Hypergraph-Based Multi-View Action Recognition Using Event Cameras
Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recen...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 10; pp. 6610 - 6622 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI | 10.1109/TPAMI.2024.3382117 |
Cover
| Abstract | Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV , a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset <inline-formula><tex-math notation="LaTeX">\mathbf{THU}^{\mathbf{MV-EACT}}\mathbf{-50}</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi mathvariant="bold">THU</mml:mi><mml:mrow><mml:mi mathvariant="bold">MV</mml:mi><mml:mo>-</mml:mo><mml:mi mathvariant="bold">EACT</mml:mi></mml:mrow></mml:msup><mml:mo>-</mml:mo><mml:mn mathvariant="bold">50</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq1-3382117.gif"/> </inline-formula>, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition. |
|---|---|
| AbstractList | Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV , a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset <inline-formula><tex-math notation="LaTeX">\mathbf{THU}^{\mathbf{MV-EACT}}\mathbf{-50}</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi mathvariant="bold">THU</mml:mi><mml:mrow><mml:mi mathvariant="bold">MV</mml:mi><mml:mo>-</mml:mo><mml:mi mathvariant="bold">EACT</mml:mi></mml:mrow></mml:msup><mml:mo>-</mml:mo><mml:mn mathvariant="bold">50</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq1-3382117.gif"/> </inline-formula>, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition. Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV, a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset THUMV-EACT-50, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition.Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV, a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset THUMV-EACT-50, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition. Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV, a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset THU -50, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition. |
| Author | Lu, Jiaxuan Li, Siqi Li, Yipeng Gao, Yue Du, Shaoyi |
| Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-4971-590X surname: Gao fullname: Gao, Yue email: gaoyue@tsinghua.edu.cn organization: BNRist, THUIBCS, BLBCI, School of Software, Tsinghua University, Beijing, China – sequence: 2 givenname: Jiaxuan orcidid: 0000-0003-3566-3050 surname: Lu fullname: Lu, Jiaxuan email: lujiaxuan@pjlab.org.cn organization: Shanghai Artificial Intelligence Laboratory, Shanghai, China – sequence: 3 givenname: Siqi orcidid: 0000-0001-9720-826X surname: Li fullname: Li, Siqi email: lsq19@mails.tsinghua.edu.cn organization: BNRist, THUIBCS, BLBCI, School of Software, Tsinghua University, Beijing, China – sequence: 4 givenname: Yipeng orcidid: 0000-0001-9099-4077 surname: Li fullname: Li, Yipeng email: liep@tsinghua.edu.cn organization: Department of Automation, BNRist, THUIBCS, BLBCI, Tsinghua University, Beijing, China – sequence: 5 givenname: Shaoyi orcidid: 0000-0002-7092-0596 surname: Du fullname: Du, Shaoyi email: dushaoyi@xjtu.edu.cn organization: Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38536691$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1Lw0AQhhep2A_9AyKSo5fU_Uqye6yl2kKLIq3XZZNM6kqaxN1E6b83_VDEg6cZhuedYZ4-6hRlAQhdEjwkBMvb5dNoMRtSTPmQMUEJiU5Qj5IQ-5JK2kE9TELqC0FFF_Wde8OY8ACzM9RlImBhKEkP3U23Fdi11dWrf6cdpN6iyWvjvxj49EZJbcrCe4akXBdm36-cKdbe5AOK2hvrDVjtztFppnMHF8c6QKv7yXI89eePD7PxaO4njPLahyjBRIg0lABhHGmuhRBRBjSmAWdEUy1SwdJ2AEGYpXHAZZawmMg40yTTKRugm8PeypbvDbhabYxLIM91AWXjFGvfw1gKwlv0-og28QZSVVmz0Xarvv9uAXoAEls6ZyH7QQhWO7lqL1ft5Kqj3DYk_oQSU-udltpqk_8fvTpEDQD8usUFDgRnXyBohw8 |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_image_2024_117244 |
| Cites_doi | 10.1109/ICCV.2019.00718 10.1007/978-3-319-66182-7_54 10.3389/fnins.2016.00405 10.1109/CVPR52688.2022.00298 10.1609/aaai.v32i1.12328 10.1109/IROS45743.2020.9341160 10.1109/CVPR.2016.90 10.1109/ICRA40945.2020.9197197 10.1109/CVPR.2018.00568 10.1142/S0129065709002002 10.1007/978-3-319-46448-0_31 10.1109/ICCV.2019.00630 10.1109/CVPR.2019.00108 10.1109/ICCV.2015.510 10.48550/arXiv.1606.09375 10.1109/TNNLS.2019.2945630 10.1016/j.neucom.2019.12.151 10.1109/CVMP.2009.19 10.1109/CVPR.2017.502 10.1109/ICPR48806.2021.9412991 10.1109/CVPR.2018.00151 10.1109/ICCV.2013.394 10.1109/TPAMI.2020.2986748 10.1109/CVPRW.2019.00214 10.1109/TKDE.2021.3108192 10.5244/C.31.16 10.1109/CVPR.2009.5206848 10.1109/TNNLS.2013.2273537 10.1109/isscc.2011.5746374 10.1007/978-3-030-58583-9_26 10.1109/CVPRW.2019.00217 10.1109/TPAMI.2022.3224051 10.7551/mitpress/7503.003.0205 10.1109/JSSC.2012.2230553 10.1609/aaai.v28i1.8916 10.1609/aaai.v33i01.33013558 10.1109/ICPR.2004.1334462 10.1109/DICTA.2011.77 10.1109/ICCV48922.2021.00444 10.1007/978-3-319-46478-7_23 10.1109/ICCV.2019.00209 10.1109/IJCNN.2005.1555942 10.1109/CVPR52688.2022.01931 10.1016/j.imavis.2021.104357 10.3390/s22197640 10.1109/TPAMI.2019.2916873 10.1109/WF-IoT48130.2020.9221355 10.1016/j.imavis.2020.104068 10.1109/CVPR.2016.213 10.1109/TPAMI.2011.52 10.1109/WACV56688.2023.00553 10.1007/s11263-015-0846-5 10.1109/ESSDERC.2016.7599576 10.1609/aaai.v34i04.5731 10.5244/C.30.108 10.1109/CVPR.2015.7299059 10.1007/978-3-030-01240-3_9 10.1145/3219819.3219980 10.1109/TIP.2023.3236144 10.1109/CVPR.2015.7298708 10.1007/s11263-022-01594-9 10.1109/ISCAS45731.2020.9181247 10.1145/3132734.3132739 10.1145/3240508.3240675 10.1109/ICCV.2015.522 10.1109/TPAMI.2020.3039374 10.1109/ICCV.2019.00631 10.1109/TNN.2008.2005605 10.1007/978-3-030-01240-3_28 10.1609/aaai.v32i1.11782 10.1109/CVPR.2014.339 10.1109/WACV56688.2023.00338 10.24963/ijcai.2021/240 10.1109/TPAMI.2023.3300741 10.1109/ISCAS.2019.8702581 10.1007/978-3-319-46484-8_2 10.3389/fnbot.2019.00038 10.1145/3582272 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TPAMI.2024.3382117 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 6622 |
| ExternalDocumentID | 38536691 10_1109_TPAMI_2024_3382117 10480584 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Science and Technology Major Project of China grantid: 2020AAA0108102 – fundername: National Natural Science Foundation of China; National Natural Science Funds of China grantid: 62088102; 62021002 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c324t-e7c0188d69ee6b7a4a8887fe2b25431a2a8d83dfe2e56fdb549fc3b19bfa1fad3 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 21:20:08 EDT 2025 Thu Apr 03 07:03:34 EDT 2025 Wed Oct 01 02:24:14 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Wed Aug 27 02:00:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-e7c0188d69ee6b7a4a8887fe2b25431a2a8d83dfe2e56fdb549fc3b19bfa1fad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4971-590X 0000-0001-9720-826X 0000-0003-3566-3050 0000-0001-9099-4077 0000-0002-7092-0596 |
| PMID | 38536691 |
| PQID | 3014009814 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10480584 pubmed_primary_38536691 crossref_primary_10_1109_TPAMI_2024_3382117 proquest_miscellaneous_3014009814 crossref_citationtrail_10_1109_TPAMI_2024_3382117 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref10 Liu (ref32) ref54 ref17 ref16 ref19 ref18 Li (ref90) 2019 Berner (ref12) ref93 ref92 ref51 ref50 Duvenaud (ref47) ref46 Soomro (ref69) 2012 ref45 ref48 ref42 ref86 ref85 ref44 ref88 ref43 ref87 Zhu (ref57) ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 Simonyan (ref25) Bai (ref36) 2020 ref80 ref35 ref79 ref78 ref37 ref31 ref75 ref30 Han (ref52) ref74 ref33 ref77 ref76 ref2 ref1 ref39 ref38 Nie (ref34) ref71 ref70 ref73 ref72 Müller (ref55) 2023; 24 ref24 ref68 ref23 ref67 ref26 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Kingma (ref89) 2014 ref28 Paszke (ref91) 2019; 32 ref27 ref29 ref60 ref62 Ghosh (ref41) 2019 ref61 |
| References_xml | – ident: ref22 doi: 10.1109/ICCV.2019.00718 – ident: ref48 doi: 10.1007/978-3-319-66182-7_54 – ident: ref76 doi: 10.3389/fnins.2016.00405 – ident: ref8 doi: 10.1109/CVPR52688.2022.00298 – ident: ref64 doi: 10.1609/aaai.v32i1.12328 – ident: ref74 doi: 10.1109/IROS45743.2020.9341160 – year: 2019 ident: ref41 article-title: Spatiotemporal filtering for event-based action recognition – ident: ref87 doi: 10.1109/CVPR.2016.90 – ident: ref3 doi: 10.1109/ICRA40945.2020.9197197 – ident: ref82 doi: 10.1109/CVPR.2018.00568 – ident: ref78 doi: 10.1142/S0129065709002002 – ident: ref2 doi: 10.1007/978-3-319-46448-0_31 – ident: ref29 doi: 10.1109/ICCV.2019.00630 – ident: ref83 doi: 10.1109/CVPR.2019.00108 – ident: ref23 doi: 10.1109/ICCV.2015.510 – ident: ref46 doi: 10.48550/arXiv.1606.09375 – ident: ref13 doi: 10.1109/TNNLS.2019.2945630 – year: 2020 ident: ref36 article-title: Collaborative attention mechanism for multi-view action recognition – ident: ref35 doi: 10.1016/j.neucom.2019.12.151 – ident: ref68 doi: 10.1109/CVMP.2009.19 – ident: ref1 doi: 10.1109/CVPR.2017.502 – ident: ref42 doi: 10.1109/ICPR48806.2021.9412991 – start-page: 2224 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref47 article-title: Convolutional networks on graphs for learning molecular fingerprints – ident: ref20 doi: 10.1109/CVPR.2018.00151 – ident: ref31 doi: 10.1109/ICCV.2013.394 – volume: 24 start-page: 1 year: 2023 ident: ref55 article-title: Graph clustering with graph neural networks publication-title: J. Mach. Learn. Res. – ident: ref84 doi: 10.1109/TPAMI.2020.2986748 – start-page: 8230 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref52 article-title: G-mixup: Graph data augmentation for graph classification – ident: ref86 doi: 10.1109/CVPRW.2019.00214 – ident: ref54 doi: 10.1109/TKDE.2021.3108192 – ident: ref85 doi: 10.5244/C.31.16 – volume: 32 start-page: 8026 year: 2019 ident: ref91 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – start-page: 29476 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref57 article-title: Neural Bellman-Ford networks: A general graph neural network framework for link prediction – ident: ref88 doi: 10.1109/CVPR.2009.5206848 – ident: ref81 doi: 10.1109/TNNLS.2013.2273537 – ident: ref40 doi: 10.1109/isscc.2011.5746374 – ident: ref10 doi: 10.1007/978-3-030-58583-9_26 – ident: ref18 doi: 10.1109/CVPRW.2019.00217 – ident: ref80 doi: 10.1109/TPAMI.2022.3224051 – ident: ref65 doi: 10.7551/mitpress/7503.003.0205 – ident: ref77 doi: 10.1109/JSSC.2012.2230553 – ident: ref53 doi: 10.1609/aaai.v28i1.8916 – ident: ref58 doi: 10.48550/arXiv.1606.09375 – ident: ref66 doi: 10.1609/aaai.v33i01.33013558 – ident: ref67 doi: 10.1109/ICPR.2004.1334462 – ident: ref59 doi: 10.1109/DICTA.2011.77 – ident: ref79 doi: 10.1109/ICCV48922.2021.00444 – ident: ref63 doi: 10.1007/978-3-319-46478-7_23 – ident: ref7 doi: 10.1109/ICCV.2019.00209 – ident: ref44 doi: 10.1109/IJCNN.2005.1555942 – ident: ref75 doi: 10.1109/CVPR52688.2022.01931 – ident: ref39 doi: 10.1016/j.imavis.2021.104357 – ident: ref60 doi: 10.3390/s22197640 – ident: ref71 doi: 10.1109/TPAMI.2019.2916873 – ident: ref43 doi: 10.1109/WF-IoT48130.2020.9221355 – ident: ref61 doi: 10.1016/j.imavis.2020.104068 – ident: ref27 doi: 10.1109/CVPR.2016.213 – ident: ref30 doi: 10.1109/TPAMI.2011.52 – year: 2014 ident: ref89 article-title: Adam: A method for stochastic optimization – ident: ref93 doi: 10.1109/WACV56688.2023.00553 – ident: ref6 doi: 10.1007/s11263-015-0846-5 – ident: ref11 doi: 10.1109/ESSDERC.2016.7599576 – ident: ref56 doi: 10.1609/aaai.v34i04.5731 – ident: ref28 doi: 10.5244/C.30.108 – year: 2012 ident: ref69 article-title: UCF101: A dataset of 101 human actions classes from videos in the wild – ident: ref21 doi: 10.1109/CVPR.2015.7299059 – ident: ref92 doi: 10.1007/978-3-030-01240-3_9 – ident: ref51 doi: 10.1145/3219819.3219980 – ident: ref62 doi: 10.1109/TIP.2023.3236144 – ident: ref33 doi: 10.1109/CVPR.2015.7298708 – ident: ref5 doi: 10.1007/s11263-022-01594-9 – year: 2019 ident: ref90 article-title: An exponential learning rate schedule for deep learning – start-page: 186 volume-title: Proc. Symp. VLSI Circuits ident: ref12 article-title: A 240× 180 10mw 12us latency sparse-output vision sensor for mobile applications – ident: ref15 doi: 10.1109/ISCAS45731.2020.9181247 – start-page: 1493 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref32 article-title: Learning discriminative representations from RGB-D video data – ident: ref72 doi: 10.1145/3132734.3132739 – ident: ref73 doi: 10.1145/3240508.3240675 – ident: ref24 doi: 10.1109/ICCV.2015.522 – start-page: 1881 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref34 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification – ident: ref49 doi: 10.1109/TPAMI.2020.3039374 – ident: ref38 doi: 10.1109/ICCV.2019.00631 – ident: ref45 doi: 10.1109/TNN.2008.2005605 – ident: ref9 doi: 10.1007/978-3-030-01240-3_28 – ident: ref50 doi: 10.1609/aaai.v32i1.11782 – ident: ref70 doi: 10.1109/CVPR.2014.339 – start-page: 568 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Two-stream convolutional networks for action recognition in videos – ident: ref37 doi: 10.1109/WACV56688.2023.00338 – ident: ref14 doi: 10.24963/ijcai.2021/240 – ident: ref16 doi: 10.1109/TPAMI.2023.3300741 – ident: ref19 doi: 10.1109/ISCAS.2019.8702581 – ident: ref26 doi: 10.1007/978-3-319-46484-8_2 – ident: ref17 doi: 10.3389/fnbot.2019.00038 – ident: ref4 doi: 10.1145/3582272 |
| SSID | ssj0014503 |
| Score | 2.5006583 |
| Snippet | Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6610 |
| SubjectTerms | Cameras dynamic vision sensor event camera Feature extraction hypergraph neural network Multi-view action recognition Neural networks Robot vision systems Semantics Task analysis Vision sensors |
| Title | Hypergraph-Based Multi-View Action Recognition Using Event Cameras |
| URI | https://ieeexplore.ieee.org/document/10480584 https://www.ncbi.nlm.nih.gov/pubmed/38536691 https://www.proquest.com/docview/3014009814 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sJz1Y39YXK3iT1H0m2WMVSxUUkVZ6W5JNAqJspe0i-OudZHdLFRRvy5LsIzPJzJfMzAdwHuGiaBTVxHJFk1imgsggyQnXiZIhlzJ0nJH3D3Qwiu_GybhOVne5MFprF3ymu_bSneWrSV7arTKc4TH30WK2oMU4rZK1FkcGceJokNGFwSmOOKLJkPHTy-Fj7_4WsWAYdxGRIeSx1HsRGipK0-CbQXIMK787m87o9Nvw0HxuFWvy2i3nspt__qjk-O__2YSN2v30epW-bMGKLrah3VA7ePVM34b1pTqFO3A1QLQ6dbWtyRWaPeW5vF3y_KI_vJ7LjPCemkgkvHZxCN6NDaX0roXd9prtwqh_M7wekJp8geToY82JZrkfcK5oqjWVTMQCsTIzOpQufV6EgiseKbyhE2qURJxp8kgGqTQiMEJFe7BaTAp9AF7EDIsToRiOdpwbllIh_UDhWsCMj907EDQSyPK6MrklyHjLHELx08wJMLMCzGoBduBi0ee9qsvxZ-tdO_pLLauB78BZI-kMp5U9KxGFnpSzzCFPP-UBttmvVGDRu9Gcw1-eegRr9uVVyN8xrM6npT5B12UuT53KfgFt4-Yl |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB60PqgPHvWq5wq-SdY9stdjLZVV2yLSim9LsklAlFZ6IPjrnWR3SxUU35YlWbKZSWa-ZGY-gAsfN0UlQkk0VzShPGGEu0FOYhkI7sWce4YzstsL0wG9ew6ey2R1kwsjpTTBZ9LWj-YuX4zymT4qwxVOYwct5jKsBJTSoEjXml8a0MAQIaMTg4sckUSVI-MkV_2HZvcW0aBHbcRkCHo0-Z6PpioME_ebSTIcK7-7m8bs3GxCrxpwEW3yas-m3M4_f9Ry_PcfbcFG6YBazUJjtmFJDuuwWZE7WOVar8P6QqXCHbhOEa-OTXVrco2GT1gmc5c8vcgPq2lyI6zHKhYJn00kgtXWwZRWi-mDr8kuDG7a_VZKSvoFkqOXNSUyyh03jkWYSBnyiFGGaDlS0uMmgZ55LBaxL_CFDEIlOCJNlfvcTbhirmLC34PacDSUB2D5kYpowESEs01zFSUh444rcDeIlIPdG-BWEsjysja5psh4ywxGcZLMCDDTAsxKATbgct7nvajM8WfrXT37Cy2LiW_AeSXpDBeWvi1hQzmaTTKDPZ0kdrHNfqEC896V5hz-8tUzWE373U7Wue3dH8GaHkgRAHgMtel4Jk_QkZnyU6O-X6W56XI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypergraph-Based+Multi-View+Action+Recognition+Using+Event+Cameras&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Gao%2C+Yue&rft.au=Lu%2C+Jiaxuan&rft.au=Li%2C+Siqi&rft.au=Li%2C+Yipeng&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=46&rft.issue=10&rft.spage=6610&rft.epage=6622&rft_id=info:doi/10.1109%2FTPAMI.2024.3382117&rft_id=info%3Apmid%2F38536691&rft.externalDocID=10480584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |