Water meter pointer reading recognition method based on target-key point detection

With the rapid development of video image technology and fifth-generation mobile network technology, the automatic verification of mechanical water meters has become an increasingly important topic in smart cities. Although much research has been done on this subject, the efficiency and accuracy of...

Full description

Saved in:
Bibliographic Details
Published inFlow measurement and instrumentation Vol. 81; p. 102012
Main Authors Zhang, Qingqi, Bao, Xiaoan, Wu, Biao, Tu, Xiaomei, Jin, Yuting, Luo, Yuan, Zhang, Na
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text
ISSN0955-5986
1873-6998
DOI10.1016/j.flowmeasinst.2021.102012

Cover

Abstract With the rapid development of video image technology and fifth-generation mobile network technology, the automatic verification of mechanical water meters has become an increasingly important topic in smart cities. Although much research has been done on this subject, the efficiency and accuracy of existing water meter pointer reading technology can still be improved. This paper proposes a new water meter pointer reading recognition method based on target-key point detection. Our method consists of a target detection module and a key point detection module. The target detection module uses a modified YOLOv4-Tiny network to detect and classify the areas where the dials and pointers are located in water meter images with distinct characteristics. The key point detection module is used to detect the key point of the pointer image. In this module, the structure of the RFB-Net network is improved to introduce multiple layers of low-level feature information, therefore, it can make full use of the information between multi-scale feature layers for key point detection. In addition to, aiming at the problem of dial rotation, a method of establishing a right-angle coordinate system based on key point is proposed to realize pointer reading. The whole method proposed in this paper is compared to the Hough transform feature matching algorithm and traditional machine learning algorithms through experiments which test the detection and recognition of the water meter dial, pointer and key points. The experiment results show that the missed detection rate of the model in this paper is 1.88% and 1.07% for the dial region and the pointer region, respectively. And the accuracy rate reaches 98.68%, the average processing time per image is 0.37 s. This implies that the water meter inspection task is completed quickly and accurately with strong robustness. Thanks to the lightweight algorithm of our approach, the model can also be fully automated and easily deployed on mobile devices. •This paper presents a target-key point detection-based water meter pointer reading recognition method for automatic reading of water meter instruments. The method in this paper combines the latest target detection technology and key point detection technology.•A novel pointer reading method based on the structure of key point detection is proposed.•The network is improved according to the dataset of practical application scenarios. Experiments prove that the improvements in this paper improve the accuracy of recognition.•A comprehensive experimental comparison between the method in this paper and previous methods shows that the method in this paper can achieve automatic reading of water meters quickly and accurately.
AbstractList With the rapid development of video image technology and fifth-generation mobile network technology, the automatic verification of mechanical water meters has become an increasingly important topic in smart cities. Although much research has been done on this subject, the efficiency and accuracy of existing water meter pointer reading technology can still be improved. This paper proposes a new water meter pointer reading recognition method based on target-key point detection. Our method consists of a target detection module and a key point detection module. The target detection module uses a modified YOLOv4-Tiny network to detect and classify the areas where the dials and pointers are located in water meter images with distinct characteristics. The key point detection module is used to detect the key point of the pointer image. In this module, the structure of the RFB-Net network is improved to introduce multiple layers of low-level feature information, therefore, it can make full use of the information between multi-scale feature layers for key point detection. In addition to, aiming at the problem of dial rotation, a method of establishing a right-angle coordinate system based on key point is proposed to realize pointer reading. The whole method proposed in this paper is compared to the Hough transform feature matching algorithm and traditional machine learning algorithms through experiments which test the detection and recognition of the water meter dial, pointer and key points. The experiment results show that the missed detection rate of the model in this paper is 1.88% and 1.07% for the dial region and the pointer region, respectively. And the accuracy rate reaches 98.68%, the average processing time per image is 0.37 s. This implies that the water meter inspection task is completed quickly and accurately with strong robustness. Thanks to the lightweight algorithm of our approach, the model can also be fully automated and easily deployed on mobile devices. •This paper presents a target-key point detection-based water meter pointer reading recognition method for automatic reading of water meter instruments. The method in this paper combines the latest target detection technology and key point detection technology.•A novel pointer reading method based on the structure of key point detection is proposed.•The network is improved according to the dataset of practical application scenarios. Experiments prove that the improvements in this paper improve the accuracy of recognition.•A comprehensive experimental comparison between the method in this paper and previous methods shows that the method in this paper can achieve automatic reading of water meters quickly and accurately.
ArticleNumber 102012
Author Zhang, Qingqi
Wu, Biao
Bao, Xiaoan
Luo, Yuan
Jin, Yuting
Zhang, Na
Tu, Xiaomei
Author_xml – sequence: 1
  givenname: Qingqi
  orcidid: 0000-0001-6899-840X
  surname: Zhang
  fullname: Zhang, Qingqi
  email: 18846432354@163.com
  organization: Zhejiang Sci-Tech University, China
– sequence: 2
  givenname: Xiaoan
  surname: Bao
  fullname: Bao, Xiaoan
  email: baoxiaoan@zstu.edu.cn
  organization: Zhejiang Sci-Tech University, China
– sequence: 3
  givenname: Biao
  surname: Wu
  fullname: Wu, Biao
  email: biaowuzg@zstu.edu.cn
  organization: Zhejiang Sci-Tech University, China
– sequence: 4
  givenname: Xiaomei
  surname: Tu
  fullname: Tu, Xiaomei
  email: 1505027127@qq.com
  organization: Zhejiang Sci-Tech University, China
– sequence: 5
  givenname: Yuting
  surname: Jin
  fullname: Jin, Yuting
  email: 1552474482@qq.com
  organization: Zhejiang Sci-Tech University, China
– sequence: 6
  givenname: Yuan
  surname: Luo
  fullname: Luo, Yuan
  email: 993807182@qq.com
  organization: Zhejiang Sci-Tech University, China
– sequence: 7
  givenname: Na
  surname: Zhang
  fullname: Zhang, Na
  email: zhangna@zstu.edu.cn
  organization: Zhejiang Sci-Tech University, China
BookMark eNqNkM1KAzEURoNUsK2-w-B-ajJ_TVwp1apQEERxGTK5d2pqm5QkKH17M4wLcdVNPkLud8g9EzKyziIhl4zOGGXN1WbWbd33DlUwNsRZQQuWHgrKihMyZnxe5o0QfETGVNR1XgvenJFJCBtKKaflfExe3lVEn-2wP_fO2D49KjB2nVK7tTXRONtPfDjIWhUQsnSPyq8x5p94GGoZJITuR8_Jaae2AS9-c0relvevi8d89fzwtLhd5bosqpirusQCGlpS3gLDjrdCQNcAU9CBqBVWSos55xQ6VqdVELRoKg1Vw6iqRFtOyfXA1d6F4LGTe292yh8ko7K3Izfyrx3Z25GDnVS--VfWJqr--9Ersz0OcTcgMC35ZdDLoA1ajWCSuCjBmWMwPyM7j14
CitedBy_id crossref_primary_10_1088_1361_6501_ac9ad4
crossref_primary_10_1088_1361_6501_ad1226
crossref_primary_10_1016_j_measurement_2024_114773
crossref_primary_10_1088_1361_6501_adb76a
crossref_primary_10_3390_s24051507
crossref_primary_10_1109_TIM_2025_3547081
crossref_primary_10_1109_ACCESS_2024_3370569
crossref_primary_10_1109_JIOT_2024_3357839
crossref_primary_10_1109_TIM_2023_3267344
crossref_primary_10_3390_agriculture11121238
crossref_primary_10_3934_mbe_2023011
crossref_primary_10_3390_electronics12204306
crossref_primary_10_1088_1361_6501_ad0c2f
crossref_primary_10_1088_2631_8695_ac8f1e
crossref_primary_10_1109_ACCESS_2022_3157619
Cites_doi 10.1016/j.flowmeasinst.2021.101963
10.3389/fnins.2019.00095
10.1109/CVPR.2018.00474
10.1016/j.flowmeasinst.2021.101934
10.1016/j.autcon.2020.103514
10.1007/s11263-014-0733-5
10.1109/CVPR.2016.308
10.1109/TPAMI.2015.2389824
10.3390/en11123496
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.flowmeasinst.2021.102012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-6998
ExternalDocumentID 10_1016_j_flowmeasinst_2021_102012
S0955598621001199
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c324t-a53e2d60308bd1ef8b99df6d1adfd95ae4ac97880df15187edc964cd4610a49b3
IEDL.DBID .~1
ISSN 0955-5986
IngestDate Thu Apr 24 23:02:20 EDT 2025
Sat Oct 25 05:14:12 EDT 2025
Fri Feb 23 02:44:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords YOLOv4-tiny
RFB-net
Key point detection
Water meter pointer recognition
Target detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-a53e2d60308bd1ef8b99df6d1adfd95ae4ac97880df15187edc964cd4610a49b3
ORCID 0000-0001-6899-840X
ParticipantIDs crossref_primary_10_1016_j_flowmeasinst_2021_102012
crossref_citationtrail_10_1016_j_flowmeasinst_2021_102012
elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2021_102012
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Flow measurement and instrumentation
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yanghao, Yifan, Li (b14) 2019; 049
Y. Sangdoo, H. Dongyoon, O.S. Joon, C. Sanghyuk, C. Junsuk, Cutmix: Regularization strategy to train strong classifiers with localizable features, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6023–6032.
Kunfu, Zilei, Lei, Yang (b16) 2020; 39
L. Shu, Q. Lu, Q. Haifang, S. Jianping, Path aggregation network for instance segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.
Ziquan, Huifang (b22) 2018; 11
Xinxin, Lin (b32) 2020; 56
Schumann, Kroner, Unsal, Haack, Kondrup, Christophersen, Benková, Knotek (b2) 2021
Xunsheng, Kaikai (b9) 2020
Shaoqing, Kaiming, Ross, Jian (b19) 2016; 39
Sunan, Qiuju (b11) 2020; 39
Ke (b1) 2021; 31
Wenxue, Zhimin, Xusheng (b6) 2019; 36
Misra (b25) 2019
Xuejun, Xiaojing, Xingfang, Yanxia (b7) 2020; 273
Yingfeng, Tianyu, Hongbo (b17) 2021; 70
S. Mark, H. Andrew, Z. Menglong, Z. Andrey, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
Yan, Wensheng, Yingjie, Xiaoming (b10) 2020; 57
Büker, Stolt, Lindström, Wennergren, Penttinen, Mattiasson (b4) 2021
Kaiming, Xiangyu, Shaoqing, Jian (b26) 2015; 37
L. Songtao, H. Di, Receptive field block net for accurate and fast object detection, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 385–400.
Feng (b3) 2019
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b35) 2014
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b34) 2015; 111
H. Jonathan, R. Vivek, S. Chen, Z. Menglong, Speed/accuracy trade-offs for modern convolutional object detectors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7310–7311.
S. Christian, V. Vincent, I. Sergey, S. Jon, W. Zbigniew, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
Jilin, Huifang, Minyuan, Jianliang (b15) 2020
Ning, Zengjun, Jing (b5) 2017; 25
Sanwu, Yawen (b8) 2005; 026
Deng, Yang, Li, He, Wang (b33) 2019
Yingbin, Chunli, Bo, Dan (b12) 2019; 35
W. ChienYao, L.H. Mark, W. YuehHua, C. PingYang, CSPNet: A new backbone that can enhance learning capability of CNN, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 390–391.
Zhifeng, Fengqin, Erlin (b13) 2020
Sengupta, Ye, Wang, Liu, Roy (b30) 2019; 13
Rongrong, Xin, Tangwen (b28) 2020
Yu, Shen, Shen (b23) 2021; 122
Wenxue (10.1016/j.flowmeasinst.2021.102012_b6) 2019; 36
Ziquan (10.1016/j.flowmeasinst.2021.102012_b22) 2018; 11
Zhifeng (10.1016/j.flowmeasinst.2021.102012_b13) 2020
10.1016/j.flowmeasinst.2021.102012_b29
10.1016/j.flowmeasinst.2021.102012_b27
Rongrong (10.1016/j.flowmeasinst.2021.102012_b28) 2020
Yingbin (10.1016/j.flowmeasinst.2021.102012_b12) 2019; 35
Büker (10.1016/j.flowmeasinst.2021.102012_b4) 2021
10.1016/j.flowmeasinst.2021.102012_b24
Everingham (10.1016/j.flowmeasinst.2021.102012_b34) 2015; 111
Xuejun (10.1016/j.flowmeasinst.2021.102012_b7) 2020; 273
Misra (10.1016/j.flowmeasinst.2021.102012_b25) 2019
10.1016/j.flowmeasinst.2021.102012_b21
10.1016/j.flowmeasinst.2021.102012_b20
Feng (10.1016/j.flowmeasinst.2021.102012_b3) 2019
Xinxin (10.1016/j.flowmeasinst.2021.102012_b32) 2020; 56
Jilin (10.1016/j.flowmeasinst.2021.102012_b15) 2020
Sengupta (10.1016/j.flowmeasinst.2021.102012_b30) 2019; 13
Lin (10.1016/j.flowmeasinst.2021.102012_b35) 2014
Xunsheng (10.1016/j.flowmeasinst.2021.102012_b9) 2020
Ning (10.1016/j.flowmeasinst.2021.102012_b5) 2017; 25
Deng (10.1016/j.flowmeasinst.2021.102012_b33) 2019
Ke (10.1016/j.flowmeasinst.2021.102012_b1) 2021; 31
10.1016/j.flowmeasinst.2021.102012_b18
Yu (10.1016/j.flowmeasinst.2021.102012_b23) 2021; 122
Kaiming (10.1016/j.flowmeasinst.2021.102012_b26) 2015; 37
Schumann (10.1016/j.flowmeasinst.2021.102012_b2) 2021
Yanghao (10.1016/j.flowmeasinst.2021.102012_b14) 2019; 049
Shaoqing (10.1016/j.flowmeasinst.2021.102012_b19) 2016; 39
Kunfu (10.1016/j.flowmeasinst.2021.102012_b16) 2020; 39
10.1016/j.flowmeasinst.2021.102012_b31
Sunan (10.1016/j.flowmeasinst.2021.102012_b11) 2020; 39
Sanwu (10.1016/j.flowmeasinst.2021.102012_b8) 2005; 026
Yingfeng (10.1016/j.flowmeasinst.2021.102012_b17) 2021; 70
Yan (10.1016/j.flowmeasinst.2021.102012_b10) 2020; 57
References_xml – volume: 56
  start-page: 130
  year: 2020
  end-page: 137
  ident: b32
  article-title: Real-time detection algorithm for small-scale pedestrians in complex road scenes
  publication-title: Computer Engineering and Applications
– reference: L. Songtao, H. Di, Receptive field block net for accurate and fast object detection, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 385–400.
– year: 2019
  ident: b33
  article-title: RFBNet: deep multimodal networks with residual fusion blocks for RGB-D semantic segmentation
– year: 2021
  ident: b2
  article-title: Measurements of water consumption for the development of new test regimes for domestic water meters
  publication-title: Flow Meas. Instrum.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b26
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 740
  year: 2014
  end-page: 755
  ident: b35
  article-title: Microsoft coco: Common objects in context
  publication-title: European Conference on Computer Vision
– volume: 049
  start-page: 1
  year: 2019
  end-page: 7
  ident: b14
  article-title: An automatic reading method for pointer meter
  publication-title: J. Shandong Univ.
– year: 2019
  ident: b3
  article-title: Application of visual recognition technology for intelligent meter reading of mechanical water meters
  publication-title: China Constr. Inf.
– volume: 122
  year: 2021
  ident: b23
  article-title: A real-time detection approach for bridge cracks based on YOLOv4-FPM
  publication-title: Autom. Constr.
– reference: S. Mark, H. Andrew, Z. Menglong, Z. Andrey, Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.
– reference: S. Christian, V. Vincent, I. Sergey, S. Jon, W. Zbigniew, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
– volume: 13
  start-page: 95
  year: 2019
  ident: b30
  article-title: Going deeper in spiking neural networks: VGG and residual architectures
  publication-title: Front. Neurosci.
– volume: 273
  start-page: 74
  year: 2020
  end-page: 76
  ident: b7
  article-title: Research on automatic verification device of cold water meter based on PLC
  publication-title: Ind. Instrum. Autom.
– reference: H. Jonathan, R. Vivek, S. Chen, Z. Menglong, Speed/accuracy trade-offs for modern convolutional object detectors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7310–7311.
– reference: W. ChienYao, L.H. Mark, W. YuehHua, C. PingYang, CSPNet: A new backbone that can enhance learning capability of CNN, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 390–391.
– volume: 35
  start-page: 7
  year: 2019
  ident: b12
  article-title: Automatic recognition method research of pointer meter based on hough transform and feature clustering
  publication-title: Mach. Des. Res.
– volume: 11
  start-page: 3496
  year: 2018
  ident: b22
  article-title: Automatic detection of transformer components in inspection images based on improved faster R-CNN
  publication-title: Energies
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: b34
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
– start-page: 581
  year: 2020
  end-page: 586
  ident: b13
  article-title: Machine vision based reading recognition for a pointer gauge
  publication-title: Control Eng. China
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: b17
  article-title: YOLOV4-5D: An effective and efficient object detector for autonomous driving
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 25
  start-page: 57
  year: 2017
  end-page: 64
  ident: b5
  article-title: Study of automatic system of pointer meter interpretation based on image identification
  publication-title: J. Beijing Inst. Petrochem. Technol.
– start-page: 361
  year: 2020
  end-page: 365
  ident: b28
  article-title: Small object detection with scale adaptive balance mechanism
  publication-title: 2020 15th IEEE International Conference on Signal Processing (ICSP), Vol. 1
– volume: 57
  start-page: 146
  year: 2020
  end-page: 151
  ident: b10
  article-title: Pointer recognition method for field meter based on extended scanning area
  publication-title: Electr. Meas. Instrum.
– volume: 39
  start-page: 41
  year: 2020
  end-page: 47
  ident: b16
  article-title: Pointer meter reading recognition by deep regression
  publication-title: Inf. Technol. NetW. Secur.
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: b19
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: b25
  article-title: Mish: A self regularized non-monotonic activation function
– year: 2020
  ident: b15
  article-title: An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-net
  publication-title: Power Syst. Technol.
– year: 2020
  ident: b9
  article-title: Water meter character recognition method based on CNN
  publication-title: Transducer Microsyst. Technol.
– volume: 026
  start-page: 1178
  year: 2005
  end-page: 1180
  ident: b8
  article-title: Automatic recognizing of multi pointer’s water meter using image processing
  publication-title: Chin. J. Sci. Instrum.
– year: 2021
  ident: b4
  article-title: A unique test facility for calibration of domestic flow meters under dynamic flow conditions
  publication-title: Flow Meas. Instrum.
– volume: 36
  year: 2019
  ident: b6
  article-title: Calibration method of water meter based on machine vision
  publication-title: J. Mech. Electr. Eng.
– volume: 31
  start-page: 58
  year: 2021
  end-page: 61
  ident: b1
  article-title: Understanding and application of the new version of water meter testing regulations
  publication-title: Ind. Metrol.
– volume: 39
  year: 2020
  ident: b11
  article-title: Image registration method based on improved SIFT algorithm
  publication-title: Transducer and Microsystem Technologies
– reference: L. Shu, Q. Lu, Q. Haifang, S. Jianping, Path aggregation network for instance segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.
– reference: Y. Sangdoo, H. Dongyoon, O.S. Joon, C. Sanghyuk, C. Junsuk, Cutmix: Regularization strategy to train strong classifiers with localizable features, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6023–6032.
– volume: 25
  start-page: 57
  issue: 01
  year: 2017
  ident: 10.1016/j.flowmeasinst.2021.102012_b5
  article-title: Study of automatic system of pointer meter interpretation based on image identification
  publication-title: J. Beijing Inst. Petrochem. Technol.
– volume: 273
  start-page: 74
  issue: 03
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b7
  article-title: Research on automatic verification device of cold water meter based on PLC
  publication-title: Ind. Instrum. Autom.
– volume: 35
  start-page: 7
  issue: 03
  year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b12
  article-title: Automatic recognition method research of pointer meter based on hough transform and feature clustering
  publication-title: Mach. Des. Res.
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 10.1016/j.flowmeasinst.2021.102012_b19
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 581
  issue: 3
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b13
  article-title: Machine vision based reading recognition for a pointer gauge
  publication-title: Control Eng. China
– year: 2021
  ident: 10.1016/j.flowmeasinst.2021.102012_b2
  article-title: Measurements of water consumption for the development of new test regimes for domestic water meters
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.101963
– issue: 11
  year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b3
  article-title: Application of visual recognition technology for intelligent meter reading of mechanical water meters
  publication-title: China Constr. Inf.
– volume: 13
  start-page: 95
  year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b30
  article-title: Going deeper in spiking neural networks: VGG and residual architectures
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00095
– ident: 10.1016/j.flowmeasinst.2021.102012_b20
  doi: 10.1109/CVPR.2018.00474
– ident: 10.1016/j.flowmeasinst.2021.102012_b21
– ident: 10.1016/j.flowmeasinst.2021.102012_b27
– year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b33
– start-page: 361
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b28
  article-title: Small object detection with scale adaptive balance mechanism
– ident: 10.1016/j.flowmeasinst.2021.102012_b29
– volume: 56
  start-page: 130
  issue: 965, 22
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b32
  article-title: Real-time detection algorithm for small-scale pedestrians in complex road scenes
  publication-title: Computer Engineering and Applications
– start-page: 740
  year: 2014
  ident: 10.1016/j.flowmeasinst.2021.102012_b35
  article-title: Microsoft coco: Common objects in context
– volume: 57
  start-page: 146
  issue: 741, 16
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b10
  article-title: Pointer recognition method for field meter based on extended scanning area
  publication-title: Electr. Meas. Instrum.
– issue: 8
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b15
  article-title: An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-net
  publication-title: Power Syst. Technol.
– volume: 049
  start-page: 1
  issue: 004
  year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b14
  article-title: An automatic reading method for pointer meter
  publication-title: J. Shandong Univ.
– year: 2021
  ident: 10.1016/j.flowmeasinst.2021.102012_b4
  article-title: A unique test facility for calibration of domestic flow meters under dynamic flow conditions
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.101934
– year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b25
– volume: 122
  year: 2021
  ident: 10.1016/j.flowmeasinst.2021.102012_b23
  article-title: A real-time detection approach for bridge cracks based on YOLOv4-FPM
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103514
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.flowmeasinst.2021.102012_b34
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– issue: 12
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b9
  article-title: Water meter character recognition method based on CNN
  publication-title: Transducer Microsyst. Technol.
– volume: 39
  issue: 344, 10
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b11
  article-title: Image registration method based on improved SIFT algorithm
  publication-title: Transducer and Microsystem Technologies
– ident: 10.1016/j.flowmeasinst.2021.102012_b31
  doi: 10.1109/CVPR.2016.308
– volume: 36
  issue: 3
  year: 2019
  ident: 10.1016/j.flowmeasinst.2021.102012_b6
  article-title: Calibration method of water meter based on machine vision
  publication-title: J. Mech. Electr. Eng.
– ident: 10.1016/j.flowmeasinst.2021.102012_b24
– ident: 10.1016/j.flowmeasinst.2021.102012_b18
– volume: 39
  start-page: 41
  issue: 524, 12
  year: 2020
  ident: 10.1016/j.flowmeasinst.2021.102012_b16
  article-title: Pointer meter reading recognition by deep regression
  publication-title: Inf. Technol. NetW. Secur.
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.flowmeasinst.2021.102012_b26
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 026
  start-page: 1178
  issue: 011
  year: 2005
  ident: 10.1016/j.flowmeasinst.2021.102012_b8
  article-title: Automatic recognizing of multi pointer’s water meter using image processing
  publication-title: Chin. J. Sci. Instrum.
– volume: 11
  start-page: 3496
  issue: 12
  year: 2018
  ident: 10.1016/j.flowmeasinst.2021.102012_b22
  article-title: Automatic detection of transformer components in inspection images based on improved faster R-CNN
  publication-title: Energies
  doi: 10.3390/en11123496
– volume: 31
  start-page: 58
  issue: 02
  year: 2021
  ident: 10.1016/j.flowmeasinst.2021.102012_b1
  article-title: Understanding and application of the new version of water meter testing regulations
  publication-title: Ind. Metrol.
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.flowmeasinst.2021.102012_b17
  article-title: YOLOV4-5D: An effective and efficient object detector for autonomous driving
  publication-title: IEEE Trans. Instrum. Meas.
SSID ssj0008037
Score 2.3733182
Snippet With the rapid development of video image technology and fifth-generation mobile network technology, the automatic verification of mechanical water meters has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102012
SubjectTerms Key point detection
RFB-net
Target detection
Water meter pointer recognition
YOLOv4-tiny
Title Water meter pointer reading recognition method based on target-key point detection
URI https://dx.doi.org/10.1016/j.flowmeasinst.2021.102012
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: AKRWK
  dateStart: 19891001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KRdCDaFWsj7IHr7FJdvPYg4dSLFWxB7XYW9hXoNKmJY1487e7k01qBQ8Fjxt2QpjdzDcD33yD0HUa6NjgqnRSL-amQNHKYT5I7ksCPTOaRAQanJ9G4XBMHybBpIH6dS8M0Cqr2G9jehmtqyfdypvd5XTafQHxNFAX971SuAya-CiNYIrBzdcPzSN2rW6m2ezA7lp4tOR4pbPF51xzU5WvgFfpe6Bk4Hr-3yC1ATyDQ3RQZYy4Zz_qCDV01kL7GzqCLbRb8jjl6hg9v5ncMcdzILng5QLEIHKcW6I8XpOFFhm2k6MxgJjCZm0Z4Y75pa0ZVrooWVrZCRoP7l77Q6cam-BIkx0VDg-I9lUIQjRCeTqNBWMqDZXHVapYwDXl0tSOsatSA_dxpJVkIZUKlNc5ZYKcoma2yPQZwtDZK1wtCQk4NWU3M4hPmHlnRIRQVLQRq_2UyEpTHEZbzJKaPPaebPo4AR8n1sdtRNa2S6ussZXVbX0cya97khgI2ML-_J_2F2gPVpbOd4maRf6hr0xaUohOee86aKd3_zgcfQM_UeVG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qRdSDaFWsn3vwGttk87UHD1IsVdsetMXeQrK7gUqblDTizd_uTjapFTwIHpPshDC7mTcDb94AXMeO9BWuciM2_VAVKFIYzELJfU6xZ0ZSj2KD82Do9sb248SZ1KBT9cIgrbKM_TqmF9G6vNMqvdlaTKetFxRPQ3VxyyyEy9gGbNqO5WEFdvP5zfPw21o4U602cHmlPFqQvOJZ-jGXoSrLl0istEyUMmib1u8otYY83X3YK1NGcqe_6gBqMmnA7pqQYAO2CiInXx7C86tKHjMyR5YLWaSoBpGRTDPlyYotlCZEj44miGKCqGtNCTfUP63NiJB5QdNKjmDcvR91ekY5N8HgKj3KjdCh0hIuKtFEwpSxHzEmYleYoYgFc0Jph1wVj35bxArvfU8KzlybC5ReD20W0WOoJ2kiT4Bga2_UlpxSJ7RV3c0U5FOm3unRKBJ21ARW-Sngpag4zraYBRV77C1Y93GAPg60j5tAV7YLLa3xJ6vbajuCHwclUBjwB_vTf9pfwXZvNOgH_Yfh0xns4BPN7TuHep69ywuVo-TRZXEGvwCfB-bb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+meter+pointer+reading+recognition+method+based+on+target-key+point+detection&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Zhang%2C+Qingqi&rft.au=Bao%2C+Xiaoan&rft.au=Wu%2C+Biao&rft.au=Tu%2C+Xiaomei&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0955-5986&rft.eissn=1873-6998&rft.volume=81&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2021.102012&rft.externalDocID=S0955598621001199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon