Efficient Discrete Clustering With Anchor Graph

Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 10; pp. 15012 - 15020
Main Authors Wang, Jingyu, Ma, Zhenyu, Nie, Feiping, Li, Xuelong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3279380

Cover

Abstract Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG.
AbstractList Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG.Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG.
Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph learning. However, the time-consuming eigenvalue decomposition (EVD) and information loss during relaxation and discretization impact the efficiency and accuracy especially for large-scale data. To address above issues, this brief proposes a simple and fast method named efficient discrete clustering with anchor graph (EDCAG) to circumvent postprocessing by binary label optimization. First of all, sparse anchors are adopted to accelerate graph construction and obtain a parameter-free anchor similarity matrix. Subsequently, inspired by intraclass similarity maximization in SC, we design an intraclass similarity maximization model between anchor-sample layer to cope with anchor graph cut problem and exploit more explicit data structures. Meanwhile, a fast coordinate rising (CR) algorithm is employed to alternatively optimize discrete labels of samples and anchors in designed model. Experimental results show excellent rapidity and competitive clustering effect of EDCAG.
Author Wang, Jingyu
Li, Xuelong
Ma, Zhenyu
Nie, Feiping
Author_xml – sequence: 1
  givenname: Jingyu
  orcidid: 0000-0001-7017-1938
  surname: Wang
  fullname: Wang, Jingyu
  email: jywang@nwpu.edu.cn
  organization: School of Astronautics and the School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Zhenyu
  orcidid: 0000-0002-3745-3471
  surname: Ma
  fullname: Ma, Zhenyu
  email: zhenyu.ma@mail.nwpu.edu.cn
  organization: School of Astronautics, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN) and the Key Laboratory of Intelligent Interaction and Applications, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Xuelong
  orcidid: 0000-0003-2924-946X
  surname: Li
  fullname: Li, Xuelong
  email: li@nwpu.edu.cn
  organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN) and the Key Laboratory of Intelligent Interaction and Applications, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37289611$$D View this record in MEDLINE/PubMed
BookMark eNp9kE9PAjEQxRuDEUS-gDFmj14W-me32x4JIpoQPIjRW9Mts1Kz7GLbPfjtXQSM8eBcZg7v9_LmnaNOVVeA0CXBQ0KwHC0Xi_nTkGLKhoxmkgl8gnqUcBpTJkTn585eu2jg_Ttuh-OUJ_IMdVlGheSE9NBoWhTWWKhCdGu9cRAgmpSND-Bs9Ra92LCOxpVZ1y6aOb1dX6DTQpceBofdR8930-XkPp4_zh4m43lsGE1CLEmGU8hTltNVqiXTOacFk0ZzaQQlIgPMeS4J1TjVRrJcy7zgjMmMrSAzCeujm73v1tUfDfigNm08KEtdQd14RQVNuMgYEa30-iBt8g2s1NbZjXaf6vhkKxB7gXG19w4KZWzQwdZVcNqWimC1q1R9V6p2lapDpS1K_6BH93-hqz1kAeAXQBLO2shf8J1_yA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11704_023_3355_7
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1016_j_inffus_2024_102804
Cites_doi 10.1016/j.neucom.2020.02.087
10.3390/rs11040399
10.1609/aaai.v35i11.17128
10.1109/TFUZZ.2021.3081990
10.1109/ICCV.2017.227
10.1109/TIP.2021.3131941
10.1007/s11222-007-9033-z
10.1109/TKDE.2017.2701825
10.1016/j.asoc.2018.09.015
10.1109/34.291440
10.1109/tnnls.2022.3173742
10.1609/aaai.v30i1.10302
10.2307/2346830
10.1109/ICASSP40776.2020.9053271
10.1109/TCYB.2014.2358564
10.1109/TNNLS.2020.3026532
10.1109/tnnls.2021.3138676
10.1109/TCYB.2021.3069836
10.1109/TGRS.2019.2913004
10.3390/s19194342
10.1109/TFUZZ.2020.2991306
10.1016/j.ins.2019.09.079
10.1109/LGRS.2017.2746625
10.1609/aaai.v31i1.11208
10.1016/j.neucom.2019.07.020
10.1609/aaai.v35i8.16854
10.1109/ICASSP.2017.7952605
10.1109/ICDM.2019.00081
10.1109/5.726791
10.1109/TNNLS.2020.3016291
10.1109/TNNLS.2020.3015795
10.1016/j.patrec.2018.06.024
10.1016/j.neucom.2021.11.055
10.1093/bib/5.4.328
10.1109/TKDE.2020.3021649
10.1109/72.991427
10.1109/TCSVT.2022.3162575
10.1016/j.jpdc.2004.03.020
10.1145/1961189.1961199
10.24963/ijcai.2017/306
10.1109/TNNLS.2021.3056080
10.1109/TKDE.2021.3115775
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3279380
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 15020
ExternalDocumentID 37289611
10_1109_TNNLS_2023_3279380
10146387
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976179; 61871470; 62176212
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c324t-91705eb53b2d5a93ab62f39ca69c82187e066b912a05ac93ba9bf633973de7c43
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 08:50:07 EDT 2025
Mon Jul 21 05:49:04 EDT 2025
Wed Oct 01 00:45:13 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Wed Aug 27 02:19:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-91705eb53b2d5a93ab62f39ca69c82187e066b912a05ac93ba9bf633973de7c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7017-1938
0000-0003-2924-946X
0000-0002-3745-3471
0000-0002-0871-6519
PMID 37289611
PQID 2824687318
PQPubID 23479
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2023_3279380
pubmed_primary_37289611
proquest_miscellaneous_2824687318
ieee_primary_10146387
crossref_primary_10_1109_TNNLS_2023_3279380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
Ester (ref10)
ref17
Rudin (ref40) 1976
ref16
ref19
ref18
Zhong (ref11)
ref50
ref46
ref45
Nene (ref43) 1996
ref48
ref47
ref42
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref32
Lyons (ref41) 1998
ref2
ref1
ref39
Zelnik-Manor (ref38)
Nie (ref22)
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
Ng (ref33)
References_xml – ident: ref23
  doi: 10.1016/j.neucom.2020.02.087
– start-page: 2273
  volume-title: Proc. IJCAI
  ident: ref11
  article-title: A unified framework for discrete spectral clustering
– ident: ref27
  doi: 10.3390/rs11040399
– ident: ref31
  doi: 10.1609/aaai.v35i11.17128
– ident: ref26
  doi: 10.1109/TFUZZ.2021.3081990
– ident: ref42
  doi: 10.1109/ICCV.2017.227
– ident: ref34
  doi: 10.1109/TIP.2021.3131941
– ident: ref12
  doi: 10.1007/s11222-007-9033-z
– ident: ref29
  doi: 10.1109/TKDE.2017.2701825
– ident: ref19
  doi: 10.1016/j.asoc.2018.09.015
– ident: ref46
  doi: 10.1109/34.291440
– ident: ref2
  doi: 10.1109/tnnls.2022.3173742
– ident: ref21
  doi: 10.1609/aaai.v30i1.10302
– ident: ref4
  doi: 10.2307/2346830
– ident: ref16
  doi: 10.1109/ICASSP40776.2020.9053271
– ident: ref13
  doi: 10.1109/TCYB.2014.2358564
– ident: ref5
  doi: 10.1109/TNNLS.2020.3026532
– ident: ref7
  doi: 10.1109/tnnls.2021.3138676
– start-page: 4129
  volume-title: Proc. NIPS
  ident: ref22
  article-title: Learning a structured optimal bipartite graph for co-clustering
– volume-title: The Japanese Female Facial Expression (JAFFE) Dataset
  year: 1998
  ident: ref41
– ident: ref37
  doi: 10.1109/TCYB.2021.3069836
– ident: ref28
  doi: 10.1109/TGRS.2019.2913004
– ident: ref50
  doi: 10.3390/s19194342
– ident: ref6
  doi: 10.1109/TFUZZ.2020.2991306
– start-page: 47
  volume-title: Principles of Mathematical Analysis
  year: 1976
  ident: ref40
– ident: ref18
  doi: 10.1016/j.ins.2019.09.079
– ident: ref15
  doi: 10.1109/LGRS.2017.2746625
– ident: ref1
  doi: 10.1609/aaai.v31i1.11208
– ident: ref32
  doi: 10.1016/j.neucom.2019.07.020
– year: 1996
  ident: ref43
  article-title: Columbia object image library (COIL-100)
– ident: ref9
  doi: 10.1609/aaai.v35i8.16854
– ident: ref14
  doi: 10.1109/ICASSP.2017.7952605
– ident: ref30
  doi: 10.1109/ICDM.2019.00081
– start-page: 1601
  volume-title: Proc. NIPS
  ident: ref38
  article-title: Self-tuning spectral clustering
– start-page: 226
  volume-title: Proc. KDD
  ident: ref10
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– ident: ref48
  doi: 10.1109/5.726791
– ident: ref3
  doi: 10.1109/TNNLS.2020.3016291
– ident: ref8
  doi: 10.1109/TNNLS.2020.3015795
– ident: ref17
  doi: 10.1016/j.patrec.2018.06.024
– ident: ref20
  doi: 10.1016/j.neucom.2021.11.055
– ident: ref45
  doi: 10.1093/bib/5.4.328
– ident: ref24
  doi: 10.1109/TKDE.2020.3021649
– ident: ref44
  doi: 10.1109/72.991427
– ident: ref35
  doi: 10.1109/TCSVT.2022.3162575
– ident: ref49
  doi: 10.1016/j.jpdc.2004.03.020
– ident: ref47
  doi: 10.1145/1961189.1961199
– ident: ref39
  doi: 10.24963/ijcai.2017/306
– ident: ref25
  doi: 10.1109/TNNLS.2021.3056080
– ident: ref36
  doi: 10.1109/TKDE.2021.3115775
– start-page: 849
  volume-title: Proc. NIPS
  ident: ref33
  article-title: On spectral clustering: Analysis and an algorithm
SSID ssj0000605649
Score 2.51827
Snippet Spectral clustering (SC) has been applied to analyze varieties of data structures over the past few decades owing to its outstanding breakthrough in graph...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15012
SubjectTerms Anchors
Clustering algorithms
Computational modeling
coordinate rising (CR) algorithm
discrete labels
intraclass similarity maximization
Kernel
Laplace equations
Learning systems
Optimization
Sparse matrices
spectral clustering (SC)
Title Efficient Discrete Clustering With Anchor Graph
URI https://ieeexplore.ieee.org/document/10146387
https://www.ncbi.nlm.nih.gov/pubmed/37289611
https://www.proquest.com/docview/2824687318
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwvlTXkpSGwoqWMndj1WPIWgCyC6RbbjiooqRSVZ-PWcnaQCJBBbBttJfOe772zffQCnrmI3J0qEMc9JiJCahIrLNDSUGEu9U3OB4v2Q3zwlt6N01CSr-1wYa62_fGYj9-jP8vOZqdxWWc_xyqK-iGVYFn1eJ2stNlQIAnPu4S6NOQ0pE6M2SYbI3uNwePcQOa7wiFHUyb6jgGMCww0ex998kidZ-R1ver9z1YFh-8X1dZPXqCp1ZD5-FHP89y-tw1qDQINBrTIbsGSLTei07A5Bs9i3oHfpq0tg9-BigsYF0XVwPq1cYQV0d8HzpHwJBgVaz3lw7apeb8PT1eXj-U3Y0CuEBlFUiWZOkNTqlGmap0oypTkdM2lQVqaPnl9YhCNaxlSRVBnJtJJ6zBkCGJZbYRK2AyvFrLB7ECAIYLnJde4ob2KtVEKM1DrFuFuNdS67ELcTnJmm9rijwJhmPgYhMvPyyZx8skY-XThb9HmrK2_82XrbTe6XlvW8duGkFWSGC8edhqjCzqr3DGPNhPcF2rQu7NYSXvRuFWP_l1EPYBVfntSX-g5hpZxX9gjBSamPvVJ-AubB2fg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3BcigXFlpalgINErcqWceOnfUR8bW0Sy4s6t4i2_GqK1AW0eTSX8_YSValEohbDrbleMYzb2zPPIATV7FbEJWGsShIiJCahEpIHhpKjKXeqblA8SYT47vkx4zP2mR1nwtjrfWPz2zkPv1dfrE0tTsqGzpeWdSXdB02eJIkvEnXWh2pEITmwgNeGgsaUpbOujQZIofTLJvcRo4tPGIUtXLkSOBYigGHiOMXXsnTrLyOOL3nuexD1s25eXByH9WVjszf_8o5vvuntmGrxaDBaaM0O7Bmy4_Q7_gdgna7f4Lhha8vgd2D8wWaF8TXwdlD7UoroMMLfi2q38FpifbzKbhyda934e7yYno2DluChdAgjqrQ0KWEW82ZpgVXkikt6JxJg9IyI_T9qUVAomVMFeHKSKaV1HPBEMKwwqYmYZ-hVy5LuwcBwgBWmEIXjvQm1kolxEitOUbeaq4LOYC4W-DctNXHHQnGQ-6jECJzL5_cySdv5TOA76s-j03tjTdb77rF_adls64DOO4EmePWcfchqrTL-k-O0WYiRilatQF8aSS86t0pxv4ro36DD-PpzSSfXGc_v8ImTiRpnvgdQK96qu0hQpVKH3kFfQZ-hd1F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Discrete+Clustering+With+Anchor+Graph&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Jingyu&rft.au=Ma%2C+Zhenyu&rft.au=Nie%2C+Feiping&rft.au=Li%2C+Xuelong&rft.date=2024-10-01&rft.eissn=2162-2388&rft.volume=35&rft.issue=10&rft.spage=15012&rft_id=info:doi/10.1109%2FTNNLS.2023.3279380&rft_id=info%3Apmid%2F37289611&rft.externalDocID=37289611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon