Efficient Discrete Clustering With Anchor Graph
Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficie...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 10; pp. 15012 - 15020 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2023.3279380 |
Cover
| Abstract | Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG. |
|---|---|
| AbstractList | Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG.Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG. Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG. |
| Author | Wang, Jingyu Li, Xuelong Ma, Zhenyu Nie, Feiping |
| Author_xml | – sequence: 1 givenname: Jingyu orcidid: 0000-0001-7017-1938 surname: Wang fullname: Wang, Jingyu email: jywang@nwpu.edu.cn organization: School of Astronautics and the School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Zhenyu orcidid: 0000-0002-3745-3471 surname: Ma fullname: Ma, Zhenyu email: zhenyu.ma@mail.nwpu.edu.cn organization: School of Astronautics, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Feiping orcidid: 0000-0002-0871-6519 surname: Nie fullname: Nie, Feiping email: feipingnie@gmail.com organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN) and the Key Laboratory of Intelligent Interaction and Applications, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Xuelong orcidid: 0000-0003-2924-946X surname: Li fullname: Li, Xuelong email: li@nwpu.edu.cn organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN) and the Key Laboratory of Intelligent Interaction and Applications, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37289611$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE9PAjEQxRuDEUS-gDFmj14W-me32x4JIpoQPIjRW9Mts1Kz7GLbPfjtXQSM8eBcZg7v9_LmnaNOVVeA0CXBQ0KwHC0Xi_nTkGLKhoxmkgl8gnqUcBpTJkTn585eu2jg_Ttuh-OUJ_IMdVlGheSE9NBoWhTWWKhCdGu9cRAgmpSND-Bs9Ra92LCOxpVZ1y6aOb1dX6DTQpceBofdR8930-XkPp4_zh4m43lsGE1CLEmGU8hTltNVqiXTOacFk0ZzaQQlIgPMeS4J1TjVRrJcy7zgjMmMrSAzCeujm73v1tUfDfigNm08KEtdQd14RQVNuMgYEa30-iBt8g2s1NbZjXaf6vhkKxB7gXG19w4KZWzQwdZVcNqWimC1q1R9V6p2lapDpS1K_6BH93-hqz1kAeAXQBLO2shf8J1_yA |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s11704_023_3355_7 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1016_j_inffus_2024_102804 |
| Cites_doi | 10.1016/j.neucom.2020.02.087 10.3390/rs11040399 10.1609/aaai.v35i11.17128 10.1109/TFUZZ.2021.3081990 10.1109/ICCV.2017.227 10.1109/TIP.2021.3131941 10.1007/s11222-007-9033-z 10.1109/TKDE.2017.2701825 10.1016/j.asoc.2018.09.015 10.1109/34.291440 10.1109/tnnls.2022.3173742 10.1609/aaai.v30i1.10302 10.2307/2346830 10.1109/ICASSP40776.2020.9053271 10.1109/TCYB.2014.2358564 10.1109/TNNLS.2020.3026532 10.1109/tnnls.2021.3138676 10.1109/TCYB.2021.3069836 10.1109/TGRS.2019.2913004 10.3390/s19194342 10.1109/TFUZZ.2020.2991306 10.1016/j.ins.2019.09.079 10.1109/LGRS.2017.2746625 10.1609/aaai.v31i1.11208 10.1016/j.neucom.2019.07.020 10.1609/aaai.v35i8.16854 10.1109/ICASSP.2017.7952605 10.1109/ICDM.2019.00081 10.1109/5.726791 10.1109/TNNLS.2020.3016291 10.1109/TNNLS.2020.3015795 10.1016/j.patrec.2018.06.024 10.1016/j.neucom.2021.11.055 10.1093/bib/5.4.328 10.1109/TKDE.2020.3021649 10.1109/72.991427 10.1109/TCSVT.2022.3162575 10.1016/j.jpdc.2004.03.020 10.1145/1961189.1961199 10.24963/ijcai.2017/306 10.1109/TNNLS.2021.3056080 10.1109/TKDE.2021.3115775 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2023.3279380 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 15020 |
| ExternalDocumentID | 37289611 10_1109_TNNLS_2023_3279380 10146387 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976179; 61871470; 62176212 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c324t-91705eb53b2d5a93ab62f39ca69c82187e066b912a05ac93ba9bf633973de7c43 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 08:50:07 EDT 2025 Mon Jul 21 05:49:04 EDT 2025 Wed Oct 01 00:45:13 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Wed Aug 27 02:19:18 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-91705eb53b2d5a93ab62f39ca69c82187e066b912a05ac93ba9bf633973de7c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7017-1938 0000-0003-2924-946X 0000-0002-3745-3471 0000-0002-0871-6519 |
| PMID | 37289611 |
| PQID | 2824687318 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2023_3279380 pubmed_primary_37289611 proquest_miscellaneous_2824687318 ieee_primary_10146387 crossref_primary_10_1109_TNNLS_2023_3279380 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 Ester (ref10) ref17 Rudin (ref40) 1976 ref16 ref19 ref18 Zhong (ref11) ref50 ref46 ref45 Nene (ref43) 1996 ref48 ref47 ref42 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref32 Lyons (ref41) 1998 ref2 ref1 ref39 Zelnik-Manor (ref38) Nie (ref22) ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 Ng (ref33) |
| References_xml | – ident: ref23 doi: 10.1016/j.neucom.2020.02.087 – start-page: 2273 volume-title: Proc. IJCAI ident: ref11 article-title: A unified framework for discrete spectral clustering – ident: ref27 doi: 10.3390/rs11040399 – ident: ref31 doi: 10.1609/aaai.v35i11.17128 – ident: ref26 doi: 10.1109/TFUZZ.2021.3081990 – ident: ref42 doi: 10.1109/ICCV.2017.227 – ident: ref34 doi: 10.1109/TIP.2021.3131941 – ident: ref12 doi: 10.1007/s11222-007-9033-z – ident: ref29 doi: 10.1109/TKDE.2017.2701825 – ident: ref19 doi: 10.1016/j.asoc.2018.09.015 – ident: ref46 doi: 10.1109/34.291440 – ident: ref2 doi: 10.1109/tnnls.2022.3173742 – ident: ref21 doi: 10.1609/aaai.v30i1.10302 – ident: ref4 doi: 10.2307/2346830 – ident: ref16 doi: 10.1109/ICASSP40776.2020.9053271 – ident: ref13 doi: 10.1109/TCYB.2014.2358564 – ident: ref5 doi: 10.1109/TNNLS.2020.3026532 – ident: ref7 doi: 10.1109/tnnls.2021.3138676 – start-page: 4129 volume-title: Proc. NIPS ident: ref22 article-title: Learning a structured optimal bipartite graph for co-clustering – volume-title: The Japanese Female Facial Expression (JAFFE) Dataset year: 1998 ident: ref41 – ident: ref37 doi: 10.1109/TCYB.2021.3069836 – ident: ref28 doi: 10.1109/TGRS.2019.2913004 – ident: ref50 doi: 10.3390/s19194342 – ident: ref6 doi: 10.1109/TFUZZ.2020.2991306 – start-page: 47 volume-title: Principles of Mathematical Analysis year: 1976 ident: ref40 – ident: ref18 doi: 10.1016/j.ins.2019.09.079 – ident: ref15 doi: 10.1109/LGRS.2017.2746625 – ident: ref1 doi: 10.1609/aaai.v31i1.11208 – ident: ref32 doi: 10.1016/j.neucom.2019.07.020 – year: 1996 ident: ref43 article-title: Columbia object image library (COIL-100) – ident: ref9 doi: 10.1609/aaai.v35i8.16854 – ident: ref14 doi: 10.1109/ICASSP.2017.7952605 – ident: ref30 doi: 10.1109/ICDM.2019.00081 – start-page: 1601 volume-title: Proc. NIPS ident: ref38 article-title: Self-tuning spectral clustering – start-page: 226 volume-title: Proc. KDD ident: ref10 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – ident: ref48 doi: 10.1109/5.726791 – ident: ref3 doi: 10.1109/TNNLS.2020.3016291 – ident: ref8 doi: 10.1109/TNNLS.2020.3015795 – ident: ref17 doi: 10.1016/j.patrec.2018.06.024 – ident: ref20 doi: 10.1016/j.neucom.2021.11.055 – ident: ref45 doi: 10.1093/bib/5.4.328 – ident: ref24 doi: 10.1109/TKDE.2020.3021649 – ident: ref44 doi: 10.1109/72.991427 – ident: ref35 doi: 10.1109/TCSVT.2022.3162575 – ident: ref49 doi: 10.1016/j.jpdc.2004.03.020 – ident: ref47 doi: 10.1145/1961189.1961199 – ident: ref39 doi: 10.24963/ijcai.2017/306 – ident: ref25 doi: 10.1109/TNNLS.2021.3056080 – ident: ref36 doi: 10.1109/TKDE.2021.3115775 – start-page: 849 volume-title: Proc. NIPS ident: ref33 article-title: On spectral clustering: Analysis and an algorithm |
| SSID | ssj0000605649 |
| Score | 2.51827 |
| Snippet | Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15012 |
| SubjectTerms | Anchors Clustering algorithms Computational modeling coordinate rising (CR) algorithm discrete labels intraclass similarity maximization Kernel Laplace equations Learning systems Optimization Sparse matrices spectral clustering (SC) |
| Title | Efficient Discrete Clustering With Anchor Graph |
| URI | https://ieeexplore.ieee.org/document/10146387 https://www.ncbi.nlm.nih.gov/pubmed/37289611 https://www.proquest.com/docview/2824687318 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwvlTXkpSGwoqWMndj1WPIWgCyC6RbbjiooqRSVZ-PWcnaQCJBBbBttJfOe772zffQCnrmI3J0qEMc9JiJCahIrLNDSUGEu9U3OB4v2Q3zwlt6N01CSr-1wYa62_fGYj9-jP8vOZqdxWWc_xyqK-iGVYFn1eJ2stNlQIAnPu4S6NOQ0pE6M2SYbI3uNwePcQOa7wiFHUyb6jgGMCww0ex998kidZ-R1ver9z1YFh-8X1dZPXqCp1ZD5-FHP89y-tw1qDQINBrTIbsGSLTei07A5Bs9i3oHfpq0tg9-BigsYF0XVwPq1cYQV0d8HzpHwJBgVaz3lw7apeb8PT1eXj-U3Y0CuEBlFUiWZOkNTqlGmap0oypTkdM2lQVqaPnl9YhCNaxlSRVBnJtJJ6zBkCGJZbYRK2AyvFrLB7ECAIYLnJde4ob2KtVEKM1DrFuFuNdS67ELcTnJmm9rijwJhmPgYhMvPyyZx8skY-XThb9HmrK2_82XrbTe6XlvW8duGkFWSGC8edhqjCzqr3DGPNhPcF2rQu7NYSXvRuFWP_l1EPYBVfntSX-g5hpZxX9gjBSamPvVJ-AubB2fg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3BcigXFlpalgINErcqWceOnfUR8bW0Sy4s6t4i2_GqK1AW0eTSX8_YSValEohbDrbleMYzb2zPPIATV7FbEJWGsShIiJCahEpIHhpKjKXeqblA8SYT47vkx4zP2mR1nwtjrfWPz2zkPv1dfrE0tTsqGzpeWdSXdB02eJIkvEnXWh2pEITmwgNeGgsaUpbOujQZIofTLJvcRo4tPGIUtXLkSOBYigGHiOMXXsnTrLyOOL3nuexD1s25eXByH9WVjszf_8o5vvuntmGrxaDBaaM0O7Bmy4_Q7_gdgna7f4Lhha8vgd2D8wWaF8TXwdlD7UoroMMLfi2q38FpifbzKbhyda934e7yYno2DluChdAgjqrQ0KWEW82ZpgVXkikt6JxJg9IyI_T9qUVAomVMFeHKSKaV1HPBEMKwwqYmYZ-hVy5LuwcBwgBWmEIXjvQm1kolxEitOUbeaq4LOYC4W-DctNXHHQnGQ-6jECJzL5_cySdv5TOA76s-j03tjTdb77rF_adls64DOO4EmePWcfchqrTL-k-O0WYiRilatQF8aSS86t0pxv4ro36DD-PpzSSfXGc_v8ImTiRpnvgdQK96qu0hQpVKH3kFfQZ-hd1F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Discrete+Clustering+With+Anchor+Graph&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jingyu&rft.au=Ma%2C+Zhenyu&rft.au=Nie%2C+Feiping&rft.au=Li%2C+Xuelong&rft.date=2024-10-01&rft.eissn=2162-2388&rft.volume=35&rft.issue=10&rft.spage=15012&rft_id=info:doi/10.1109%2FTNNLS.2023.3279380&rft_id=info%3Apmid%2F37289611&rft.externalDocID=37289611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |