Greedy Weighted Stacking of Machine Learning Models for Optimizing Dam Deformation Prediction
Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for surveillance, advancements in technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising avenues for...
Saved in:
| Published in | Water (Basel) Vol. 16; no. 9; p. 1235 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4441 2073-4441 |
| DOI | 10.3390/w16091235 |
Cover
| Abstract | Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for surveillance, advancements in technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising avenues for enhancing predictive capabilities. We investigate the application of ML algorithms, including Boosted Regression Trees (BRT), Random Forest (RF), and Neural Networks (NN), focussing on their combination by Stacking to improve prediction accuracy on concrete dam deformation using radial displacement data from three dams. The methodology involves training first-level models (experts) using those algorithms, and a second-level meta-learner that combines their predictions using BRT, a Linear Model (LM) and the Greedy Weighted Algorithm (GWA). A comparative analysis demonstrates the superiority of Stacking over traditional methods. The GWA emerged as the most suitable meta-learner, enhancing the optimal expert in all cases, with improvement rates reaching up to 16.12% over the optimal expert. Our study addresses critical questions regarding the GWA’s expert weighting and its impact on prediction precision. The results indicate that the combination of accurate experts using the GWA improves model reliability by reducing error dispersion. However, variations in optimal weights over time necessitate robust error estimation using cross-validation by blocks. Furthermore, the assignment of weights to experts closely correlates with their precision: the more accurate a model is, the more weight that is assigned to it. The GWA improves on the optimal expert in most cases, including at extreme values of error, with improvement rates up to 41.74%. Our findings suggest that the proposed methodology significantly advances AI applications in infrastructure monitoring, with implications for dam safety. |
|---|---|
| AbstractList | Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for surveillance, advancements in technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising avenues for enhancing predictive capabilities. We investigate the application of ML algorithms, including Boosted Regression Trees (BRT), Random Forest (RF), and Neural Networks (NN), focussing on their combination by Stacking to improve prediction accuracy on concrete dam deformation using radial displacement data from three dams. The methodology involves training first-level models (experts) using those algorithms, and a second-level meta-learner that combines their predictions using BRT, a Linear Model (LM) and the Greedy Weighted Algorithm (GWA). A comparative analysis demonstrates the superiority of Stacking over traditional methods. The GWA emerged as the most suitable meta-learner, enhancing the optimal expert in all cases, with improvement rates reaching up to 16.12% over the optimal expert. Our study addresses critical questions regarding the GWA’s expert weighting and its impact on prediction precision. The results indicate that the combination of accurate experts using the GWA improves model reliability by reducing error dispersion. However, variations in optimal weights over time necessitate robust error estimation using cross-validation by blocks. Furthermore, the assignment of weights to experts closely correlates with their precision: the more accurate a model is, the more weight that is assigned to it. The GWA improves on the optimal expert in most cases, including at extreme values of error, with improvement rates up to 41.74%. Our findings suggest that the proposed methodology significantly advances AI applications in infrastructure monitoring, with implications for dam safety. |
| Audience | Academic |
| Author | Fernández-Centeno, Miguel Á. Toledo, Miguel Á. Alocén, Patricia |
| Author_xml | – sequence: 1 givenname: Patricia orcidid: 0000-0002-7573-4733 surname: Alocén fullname: Alocén, Patricia – sequence: 2 givenname: Miguel Á. orcidid: 0000-0001-9874-4486 surname: Fernández-Centeno fullname: Fernández-Centeno, Miguel Á. – sequence: 3 givenname: Miguel Á. orcidid: 0000-0002-7594-7624 surname: Toledo fullname: Toledo, Miguel Á. |
| BookMark | eNp9kUtLAzEQx4MoqNWD3yDgRYVqXvvIsVitQksFBU-ypNlJje4mNdlS6qc3pSLiwZnDDH9-M8zjEO067wChE0ouOZfkakVzIinj2Q46YKTgfSEE3f2V76PjGN9IMiHLMiMH6GUUAOo1fgY7f-2gxo-d0u_WzbE3eKL0q3WAx6CC22gTX0MTsfEBTxedbe3nRh2qFg8hia3qrHf4IUBt9SY9QntGNRGOv2MPPd3ePF3f9cfT0f31YNzXnImun2bJi0KKms1YTQnTAqRghhhaGJaXkJdEz5g2mhIxo5rNylxSobnMS8ak4j10sW27dAu1XqmmqRbBtiqsK0qqzWmqn9Mk-GwLL4L_WELsqtZGDU2jHPhlrDjNeE5TX5nQ0z_om18GlzapOMk4I1zKIlGXW2quGqisM74LSievobU6fcjYpA8KybOCpj1Twfm2QAcfYwDzz7RffqON0A |
| Cites_doi | 10.1007/s12205-023-0355-y 10.1002/stc.2012 10.1016/j.engstruct.2010.12.011 10.1214/aos/1013203451 10.3390/w12102927 10.1016/j.procs.2017.03.120 10.1016/j.engstruct.2016.04.012 10.3390/w13192717 10.1016/j.strusafe.2015.05.001 10.1016/j.apm.2020.10.028 10.1109/BigDataService49289.2020.00040 10.1061/(ASCE)0887-3801(1994)8:2(131) 10.1007/978-981-15-9121-1_5 10.1007/s13349-022-00557-5 10.3390/w14162464 10.1016/j.strusafe.2014.02.004 10.1038/nature14539 10.1023/B:MACH.0000015881.36452.6e 10.1016/j.engstruct.2018.11.065 10.1186/s13104-020-4931-7 10.1007/s10346-019-01286-5 10.1016/j.compag.2021.106039 10.1016/S0893-6080(05)80023-1 10.3390/w14071133 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC UNPAY |
| DOI | 10.3390/w16091235 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Proquest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | 10.3390/w16091235 A793571677 10_3390_w16091235 |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c324t-98867794d2b2d102c4e942f0f17f268e680cb2cfc104b1c2b86914c3968229a3 |
| IEDL.DBID | BENPR |
| ISSN | 2073-4441 |
| IngestDate | Sun Sep 07 11:27:13 EDT 2025 Sun Sep 28 07:01:33 EDT 2025 Mon Jun 30 14:32:50 EDT 2025 Mon Oct 20 17:05:50 EDT 2025 Thu Oct 16 04:37:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-98867794d2b2d102c4e942f0f17f268e680cb2cfc104b1c2b86914c3968229a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9874-4486 0000-0002-7573-4733 0000-0002-7594-7624 |
| OpenAccessLink | https://www.proquest.com/docview/3053203997?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3053203997 |
| PQPubID | 2032318 |
| ParticipantIDs | unpaywall_primary_10_3390_w16091235 proquest_miscellaneous_3153612299 proquest_journals_3053203997 gale_infotracacademiconefile_A793571677 crossref_primary_10_3390_w16091235 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Salazar (ref_11) 2016; 119 Salazar (ref_2) 2017; 24 Dou (ref_20) 2020; 17 Salazar (ref_9) 2015; 56 ref_10 Lecun (ref_5) 2015; 521 Kang (ref_6) 2019; 180 (ref_18) 2004; 54 Divac (ref_12) 2014; 48 ref_16 ref_15 Flood (ref_4) 1994; 8 Wolpert (ref_17) 1992; 5 Shahzadi (ref_14) 2024; 28 Mata (ref_13) 2011; 33 Cheng (ref_24) 2017; 107 Chen (ref_21) 2021; 91 Friedman (ref_3) 2001; 29 ref_23 ref_22 ref_1 ref_27 ref_26 ref_8 Wu (ref_19) 2021; 184 Lei (ref_25) 2022; 12 ref_7 |
| References_xml | – volume: 28 start-page: 155 year: 2024 ident: ref_14 article-title: Deep Neural Network-based Inverse Analysis with Application to a Rockfill Dam publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-023-0355-y – volume: 24 start-page: e2012 year: 2017 ident: ref_2 article-title: Early detection of anomalies in dam performance: A methodology based on boosted regression trees publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2012 – volume: 33 start-page: 903 year: 2011 ident: ref_13 article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.12.011 – volume: 29 start-page: 1189 year: 2001 ident: ref_3 article-title: Greedy Function Approximation: A Gradient Boosting Machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – ident: ref_23 doi: 10.3390/w12102927 – volume: 107 start-page: 373 year: 2017 ident: ref_24 article-title: Application of Extreme Learning Machine Combination Model for Dam Displacement Prediction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.03.120 – volume: 119 start-page: 230 year: 2016 ident: ref_11 article-title: Interpretation of dam deformation and leakage with boosted regression trees publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.04.012 – ident: ref_1 doi: 10.3390/w13192717 – volume: 56 start-page: 9 year: 2015 ident: ref_9 article-title: An empirical comparison of machine learning techniques for dam behaviour modelling publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2015.05.001 – volume: 91 start-page: 1175 year: 2021 ident: ref_21 article-title: Prediction of arch dam deformation via correlated multi-target stacking publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.10.028 – ident: ref_16 doi: 10.1109/BigDataService49289.2020.00040 – volume: 8 start-page: 131 year: 1994 ident: ref_4 article-title: Neural Networks in Civil Engineering. H Principles and Understanding publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(1994)8:2(131) – ident: ref_7 doi: 10.1007/978-981-15-9121-1_5 – volume: 12 start-page: 557 year: 2022 ident: ref_25 article-title: Dynamic Stacking ensemble monitoring model of dam displacement based on the feature selection with PCA-RF publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-022-00557-5 – ident: ref_8 – ident: ref_15 doi: 10.3390/w14162464 – volume: 48 start-page: 33 year: 2014 ident: ref_12 article-title: Development of support vector regression identification model for prediction of dam structural behaviour publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.02.004 – ident: ref_10 – volume: 521 start-page: 436 year: 2015 ident: ref_5 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 54 start-page: 255 year: 2004 ident: ref_18 article-title: Is Combining Classifiers with Stacking Better than Selecting the Best One? publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000015881.36452.6e – volume: 180 start-page: 642 year: 2019 ident: ref_6 article-title: Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.11.065 – ident: ref_27 doi: 10.1186/s13104-020-4931-7 – volume: 17 start-page: 641 year: 2020 ident: ref_20 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan publication-title: Landslides doi: 10.1007/s10346-019-01286-5 – volume: 184 start-page: 106039 year: 2021 ident: ref_19 article-title: Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106039 – volume: 5 start-page: 241 year: 1992 ident: ref_17 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – ident: ref_22 – ident: ref_26 doi: 10.3390/w14071133 |
| SSID | ssj0000498850 |
| Score | 2.3122203 |
| Snippet | Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 1235 |
| SubjectTerms | Accuracy Algorithms Analysis Artificial intelligence Dams Decision trees Deformation infrastructure linear models Machine learning Methods monitoring Neural networks Optimization algorithms prediction Regression analysis Support vector machines Time series water |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90Puge_BbnF_EDfKq2aZO2j8MpIkz3sKE-SEnSVMTZydYxtr_ey9rNTVB8K00gIZfc_S65-x3AGVWMS2F7lm8H0jLJj5bQjrZCN_F0TH0nluYesn7Pb1ve3RN7WoDjSS7MzPu9i-745cDhaNGoyxZhiTOE2yVYat03qs-maBxuT8tDe54zBs33n7MzP7VtGZb76acYDkS7PWNObta-k3LyKJL3i34mL9ToB0fjnzNdh9UCTJJqLv0NWNDpJpRnKAa34MUE1sRD8ji-AtUxQXSpzPU46SSkPo6k1KQgWX0lpjJau0cQyJIH1CUfbyPztyY-SE1P0xxJo2ted8znNjRvrptXt1ZRUsFSiJwyKwwMf13oxVTSGLGF8nTo0cROHD-hPNA8sJWkKlHopUlHURnw0PGUG3JDDC_cHSilnVTvArFVzCST0ncQUnFqhwEXIbNlwNDlRW1egZPJ-kefOXFGhA6HWapoulQVODeSicxhyrpCiSInAIcwtFRRFbUHQ4_O9ytwMBFeVJyyXuSOy1ogxMLm42kzng_z6CFS3eljH1TpiOLQ6lbgdCr036e0969e-7BCEd3kkY8HUMq6fX2I6CSTR8X-_AK5195o priority: 102 providerName: Unpaywall |
| Title | Greedy Weighted Stacking of Machine Learning Models for Optimizing Dam Deformation Prediction |
| URI | https://www.proquest.com/docview/3053203997 https://www.proquest.com/docview/3153612299 https://doi.org/10.3390/w16091235 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_0fGjvQVprMWpl1YJPwWSTbJIHkWvViuB5FMXzoYT9ighn7jzvOM6_3plcEqXQvuULNpnNzPxmdvY3AN-5joSSXujGXqJc2vzoSutbNw3y0Boe-0ZRHvKyK85vwot-1F-Cbr0Xhsoqa5tYGmoz1JQjPwzKFgboTuPj0ZNLXaNodbVuoSGr1grmqKQYW4YVTsxYLVj5cdrt_W6yLoiHkyTyFhRDAcb7hzNfoMvkZbu3N8f0t3luw4dpMZLzmRwM3vmfs0-wWgFH1lnM9GdYssUatN_RCX6BP1REY-bstkx3WsMQSWpKhbNhzi7LqknLKkLVe0Zd0AbPDEEru0K78fjwQldP5CM7sc2WRtYb00oOHa7D9dnp9c9zt2qf4GpESRMXv1TEqG6GK24QR-jQpiHPvdyPcy4SKxJPK65zjRGZ8jVXiUj9UAepIBJ4GXyFVjEs7AYwT5tIRUrFPsInwb00ETKNPJVEGN6i5XZgrxZdNlqQZGQYXJB8s0a-DhyQUDNSnMlYalnV_-MQREGVddBSRBi9xbED27Xcs0qjnrO3-Xdgt7mNukALHLKwwyk-g-YbERt6WAf2m_n69ytt_n-gLfjIEcIsyhu3oTUZT-03hCATtVP9Vzuw_Kvv49lNt9e5ewVbqdzE |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QJSHCJTWvMQpauK87ENVFbbVlnaXCi2il8qyHQchbbPLPrRa_hv_jZlsklZIcOstSqI4Go_9fTOeB8BbbpPU6CD2s0AYn5Iffe1C58uoiF3OszA35Ifs9dPu1_jTZXK5Br-bXBgKq2z2xGqjzkeWfOT7UdXCAOE0Oxz_9KlrFJ2uNi00dN1aIT-oSozViR1nbrlAE256cNrB-X7H-cnx4GPXr7sM-BbJxMyXgkq6yTjnhucItzZ2MuZFUIRZwVPhUhFYw21h0XAxoeVGpDKMbSRTqpWuI_zsPdiIo1ii7bfx4bh_8aV18iD9FiIJVhWNokgG-4swRYTmVXe5Gxz8Gw22YHNejvVyoYfDW3B38hAe1DyVHa0UaxvWXPkItm5VL3wMVxSzky_Zt8q76nKGxNWS552NCtargjQdq-u3fmfUdG04ZciR2Wfcpq5__KK7HX3NOq7NoGQXEzo4ossnMLgLOT6F9XJUumfAApsnJjEmC5GtpTyQItUyCYxI0JpGoPDgdSM6NV7V5FBoy5B8VStfD96TUBWt09lEW12nG-AQVPFKHeHGlKCxmGUe7DRyV_UCnqobdfPgVfsYlx6dp-jSjeb4DqIFEkQEdA_etPP17196_v-B9mCzO-idq_PT_tkLuM-RPa0iK3dgfTaZu5fIfmZmt9YxBuqOtfoPfSwUtg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVoL2gHhVNRRYXuJkxV7b691DhQpp1FIaIlREL8jaXa8rpNQJeSgK_7D_qjOO7VZIcOvNsi3bGs_O983sPADecpsIo4PYTwNpfCp-9LULna-iInY5T8PcUBzypC8Ov8efz5KzNbhsamEorbKxiZWhzkeWYuSdqBphgHCadoo6LWLQ7X0Y__ZpghTttDbjNHQ9ZiHfq9qN1UUex265QHduunfUxX__jvPewemnQ7-eOOBbJBYzX0lq76binBueI_Ta2KmYF0ERpgUX0gkZWMNtYdGJMaHlRgoVxjZSgvqm6wgfewc2aO8LbcTGx4P-4Fsb8EEqLmUSrLobRZEKOotQIFrzatLcNSb-jQxbcG9ejvVyoYfDG9DXewD3a87K9ldK9hDWXPkItm50MnwMPyl_J1-yH1Wk1eUMSaylKDwbFeykSth0rO7les5oANtwypAvs69osi5-_aGzXX3Buq6tpmSDCW0i0eETOL0NOW7Dejkq3Q6wwOaJSYxJQ2RuggdKCq2SwMgEPWsEDQ9eN6LLxqv-HBn6NSTfrJWvB-9JqBmt2dlEW12XHuArqPtVto9GKkHHMU092G3kntWLeZpdq54Hr9rLuAxpb0WXbjTHexA5kCwiuHvwpv1f__6kp_9_0Uu4i9qdfTnqHz-DTY5EapVkuQvrs8ncPUciNDMvahVjkN2yUl8BPegY5Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90Puge_BbnF_EDfKq2aZO2j8MpIkz3sKE-SEnSVMTZydYxtr_ey9rNTVB8K00gIZfc_S65-x3AGVWMS2F7lm8H0jLJj5bQjrZCN_F0TH0nluYesn7Pb1ve3RN7WoDjSS7MzPu9i-745cDhaNGoyxZhiTOE2yVYat03qs-maBxuT8tDe54zBs33n7MzP7VtGZb76acYDkS7PWNObta-k3LyKJL3i34mL9ToB0fjnzNdh9UCTJJqLv0NWNDpJpRnKAa34MUE1sRD8ji-AtUxQXSpzPU46SSkPo6k1KQgWX0lpjJau0cQyJIH1CUfbyPztyY-SE1P0xxJo2ted8znNjRvrptXt1ZRUsFSiJwyKwwMf13oxVTSGLGF8nTo0cROHD-hPNA8sJWkKlHopUlHURnw0PGUG3JDDC_cHSilnVTvArFVzCST0ncQUnFqhwEXIbNlwNDlRW1egZPJ-kefOXFGhA6HWapoulQVODeSicxhyrpCiSInAIcwtFRRFbUHQ4_O9ytwMBFeVJyyXuSOy1ogxMLm42kzng_z6CFS3eljH1TpiOLQ6lbgdCr036e0969e-7BCEd3kkY8HUMq6fX2I6CSTR8X-_AK5195o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+Weighted+Stacking+of+Machine+Learning+Models+for+Optimizing+Dam+Deformation+Prediction&rft.jtitle=Water+%28Basel%29&rft.au=Aloc%C3%A9n%2C+Patricia&rft.au=Fern%C3%A1ndez-Centeno%2C+Miguel+%C3%81.&rft.au=Toledo%2C+Miguel+%C3%81.&rft.date=2024-05-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=16&rft.issue=9&rft.spage=1235&rft_id=info:doi/10.3390%2Fw16091235&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w16091235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |