Greedy Weighted Stacking of Machine Learning Models for Optimizing Dam Deformation Prediction

Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for surveillance, advancements in technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising avenues for...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 16; no. 9; p. 1235
Main Authors Alocén, Patricia, Fernández-Centeno, Miguel Á., Toledo, Miguel Á.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w16091235

Cover

Abstract Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for surveillance, advancements in technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising avenues for enhancing predictive capabilities. We investigate the application of ML algorithms, including Boosted Regression Trees (BRT), Random Forest (RF), and Neural Networks (NN), focussing on their combination by Stacking to improve prediction accuracy on concrete dam deformation using radial displacement data from three dams. The methodology involves training first-level models (experts) using those algorithms, and a second-level meta-learner that combines their predictions using BRT, a Linear Model (LM) and the Greedy Weighted Algorithm (GWA). A comparative analysis demonstrates the superiority of Stacking over traditional methods. The GWA emerged as the most suitable meta-learner, enhancing the optimal expert in all cases, with improvement rates reaching up to 16.12% over the optimal expert. Our study addresses critical questions regarding the GWA’s expert weighting and its impact on prediction precision. The results indicate that the combination of accurate experts using the GWA improves model reliability by reducing error dispersion. However, variations in optimal weights over time necessitate robust error estimation using cross-validation by blocks. Furthermore, the assignment of weights to experts closely correlates with their precision: the more accurate a model is, the more weight that is assigned to it. The GWA improves on the optimal expert in most cases, including at extreme values of error, with improvement rates up to 41.74%. Our findings suggest that the proposed methodology significantly advances AI applications in infrastructure monitoring, with implications for dam safety.
AbstractList Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for surveillance, advancements in technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising avenues for enhancing predictive capabilities. We investigate the application of ML algorithms, including Boosted Regression Trees (BRT), Random Forest (RF), and Neural Networks (NN), focussing on their combination by Stacking to improve prediction accuracy on concrete dam deformation using radial displacement data from three dams. The methodology involves training first-level models (experts) using those algorithms, and a second-level meta-learner that combines their predictions using BRT, a Linear Model (LM) and the Greedy Weighted Algorithm (GWA). A comparative analysis demonstrates the superiority of Stacking over traditional methods. The GWA emerged as the most suitable meta-learner, enhancing the optimal expert in all cases, with improvement rates reaching up to 16.12% over the optimal expert. Our study addresses critical questions regarding the GWA’s expert weighting and its impact on prediction precision. The results indicate that the combination of accurate experts using the GWA improves model reliability by reducing error dispersion. However, variations in optimal weights over time necessitate robust error estimation using cross-validation by blocks. Furthermore, the assignment of weights to experts closely correlates with their precision: the more accurate a model is, the more weight that is assigned to it. The GWA improves on the optimal expert in most cases, including at extreme values of error, with improvement rates up to 41.74%. Our findings suggest that the proposed methodology significantly advances AI applications in infrastructure monitoring, with implications for dam safety.
Audience Academic
Author Fernández-Centeno, Miguel Á.
Toledo, Miguel Á.
Alocén, Patricia
Author_xml – sequence: 1
  givenname: Patricia
  orcidid: 0000-0002-7573-4733
  surname: Alocén
  fullname: Alocén, Patricia
– sequence: 2
  givenname: Miguel Á.
  orcidid: 0000-0001-9874-4486
  surname: Fernández-Centeno
  fullname: Fernández-Centeno, Miguel Á.
– sequence: 3
  givenname: Miguel Á.
  orcidid: 0000-0002-7594-7624
  surname: Toledo
  fullname: Toledo, Miguel Á.
BookMark eNp9kUtLAzEQx4MoqNWD3yDgRYVqXvvIsVitQksFBU-ypNlJje4mNdlS6qc3pSLiwZnDDH9-M8zjEO067wChE0ouOZfkakVzIinj2Q46YKTgfSEE3f2V76PjGN9IMiHLMiMH6GUUAOo1fgY7f-2gxo-d0u_WzbE3eKL0q3WAx6CC22gTX0MTsfEBTxedbe3nRh2qFg8hia3qrHf4IUBt9SY9QntGNRGOv2MPPd3ePF3f9cfT0f31YNzXnImun2bJi0KKms1YTQnTAqRghhhaGJaXkJdEz5g2mhIxo5rNylxSobnMS8ak4j10sW27dAu1XqmmqRbBtiqsK0qqzWmqn9Mk-GwLL4L_WELsqtZGDU2jHPhlrDjNeE5TX5nQ0z_om18GlzapOMk4I1zKIlGXW2quGqisM74LSievobU6fcjYpA8KybOCpj1Twfm2QAcfYwDzz7RffqON0A
Cites_doi 10.1007/s12205-023-0355-y
10.1002/stc.2012
10.1016/j.engstruct.2010.12.011
10.1214/aos/1013203451
10.3390/w12102927
10.1016/j.procs.2017.03.120
10.1016/j.engstruct.2016.04.012
10.3390/w13192717
10.1016/j.strusafe.2015.05.001
10.1016/j.apm.2020.10.028
10.1109/BigDataService49289.2020.00040
10.1061/(ASCE)0887-3801(1994)8:2(131)
10.1007/978-981-15-9121-1_5
10.1007/s13349-022-00557-5
10.3390/w14162464
10.1016/j.strusafe.2014.02.004
10.1038/nature14539
10.1023/B:MACH.0000015881.36452.6e
10.1016/j.engstruct.2018.11.065
10.1186/s13104-020-4931-7
10.1007/s10346-019-01286-5
10.1016/j.compag.2021.106039
10.1016/S0893-6080(05)80023-1
10.3390/w14071133
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
UNPAY
DOI 10.3390/w16091235
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Proquest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10.3390/w16091235
A793571677
10_3390_w16091235
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c324t-98867794d2b2d102c4e942f0f17f268e680cb2cfc104b1c2b86914c3968229a3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Sun Sep 07 11:27:13 EDT 2025
Sun Sep 28 07:01:33 EDT 2025
Mon Jun 30 14:32:50 EDT 2025
Mon Oct 20 17:05:50 EDT 2025
Thu Oct 16 04:37:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-98867794d2b2d102c4e942f0f17f268e680cb2cfc104b1c2b86914c3968229a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9874-4486
0000-0002-7573-4733
0000-0002-7594-7624
OpenAccessLink https://www.proquest.com/docview/3053203997?pq-origsite=%requestingapplication%&accountid=15518
PQID 3053203997
PQPubID 2032318
ParticipantIDs unpaywall_primary_10_3390_w16091235
proquest_miscellaneous_3153612299
proquest_journals_3053203997
gale_infotracacademiconefile_A793571677
crossref_primary_10_3390_w16091235
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Salazar (ref_11) 2016; 119
Salazar (ref_2) 2017; 24
Dou (ref_20) 2020; 17
Salazar (ref_9) 2015; 56
ref_10
Lecun (ref_5) 2015; 521
Kang (ref_6) 2019; 180
(ref_18) 2004; 54
Divac (ref_12) 2014; 48
ref_16
ref_15
Flood (ref_4) 1994; 8
Wolpert (ref_17) 1992; 5
Shahzadi (ref_14) 2024; 28
Mata (ref_13) 2011; 33
Cheng (ref_24) 2017; 107
Chen (ref_21) 2021; 91
Friedman (ref_3) 2001; 29
ref_23
ref_22
ref_1
ref_27
ref_26
ref_8
Wu (ref_19) 2021; 184
Lei (ref_25) 2022; 12
ref_7
References_xml – volume: 28
  start-page: 155
  year: 2024
  ident: ref_14
  article-title: Deep Neural Network-based Inverse Analysis with Application to a Rockfill Dam
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-023-0355-y
– volume: 24
  start-page: e2012
  year: 2017
  ident: ref_2
  article-title: Early detection of anomalies in dam performance: A methodology based on boosted regression trees
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2012
– volume: 33
  start-page: 903
  year: 2011
  ident: ref_13
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.12.011
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_3
  article-title: Greedy Function Approximation: A Gradient Boosting Machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– ident: ref_23
  doi: 10.3390/w12102927
– volume: 107
  start-page: 373
  year: 2017
  ident: ref_24
  article-title: Application of Extreme Learning Machine Combination Model for Dam Displacement Prediction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.03.120
– volume: 119
  start-page: 230
  year: 2016
  ident: ref_11
  article-title: Interpretation of dam deformation and leakage with boosted regression trees
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.04.012
– ident: ref_1
  doi: 10.3390/w13192717
– volume: 56
  start-page: 9
  year: 2015
  ident: ref_9
  article-title: An empirical comparison of machine learning techniques for dam behaviour modelling
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2015.05.001
– volume: 91
  start-page: 1175
  year: 2021
  ident: ref_21
  article-title: Prediction of arch dam deformation via correlated multi-target stacking
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.10.028
– ident: ref_16
  doi: 10.1109/BigDataService49289.2020.00040
– volume: 8
  start-page: 131
  year: 1994
  ident: ref_4
  article-title: Neural Networks in Civil Engineering. H Principles and Understanding
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(131)
– ident: ref_7
  doi: 10.1007/978-981-15-9121-1_5
– volume: 12
  start-page: 557
  year: 2022
  ident: ref_25
  article-title: Dynamic Stacking ensemble monitoring model of dam displacement based on the feature selection with PCA-RF
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-022-00557-5
– ident: ref_8
– ident: ref_15
  doi: 10.3390/w14162464
– volume: 48
  start-page: 33
  year: 2014
  ident: ref_12
  article-title: Development of support vector regression identification model for prediction of dam structural behaviour
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.02.004
– ident: ref_10
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_5
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 54
  start-page: 255
  year: 2004
  ident: ref_18
  article-title: Is Combining Classifiers with Stacking Better than Selecting the Best One?
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000015881.36452.6e
– volume: 180
  start-page: 642
  year: 2019
  ident: ref_6
  article-title: Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.11.065
– ident: ref_27
  doi: 10.1186/s13104-020-4931-7
– volume: 17
  start-page: 641
  year: 2020
  ident: ref_20
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan
  publication-title: Landslides
  doi: 10.1007/s10346-019-01286-5
– volume: 184
  start-page: 106039
  year: 2021
  ident: ref_19
  article-title: Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106039
– volume: 5
  start-page: 241
  year: 1992
  ident: ref_17
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– ident: ref_22
– ident: ref_26
  doi: 10.3390/w14071133
SSID ssj0000498850
Score 2.3122203
Snippet Dam safety monitoring is critical due to its social, environmental, and economic implications. Although conventional statistical approaches have been used for...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1235
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
Dams
Decision trees
Deformation
infrastructure
linear models
Machine learning
Methods
monitoring
Neural networks
Optimization algorithms
prediction
Regression analysis
Support vector machines
Time series
water
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90Puge_BbnF_EDfKq2aZO2j8MpIkz3sKE-SEnSVMTZydYxtr_ey9rNTVB8K00gIZfc_S65-x3AGVWMS2F7lm8H0jLJj5bQjrZCN_F0TH0nluYesn7Pb1ve3RN7WoDjSS7MzPu9i-745cDhaNGoyxZhiTOE2yVYat03qs-maBxuT8tDe54zBs33n7MzP7VtGZb76acYDkS7PWNObta-k3LyKJL3i34mL9ToB0fjnzNdh9UCTJJqLv0NWNDpJpRnKAa34MUE1sRD8ji-AtUxQXSpzPU46SSkPo6k1KQgWX0lpjJau0cQyJIH1CUfbyPztyY-SE1P0xxJo2ted8znNjRvrptXt1ZRUsFSiJwyKwwMf13oxVTSGLGF8nTo0cROHD-hPNA8sJWkKlHopUlHURnw0PGUG3JDDC_cHSilnVTvArFVzCST0ncQUnFqhwEXIbNlwNDlRW1egZPJ-kefOXFGhA6HWapoulQVODeSicxhyrpCiSInAIcwtFRRFbUHQ4_O9ytwMBFeVJyyXuSOy1ogxMLm42kzng_z6CFS3eljH1TpiOLQ6lbgdCr036e0969e-7BCEd3kkY8HUMq6fX2I6CSTR8X-_AK5195o
  priority: 102
  providerName: Unpaywall
Title Greedy Weighted Stacking of Machine Learning Models for Optimizing Dam Deformation Prediction
URI https://www.proquest.com/docview/3053203997
https://www.proquest.com/docview/3153612299
https://doi.org/10.3390/w16091235
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_0fGjvQVprMWpl1YJPwWSTbJIHkWvViuB5FMXzoYT9ighn7jzvOM6_3plcEqXQvuULNpnNzPxmdvY3AN-5joSSXujGXqJc2vzoSutbNw3y0Boe-0ZRHvKyK85vwot-1F-Cbr0Xhsoqa5tYGmoz1JQjPwzKFgboTuPj0ZNLXaNodbVuoSGr1grmqKQYW4YVTsxYLVj5cdrt_W6yLoiHkyTyFhRDAcb7hzNfoMvkZbu3N8f0t3luw4dpMZLzmRwM3vmfs0-wWgFH1lnM9GdYssUatN_RCX6BP1REY-bstkx3WsMQSWpKhbNhzi7LqknLKkLVe0Zd0AbPDEEru0K78fjwQldP5CM7sc2WRtYb00oOHa7D9dnp9c9zt2qf4GpESRMXv1TEqG6GK24QR-jQpiHPvdyPcy4SKxJPK65zjRGZ8jVXiUj9UAepIBJ4GXyFVjEs7AYwT5tIRUrFPsInwb00ETKNPJVEGN6i5XZgrxZdNlqQZGQYXJB8s0a-DhyQUDNSnMlYalnV_-MQREGVddBSRBi9xbED27Xcs0qjnrO3-Xdgt7mNukALHLKwwyk-g-YbERt6WAf2m_n69ytt_n-gLfjIEcIsyhu3oTUZT-03hCATtVP9Vzuw_Kvv49lNt9e5ewVbqdzE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lB6QJSHCJTWvMQpauK87ENVFbbVlnaXCi2il8qyHQchbbPLPrRa_hv_jZlsklZIcOstSqI4Go_9fTOeB8BbbpPU6CD2s0AYn5Iffe1C58uoiF3OszA35Ifs9dPu1_jTZXK5Br-bXBgKq2z2xGqjzkeWfOT7UdXCAOE0Oxz_9KlrFJ2uNi00dN1aIT-oSozViR1nbrlAE256cNrB-X7H-cnx4GPXr7sM-BbJxMyXgkq6yTjnhucItzZ2MuZFUIRZwVPhUhFYw21h0XAxoeVGpDKMbSRTqpWuI_zsPdiIo1ii7bfx4bh_8aV18iD9FiIJVhWNokgG-4swRYTmVXe5Gxz8Gw22YHNejvVyoYfDW3B38hAe1DyVHa0UaxvWXPkItm5VL3wMVxSzky_Zt8q76nKGxNWS552NCtargjQdq-u3fmfUdG04ZciR2Wfcpq5__KK7HX3NOq7NoGQXEzo4ossnMLgLOT6F9XJUumfAApsnJjEmC5GtpTyQItUyCYxI0JpGoPDgdSM6NV7V5FBoy5B8VStfD96TUBWt09lEW12nG-AQVPFKHeHGlKCxmGUe7DRyV_UCnqobdfPgVfsYlx6dp-jSjeb4DqIFEkQEdA_etPP17196_v-B9mCzO-idq_PT_tkLuM-RPa0iK3dgfTaZu5fIfmZmt9YxBuqOtfoPfSwUtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVoL2gHhVNRRYXuJkxV7b691DhQpp1FIaIlREL8jaXa8rpNQJeSgK_7D_qjOO7VZIcOvNsi3bGs_O983sPADecpsIo4PYTwNpfCp-9LULna-iInY5T8PcUBzypC8Ov8efz5KzNbhsamEorbKxiZWhzkeWYuSdqBphgHCadoo6LWLQ7X0Y__ZpghTttDbjNHQ9ZiHfq9qN1UUex265QHduunfUxX__jvPewemnQ7-eOOBbJBYzX0lq76binBueI_Ta2KmYF0ERpgUX0gkZWMNtYdGJMaHlRgoVxjZSgvqm6wgfewc2aO8LbcTGx4P-4Fsb8EEqLmUSrLobRZEKOotQIFrzatLcNSb-jQxbcG9ejvVyoYfDG9DXewD3a87K9ldK9hDWXPkItm50MnwMPyl_J1-yH1Wk1eUMSaylKDwbFeykSth0rO7les5oANtwypAvs69osi5-_aGzXX3Buq6tpmSDCW0i0eETOL0NOW7Dejkq3Q6wwOaJSYxJQ2RuggdKCq2SwMgEPWsEDQ9eN6LLxqv-HBn6NSTfrJWvB-9JqBmt2dlEW12XHuArqPtVto9GKkHHMU092G3kntWLeZpdq54Hr9rLuAxpb0WXbjTHexA5kCwiuHvwpv1f__6kp_9_0Uu4i9qdfTnqHz-DTY5EapVkuQvrs8ncPUciNDMvahVjkN2yUl8BPegY5Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90Puge_BbnF_EDfKq2aZO2j8MpIkz3sKE-SEnSVMTZydYxtr_ey9rNTVB8K00gIZfc_S65-x3AGVWMS2F7lm8H0jLJj5bQjrZCN_F0TH0nluYesn7Pb1ve3RN7WoDjSS7MzPu9i-745cDhaNGoyxZhiTOE2yVYat03qs-maBxuT8tDe54zBs33n7MzP7VtGZb76acYDkS7PWNObta-k3LyKJL3i34mL9ToB0fjnzNdh9UCTJJqLv0NWNDpJpRnKAa34MUE1sRD8ji-AtUxQXSpzPU46SSkPo6k1KQgWX0lpjJau0cQyJIH1CUfbyPztyY-SE1P0xxJo2ted8znNjRvrptXt1ZRUsFSiJwyKwwMf13oxVTSGLGF8nTo0cROHD-hPNA8sJWkKlHopUlHURnw0PGUG3JDDC_cHSilnVTvArFVzCST0ncQUnFqhwEXIbNlwNDlRW1egZPJ-kefOXFGhA6HWapoulQVODeSicxhyrpCiSInAIcwtFRRFbUHQ4_O9ytwMBFeVJyyXuSOy1ogxMLm42kzng_z6CFS3eljH1TpiOLQ6lbgdCr036e0969e-7BCEd3kkY8HUMq6fX2I6CSTR8X-_AK5195o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+Weighted+Stacking+of+Machine+Learning+Models+for+Optimizing+Dam+Deformation+Prediction&rft.jtitle=Water+%28Basel%29&rft.au=Aloc%C3%A9n%2C+Patricia&rft.au=Fern%C3%A1ndez-Centeno%2C+Miguel+%C3%81.&rft.au=Toledo%2C+Miguel+%C3%81.&rft.date=2024-05-01&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=16&rft.issue=9&rft.spage=1235&rft_id=info:doi/10.3390%2Fw16091235&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_w16091235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon