Robust State Space Filtering Under Incremental Model Perturbations Subject to a Relative Entropy Tolerance
This paper considers robust filtering for a nominal Gaussian state-space model, when a relative entropy tolerance is applied to each time increment of a dynamical model. The problem is formulated as a dynamic minimax game where the maximizer adopts a myopic strategy. This game is shown to admit a sa...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 58; no. 3; pp. 682 - 695 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2012.2219952 |
Cover
| Summary: | This paper considers robust filtering for a nominal Gaussian state-space model, when a relative entropy tolerance is applied to each time increment of a dynamical model. The problem is formulated as a dynamic minimax game where the maximizer adopts a myopic strategy. This game is shown to admit a saddle point whose structure is characterized by applying and extending results presented earlier in "Robust least-squares estimation with a relative entropy constraint" (B. C. Levy and R. Nikoukhah, IEEE Trans. Inf. Theory, vol. 50, no. 1, 89-104, Jan. 2004) for static least-squares estimation. The resulting minimax filter takes the form of a risk-sensitive filter with a time varying risk sensitivity parameter, which depends on the tolerance bound applied to the model dynamics and observations at the corresponding time index. The least-favorable model is constructed and used to evaluate the performance of alternative filters. Simulations comparing the proposed risk-sensitive filter to a standard Kalman filter show a significant performance advantage when applied to the least-favorable model, and only a small performance loss for the nominal model. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2012.2219952 |