ref17 article-title: Maximizing sequence-submodular functions and its application to online advertising – start-page: 1577 year: 0 ident: ref15 article-title: An online algorithm for maximizing submodular functions publication-title: Proc 22nd Annu Conf Neural Inform Processing Syst – ident: ref40 doi: 10.1109/TAC.2013.2258791 |
| SSID | ssj0016441 |
| Score | 2.443646 |
| Snippet | Consider the problem of choosing a string of actions to optimize an objective function that is string submodular. It was shown in previous papers that the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 601 |
| SubjectTerms | Approximation Curvature Frequency modulation Gain Mathematical analysis Optimization Strategy Strings Tasks |
| Title | String Submodular Functions With Curvature Constraints |
| URI | https://ieeexplore.ieee.org/document/7117377 https://www.proquest.com/docview/1787273344 https://www.proquest.com/docview/1815983585 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSsQwcFBPevAtri8qeBHsbrppHj3K4iKCXlT0VtJkFkXdlbW9-PVO0m7xhXgLdJKGmcwjmRfAkTGOY-bTz9DKONVsFGeiP6Jba2GNZMgV-gTnyyt5fpte3Iv7OThpc2EQMQSfYdcPgy_fTWzln8p6KkkUV2oe5pWWda5W6zHwer2WusTAfd26JFnWuzkd-Bgu0SVVRvpeflFBoafKD0EctMtwBS5n-6qDSp66VVl07fu3ko3_3fgqLDdmZnRan4s1mMPxOix9Kj64AfK69IOIRMfLxPlo1GhISi6cw-jusXyIBpV_sK2mGPm2nqGZRPm2CbfDs5vBedx0UYgtGUtljAZTYQwrdPC62sSlSeJIEGIfZaZNIsXIGdln3OqC2NuidWg0QTKjRVbwLVgYT8a4DRFdfqRwkjtmknTkVCFUQeshF04LxlUHejPE5rYpMe4395yHqwbLciJF7kmRN6TowHE747Uur_EH7IbHbAvXILUDezPa5Q3_veUJySEyzHiaduCw_Uyc490hZoyTimA0mXJkgGqx8_vKu7BI_5d1xNkeLJTTCvfJBCmLg3D2PgBrs9b- |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTttAcMTjUDgUKFSkpeBKXCrhZJ19eH1EUaPwCJcGwc1a705E1ZIgsC98PbNrxypQIW4rebwa7Tx35wVwaIzjmPnyM7QqFppN40z2p3RrLaxRDHmKvsB5fKFGl-L0Wl4vwVFbC4OIIfkMu34ZYvlubiv_VNZLkyTlaboMq1IIIetqrTZm4C17rXdJhPu6DUqyrDc5HvgsLtklY0YWXz0zQmGqyitVHOzLcAPGC8zqtJI_3aosuvbxRdPG96K-CR8bRzM6rjljC5Zw9gnW_2k_uA3qV-kXESmP27nz-ajRkMxc4MTo6nd5Ew0q_2Rb3WPkB3uGcRLlww5cDn9OBqO4maMQW3KXyhgNCmkMK3SIu9rEiSRxpAqxjyrTJlFy6ozqM251QQJu0To0miCZ0TIr-GdYmc1nuAsRXX-UdIo7ZhIxdWkh04L2Qy6dloynHegtDja3TZNxj9zfPFw2WJYTKXJPirwhRQd-tH_c1Q023oDd9ifbwjWH2oG9Be3yRgIf8oQ0EblmXIgOfG8_k-z4gIiZ4bwiGE3OHLmgWn75_84H8GE0GZ_n5ycXZ19hjXBRdf7ZHqyU9xV-I4ekLPYDHz4B2KvaSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=String+Submodular+Functions+With+Curvature+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zhang%2C+Zhenliang&rft.au=Chong%2C+Edwin+KP&rft.au=Pezeshki%2C+Ali&rft.au=Moran%2C+William&rft.date=2016-03-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=61&rft.issue=3&rft.spage=601&rft.epage=616&rft_id=info:doi/10.1109%2FTAC.2015.2440566&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |