Friction Stir Welding of Aluminum Using a Multi-Objective Optimization Approach Based on Both Taguchi Method and Grey Relational Analysis
This work deals with the use of a multi-objective optimization method using a hybrid statistic algorithm to improve the Friction Stir Welding of aluminum alloy AA2195-T8. The hybrid approach combines the Taguchi Method with the Relational Grey Analysis technic. In order to optimize the Friction Stir...
        Saved in:
      
    
          | Published in | Experimental techniques (Westport, Conn.) Vol. 47; no. 3; pp. 603 - 617 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article Magazine Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.06.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0732-8818 1747-1567  | 
| DOI | 10.1007/s40799-022-00573-6 | 
Cover
| Abstract | This work deals with the use of a multi-objective optimization method using a hybrid statistic algorithm to improve the Friction Stir Welding of aluminum alloy AA2195-T8. The hybrid approach combines the Taguchi Method with the Relational Grey Analysis technic. In order to optimize the Friction Stir Welding process, the axial force, the rotational tool velocity, the welding velocity and the shoulder diameter were considered as input parameters while the heat input, the maximal temperature value and the Heat Affected Zone length were chosen as output parameters. In this method, the minimization of the heat input, the HAZ length and the temperature value in the stir zone is the main goal. In the process of improving the aluminum welding by FSW, the axial force is the most influential parameter with a contribution of 52.4%, followed by the rotational tool velocity with 37.4%, then the welding velocity with 6.3% and finally the tool diameter with a contribution of 3.6%. The obtained results from the application of three-dimensional numerical thermal model have confirmed the effectiveness and the robustness of the used optimization approach. | 
    
|---|---|
| AbstractList | This work deals with the use of a multi-objective optimization method using a hybrid statistic algorithm to improve the Friction Stir Welding of aluminum alloy AA2195-T8. The hybrid approach combines the Taguchi Method with the Relational Grey Analysis technic. In order to optimize the Friction Stir Welding process, the axial force, the rotational tool velocity, the welding velocity and the shoulder diameter were considered as input parameters while the heat input, the maximal temperature value and the Heat Affected Zone length were chosen as output parameters. In this method, the minimization of the heat input, the HAZ length and the temperature value in the stir zone is the main goal. In the process of improving the aluminum welding by FSW, the axial force is the most influential parameter with a contribution of 52.4%, followed by the rotational tool velocity with 37.4%, then the welding velocity with 6.3% and finally the tool diameter with a contribution of 3.6%. The obtained results from the application of three-dimensional numerical thermal model have confirmed the effectiveness and the robustness of the used optimization approach. | 
    
| Author | Chekifi, T. Boukraa, M. Lebaal, N.  | 
    
| Author_xml | – sequence: 1 givenname: M. surname: Boukraa fullname: Boukraa, M. organization: Research Center in Industrial Technologies CRTI – sequence: 2 givenname: T. orcidid: 0000-0002-6914-047X surname: Chekifi fullname: Chekifi, T. email: chekifi.tawfiq@gmail.com organization: Unité de Recherche Appliqué en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER – sequence: 3 givenname: N. surname: Lebaal fullname: Lebaal, N. organization: Université Bourgogne Franche-Comté, UTBM, Laboratoire interdisciplinaire Carnot de Bourogne, UMR CNRS6303/90010  | 
    
| BookMark | eNp9kL1u2zAQgIkiBeo4fYFOHLuoISn-aXSCJimQwECToCNxkiibBiW6JFXAfYO8dRi7U4csd8Dhvvv5ztHZFCaL0BdKvlFC1GXiRDVNRRirCBGqruQHtKCKq4oKqc7QgqiaVVpT_Qmdp7QjhAqqmgV6uYmuyy5M-DG7iH9Z37tpg8OAV34e3TSP-Dm9VQA_zD67at3ubAH-WLzeZze6v3CkV_t9DNBt8RUk2-NSuQp5i59gM3dbhx9s3oYew9Tj22gP-Kf1Rw48XpVwSC5doI8D-GQ__8tL9Hzz_en6rrpf3_64Xt1XXc14rjRtrWrajgGHZhg08EFKLW0rBRtaAUTUjVVKAaNKaU6V1D00VhIuOLSiqZfo62luOfj3bFM2o0ud9R4mG-ZkaiaEYJwVi0vETq1dDClFO5h9dCPEg6HEvHk3J--meDdH70YWSP8HdS4fn80RnH8frU9oKnumjY1mF-ZY_KT3qFdN55rM | 
    
| CitedBy_id | crossref_primary_10_1007_s40799_023_00691_9 crossref_primary_10_1007_s12206_024_0832_3 crossref_primary_10_1007_s00170_023_12518_3 crossref_primary_10_1007_s12008_023_01557_5 crossref_primary_10_1007_s40799_024_00718_9 crossref_primary_10_1016_j_mtcomm_2024_110671 crossref_primary_10_3390_ma16041390 crossref_primary_10_1007_s12008_023_01602_3 crossref_primary_10_3390_ma18050973 crossref_primary_10_1007_s12008_023_01479_2 crossref_primary_10_1080_01430750_2023_2174185 crossref_primary_10_1007_s12008_022_01017_6 crossref_primary_10_1007_s00521_022_07898_8 crossref_primary_10_1007_s10973_023_12293_z crossref_primary_10_1109_ACCESS_2023_3333893 crossref_primary_10_1007_s41939_024_00535_y crossref_primary_10_1016_j_ijlmm_2024_06_006 crossref_primary_10_1088_2053_1591_ad48e3 crossref_primary_10_1007_s12008_024_01796_0 crossref_primary_10_1080_01694243_2024_2362029 crossref_primary_10_1007_s12597_024_00757_1 crossref_primary_10_1080_13640461_2025_2474766  | 
    
| Cites_doi | 10.1106/55TF-PF2G-JBH2-1Q2B 10.1007/s12206-013-0966-1 10.1007/s11661-011-0730-z 10.1007/978-3-319-07043-8_9 10.1016/j.ijpvp.2013.04.001 10.1007/s11661-005-0252-7 10.1007/s12650-020-00715-1 10.1007/s40430-014-0195-2 10.1007/s40799-021-00515-8 10.1080/10426910903536733 10.3390/met10111480 10.1016/j.jmapro.2017.07.015 10.1016/j.jmatprotec.2015.03.015 10.1016/j.flowmeasinst.2017.11.013 10.3176/proc.2021.4.20 10.1179/174329306X107692 10.4236/eng.2011.32017 10.1007/s11661-998-0021-5 10.3390/met11010066 10.1080/2374068X.2020.1829952 10.1016/j.jmapro.2020.03.017 10.1007/s11665-013-0499-x 10.1115/1.1537741 10.1016/j.jmapro.2018.07.002 10.1007/s11661-001-0128-4 10.1007/s12666-015-0554-4 10.1007/s00158-008-0288-6  | 
    
| ContentType | Journal Article Magazine Article  | 
    
| Copyright | The Society for Experimental Mechanics, Inc 2022 The Society for Experimental Mechanics, Inc 2022.  | 
    
| Copyright_xml | – notice: The Society for Experimental Mechanics, Inc 2022 – notice: The Society for Experimental Mechanics, Inc 2022.  | 
    
| DBID | AAYXX CITATION 3V. 7TB 7XB 88I 8AF 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U  | 
    
| DOI | 10.1007/s40799-022-00573-6 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection ProQuest Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1747-1567 | 
    
| EndPage | 617 | 
    
| ExternalDocumentID | 10_1007_s40799_022_00573_6 | 
    
| GroupedDBID | -EM -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OC 203 29G 31~ 3V. 4.4 406 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8AO 8FE 8FG 8FW 8R4 8R5 8UM 930 A03 AACDK AAEVG AAEWM AAHHS AAHNG AAIAL AAIKT AAJBT AANHP AANZL AAOIN AAONW AARHV AARTL AASML AATNV AATVU AAUYE AAYQN AAYTO AAZMS ABAKF ABBTF ABCQN ABDZT ABECU ABEFU ABEML ABFTV ABHLI ABJCF ABJNI ABJOX ABKCH ABMQK ABPVW ABQBU ABRTZ ABTAH ABTEG ABTKH ABTMW ABUWG ABXPI ACAOD ACBEA ACBWZ ACCFJ ACDTI ACGFS ACGOD ACHSB ACIWK ACMLO ACOKC ACPIV ACREN ACRPL ACSCC ACXQS ACYXJ ACZOJ ADHHG ADINQ ADIZJ ADKNI ADKPE ADMLS ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW ADZOD AEBTG AEEZP AEFQL AEGXH AEIMD AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AEQDE AESKC AEVLU AEXYK AFBBN AFBPY AFFNX AFKRA AFQWF AFZJQ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHEFC AHKAY AHSBF AIAKS AIGIU AILAN AITGF AIWBW AJAOE AJBDE AJRNO AJZVZ ALAGY ALFXC ALMA_UNASSIGNED_HOLDINGS AMBMR AMKLP AMTXH AMXSW AMYLF AMYQR ARCSS ASPBG ATUGU AVWKF AXYYD AZBYB AZQEC BAFTC BDRZF BENPR BFHJK BGLVJ BGNMA BNHUX BPHCQ BROTX BRXPI BY8 CAG CCPQU COF CS3 CSCUP D-E D-F DCZOG DNIVK DPUIP DPXWK DR2 DU5 DWQXO EBLON EBS EDO EIOEI EJD F00 F01 F04 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE G-S G.N GGCAI GJIRD GNUQQ GODZA H.T H.X HCIFZ HF~ HOLLA HVGLF HZI HZ~ H~9 I-F IKXTQ ITM IWAJR IX1 J-C J0M JZLTJ K48 KOV L6V LC2 LC3 LH4 LLZTM LP6 LP7 LW6 M2P M2Q M4Y M7S MK4 MK~ N04 N05 N9A NF~ NPVJJ NQJWS NU0 O9J OIG P2X P4D PQQKQ PROAC PT4 PTHSS Q.N Q11 Q2X QB0 QF4 QM1 QN7 QO4 R.K RHV RLLFE RNS ROL RSV RWL RX1 SCG SCLPG SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SUPJJ TAE TN5 TSG TUS UB1 UCJ UG4 UOJIU UTJUX UZXMN V8K VFIZW W48 W8V W99 WQJ WRC WTY WYUIH XG1 XSW Z7R Z7V Z7Z ZMTXR ZY4 ~IA ~WT AAMMB AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEFGJ AEZWR AFDZB AFHIU AFOHR AGQPQ AGXDD AHPBZ AHWEU AIDQK AIDYY AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TB 7XB 8FD 8FK FR3 KR7 PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c324t-81be79bc2a4a9ff8a4f6686eb652fb5a0539e777a2177841768da9e60454ab593 | 
    
| IEDL.DBID | 8FG | 
    
| ISSN | 0732-8818 | 
    
| IngestDate | Tue Sep 30 03:33:31 EDT 2025 Wed Oct 01 04:00:05 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Fri Feb 21 02:44:30 EST 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Variance analyses Multi-objective optimization FSW Taguchi orthogonal Array (OA) Grey relational analysis (GRA) Heat transfer  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c324t-81be79bc2a4a9ff8a4f6686eb652fb5a0539e777a2177841768da9e60454ab593 | 
    
| Notes | ObjectType-Article-1 ObjectType-Feature-2 content type line 24 SourceType-Magazines-1  | 
    
| ORCID | 0000-0002-6914-047X | 
    
| PQID | 3255524257 | 
    
| PQPubID | 37666 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_3255524257 crossref_primary_10_1007_s40799_022_00573_6 crossref_citationtrail_10_1007_s40799_022_00573_6 springer_journals_10_1007_s40799_022_00573_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-06-01 | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Bethel  | 
    
| PublicationSubtitle | Developments, Applications and Tutorials in Experimental Mechanics and Dynamics | 
    
| PublicationTitle | Experimental techniques (Westport, Conn.) | 
    
| PublicationTitleAbbrev | Exp Tech | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | Meseguer-ValdenebroJLSernaJPortolesAEstremsMMiguelVMartínez-ConesaEExperimental validation of a numerical method that predicts the size of the heat affected zone. Optimization of the welding parameters by the Taguchi’s methodTrans Indian Inst Metals201669378379110.1007/s12666-015-0554-4 BoukraaMAissaniMLebaalNBassirDMataouiAIghilNTEffects of boundary conditions and operating parameters on temperature distribution during the friction stir welding processIn IOP conference series: materials science and engineering20211140BristolIOP Publishing012050 Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, and Dawes CJ, (1995) "Friction welding," ed: Google Patents AsmareAAl-SaburRMesseleEExperimental investigation of friction stir welding on 6061-T6 aluminum alloy using Taguchi-based GRAMetals2020101114801:CAS:528:DC%2BB3MXksFygs70%3D10.3390/met10111480 MishraRSDePSKumarNFriction stir processingIn friction stir welding and processing2014DordrechtSpringer25929610.1007/978-3-319-07043-8_9 TaysomBSSorensenCDHedengrenJDA comparison of model predictive control and PID temperature control in friction stir weldingJ Manuf Process20172923224110.1016/j.jmapro.2017.07.015 ZhouXPanWMacKenzieDIdentifying friction stir welding process parameters through coupled numerical and experimental analysisInt J Press Vessel Pip20131082610.1016/j.ijpvp.2013.04.001 JayaramanPKumarLMMulti-response optimization of machining parameters of turning AA6063 T6 Aluminium alloy using Grey relational analysis in Taguchi methodProcess Eng2014971972041:CAS:528:DC%2BC2MXhtVSgtLY%3D Mehdi H, Mishra RS (2020) An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG+FSP welding using RSM. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2020.1829952 LarsenAABendsøeMHattelJSchmidtHOptimization of friction stir welding using space mapping and manifold mapping—an initial study of thermal aspectsStruct Multidiscip Optim200938328929910.1007/s00158-008-0288-6 FrigaardØGrongØMidlingOA process model for friction stir welding of age hardening aluminum alloysMetall Mater Trans A20013251189120010.1007/s11661-001-0128-4 LimSKimSLeeC-GKimSJYimCDTensile behavior of friction-stir-welded AZ31-H24 mg alloyMetall Mater Trans A20053661609161210.1007/s11661-005-0252-7 Shaysultanov D, Raimov K, Stepanov N, Zherebtsov S (2021) Friction stir welding of a trip Fe49Mn30Cr10Co10C1 high entropy alloy Boukraa M, Chekifi T, Lebaal N et al (2021) Robust optimization of both dissolution time and heat affected zone over the friction stir welding process using SQP technique. Exp Tech. https://doi.org/10.1007/s40799-021-00515-8 TangWGuoXMcClureJMurrLNunesAHeat input and temperature distribution in friction stir weldingJ Mater Process Manuf Sci199871631721:CAS:528:DC%2BD3cXjtVOl10.1106/55TF-PF2G-JBH2-1Q2B Chekifi T, Boukraa M, Aissani M (2021) DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing. J Vis 24:519–530. https://doi.org/10.1007/s12650-020-00715-1 AissaniMGachiSBoubeniderFBenkeddaYDesign and optimization of friction stir welding toolMater Manuf Process20102511119912051:CAS:528:DC%2BC3cXhsFyntr7M10.1080/10426910903536733 KumarSKumarSMulti-response optimization of process parameters for friction stir welding of joining dissimilar Al alloys by gray relation analysis and Taguchi methodJ Braz Soc Mech Sci Eng20153726656741:CAS:528:DC%2BC2MXjvFelt7g%3D10.1007/s40430-014-0195-2 ChekifiTComputational study of droplet breakup in a trapped channel configuration using volume of fluid methodFlow Meas Instrum20185911812510.1016/j.flowmeasinst.2017.11.013 NandanRRoyGLienertTDebRoyTNumerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steelSci Technol Weld Join200611552653710.1179/174329306X107692 BoukraaMLebaalNMataouiASettarAAissaniMTala-IghilNFriction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysisJ Manuf Process20183456657810.1016/j.jmapro.2018.07.002 Boukraa M, Bassir D, Lebaal N, Chekifi T, Aissani M, Ighil NT, Mataoui A (2021) Thermal analysis of the friction stir welding process based on boundary conditions and operating parameters. In: Proceedings of the Estonian Academy of Sciences, vol 70, no 4 VidalCInfanteVOptimization of FS welding parameters for improving mechanical behavior of AA2024-T351 joints based on Taguchi methodJ Mater Eng Perform2013228226122701:CAS:528:DC%2BC3sXhtFelt7rM10.1007/s11665-013-0499-x PrajapatiVVoraJJDasSAbhishekKStudy of parametric influence and welding performance optimization during regulated metal deposition (RMD™) using grey integrated with fuzzy taguchi approachJ Manuf Process20205428630010.1016/j.jmapro.2020.03.017 AhmadiHArabNMGhasemiFAOptimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi methodJ Mech Sci Technol201428127928410.1007/s12206-013-0966-1 PalSPhanirajMDetermination of heat partition between tool and workpiece during FSW of SS304 using 3D CFD modelingJ Mater Process Technol20152222802861:CAS:528:DC%2BC2MXlvVGmurY%3D10.1016/j.jmatprotec.2015.03.015 NouraniMMilaniASYannacopoulosSTaguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: a review and case studyEngineering2011321441:CAS:528:DC%2BC3MXhtFahsrzE10.4236/eng.2011.32017 ChekifiTDroplet breakup regime in a cross-junction device with lateral obstaclesFluid Dyn Mater Proc2019155545555 MahoneyMRhodesCJG F lintoff, RA S purling, WH B ingelMetall Mater Trans A199829195510.1007/s11661-998-0021-5 ZhangXXiaoBMaZA transient thermal model for friction stir weld. Part II: effects of weld conditionsMetall Mater Trans A20114210322932391:CAS:528:DC%2BC3MXhtVWmtLfJ10.1007/s11661-011-0730-z ChaoYJQiXTangWHeat transfer in friction stir welding—experimental and numerical studiesJ Manuf Sci Eng2003125113814510.1115/1.1537741 W Tang (573_CR5) 1998; 7 Ø Frigaard (573_CR3) 2001; 32 573_CR13 573_CR1 573_CR11 M Nourani (573_CR20) 2011; 3 S Lim (573_CR7) 2005; 36 JL Meseguer-Valdenebro (573_CR16) 2016; 69 M Boukraa (573_CR22) 2021 S Pal (573_CR6) 2015; 222 M Mahoney (573_CR27) 1998; 29 AA Larsen (573_CR28) 2009; 38 T Chekifi (573_CR23) 2018; 59 P Jayaraman (573_CR30) 2014; 97 C Vidal (573_CR18) 2013; 22 H Ahmadi (573_CR17) 2014; 28 573_CR24 R Nandan (573_CR8) 2006; 11 V Prajapati (573_CR12) 2020; 54 573_CR21 X Zhang (573_CR26) 2011; 42 A Asmare (573_CR14) 2020; 10 RS Mishra (573_CR2) 2014 M Aissani (573_CR31) 2010; 25 M Boukraa (573_CR10) 2018; 34 T Chekifi (573_CR25) 2019; 15 573_CR15 YJ Chao (573_CR29) 2003; 125 BS Taysom (573_CR4) 2017; 29 X Zhou (573_CR9) 2013; 108 S Kumar (573_CR19) 2015; 37  | 
    
| References_xml | – reference: Chekifi T, Boukraa M, Aissani M (2021) DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing. J Vis 24:519–530. https://doi.org/10.1007/s12650-020-00715-1 – reference: Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, and Dawes CJ, (1995) "Friction welding," ed: Google Patents – reference: FrigaardØGrongØMidlingOA process model for friction stir welding of age hardening aluminum alloysMetall Mater Trans A20013251189120010.1007/s11661-001-0128-4 – reference: BoukraaMLebaalNMataouiASettarAAissaniMTala-IghilNFriction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysisJ Manuf Process20183456657810.1016/j.jmapro.2018.07.002 – reference: Shaysultanov D, Raimov K, Stepanov N, Zherebtsov S (2021) Friction stir welding of a trip Fe49Mn30Cr10Co10C1 high entropy alloy – reference: ChekifiTComputational study of droplet breakup in a trapped channel configuration using volume of fluid methodFlow Meas Instrum20185911812510.1016/j.flowmeasinst.2017.11.013 – reference: ChaoYJQiXTangWHeat transfer in friction stir welding—experimental and numerical studiesJ Manuf Sci Eng2003125113814510.1115/1.1537741 – reference: ZhouXPanWMacKenzieDIdentifying friction stir welding process parameters through coupled numerical and experimental analysisInt J Press Vessel Pip20131082610.1016/j.ijpvp.2013.04.001 – reference: MishraRSDePSKumarNFriction stir processingIn friction stir welding and processing2014DordrechtSpringer25929610.1007/978-3-319-07043-8_9 – reference: TangWGuoXMcClureJMurrLNunesAHeat input and temperature distribution in friction stir weldingJ Mater Process Manuf Sci199871631721:CAS:528:DC%2BD3cXjtVOl10.1106/55TF-PF2G-JBH2-1Q2B – reference: AsmareAAl-SaburRMesseleEExperimental investigation of friction stir welding on 6061-T6 aluminum alloy using Taguchi-based GRAMetals2020101114801:CAS:528:DC%2BB3MXksFygs70%3D10.3390/met10111480 – reference: Meseguer-ValdenebroJLSernaJPortolesAEstremsMMiguelVMartínez-ConesaEExperimental validation of a numerical method that predicts the size of the heat affected zone. Optimization of the welding parameters by the Taguchi’s methodTrans Indian Inst Metals201669378379110.1007/s12666-015-0554-4 – reference: PalSPhanirajMDetermination of heat partition between tool and workpiece during FSW of SS304 using 3D CFD modelingJ Mater Process Technol20152222802861:CAS:528:DC%2BC2MXlvVGmurY%3D10.1016/j.jmatprotec.2015.03.015 – reference: NandanRRoyGLienertTDebRoyTNumerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steelSci Technol Weld Join200611552653710.1179/174329306X107692 – reference: Mehdi H, Mishra RS (2020) An experimental analysis and optimization of process parameters of AA6061 and AA7075 welded joint by TIG+FSP welding using RSM. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2020.1829952 – reference: BoukraaMAissaniMLebaalNBassirDMataouiAIghilNTEffects of boundary conditions and operating parameters on temperature distribution during the friction stir welding processIn IOP conference series: materials science and engineering20211140BristolIOP Publishing012050 – reference: ChekifiTDroplet breakup regime in a cross-junction device with lateral obstaclesFluid Dyn Mater Proc2019155545555 – reference: KumarSKumarSMulti-response optimization of process parameters for friction stir welding of joining dissimilar Al alloys by gray relation analysis and Taguchi methodJ Braz Soc Mech Sci Eng20153726656741:CAS:528:DC%2BC2MXjvFelt7g%3D10.1007/s40430-014-0195-2 – reference: NouraniMMilaniASYannacopoulosSTaguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: a review and case studyEngineering2011321441:CAS:528:DC%2BC3MXhtFahsrzE10.4236/eng.2011.32017 – reference: TaysomBSSorensenCDHedengrenJDA comparison of model predictive control and PID temperature control in friction stir weldingJ Manuf Process20172923224110.1016/j.jmapro.2017.07.015 – reference: VidalCInfanteVOptimization of FS welding parameters for improving mechanical behavior of AA2024-T351 joints based on Taguchi methodJ Mater Eng Perform2013228226122701:CAS:528:DC%2BC3sXhtFelt7rM10.1007/s11665-013-0499-x – reference: AhmadiHArabNMGhasemiFAOptimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi methodJ Mech Sci Technol201428127928410.1007/s12206-013-0966-1 – reference: MahoneyMRhodesCJG F lintoff, RA S purling, WH B ingelMetall Mater Trans A199829195510.1007/s11661-998-0021-5 – reference: Boukraa M, Bassir D, Lebaal N, Chekifi T, Aissani M, Ighil NT, Mataoui A (2021) Thermal analysis of the friction stir welding process based on boundary conditions and operating parameters. In: Proceedings of the Estonian Academy of Sciences, vol 70, no 4 – reference: ZhangXXiaoBMaZA transient thermal model for friction stir weld. Part II: effects of weld conditionsMetall Mater Trans A20114210322932391:CAS:528:DC%2BC3MXhtVWmtLfJ10.1007/s11661-011-0730-z – reference: Boukraa M, Chekifi T, Lebaal N et al (2021) Robust optimization of both dissolution time and heat affected zone over the friction stir welding process using SQP technique. Exp Tech. https://doi.org/10.1007/s40799-021-00515-8 – reference: LimSKimSLeeC-GKimSJYimCDTensile behavior of friction-stir-welded AZ31-H24 mg alloyMetall Mater Trans A20053661609161210.1007/s11661-005-0252-7 – reference: JayaramanPKumarLMMulti-response optimization of machining parameters of turning AA6063 T6 Aluminium alloy using Grey relational analysis in Taguchi methodProcess Eng2014971972041:CAS:528:DC%2BC2MXhtVSgtLY%3D – reference: AissaniMGachiSBoubeniderFBenkeddaYDesign and optimization of friction stir welding toolMater Manuf Process20102511119912051:CAS:528:DC%2BC3cXhsFyntr7M10.1080/10426910903536733 – reference: LarsenAABendsøeMHattelJSchmidtHOptimization of friction stir welding using space mapping and manifold mapping—an initial study of thermal aspectsStruct Multidiscip Optim200938328929910.1007/s00158-008-0288-6 – reference: PrajapatiVVoraJJDasSAbhishekKStudy of parametric influence and welding performance optimization during regulated metal deposition (RMD™) using grey integrated with fuzzy taguchi approachJ Manuf Process20205428630010.1016/j.jmapro.2020.03.017 – volume: 7 start-page: 163 year: 1998 ident: 573_CR5 publication-title: J Mater Process Manuf Sci doi: 10.1106/55TF-PF2G-JBH2-1Q2B – start-page: 012050 volume-title: In IOP conference series: materials science and engineering year: 2021 ident: 573_CR22 – volume: 28 start-page: 279 issue: 1 year: 2014 ident: 573_CR17 publication-title: J Mech Sci Technol doi: 10.1007/s12206-013-0966-1 – volume: 42 start-page: 3229 issue: 10 year: 2011 ident: 573_CR26 publication-title: Metall Mater Trans A doi: 10.1007/s11661-011-0730-z – start-page: 259 volume-title: In friction stir welding and processing year: 2014 ident: 573_CR2 doi: 10.1007/978-3-319-07043-8_9 – volume: 108 start-page: 2 year: 2013 ident: 573_CR9 publication-title: Int J Press Vessel Pip doi: 10.1016/j.ijpvp.2013.04.001 – ident: 573_CR1 – volume: 97 start-page: 197 year: 2014 ident: 573_CR30 publication-title: Process Eng – volume: 36 start-page: 1609 issue: 6 year: 2005 ident: 573_CR7 publication-title: Metall Mater Trans A doi: 10.1007/s11661-005-0252-7 – ident: 573_CR24 doi: 10.1007/s12650-020-00715-1 – volume: 37 start-page: 665 issue: 2 year: 2015 ident: 573_CR19 publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-014-0195-2 – ident: 573_CR11 doi: 10.1007/s40799-021-00515-8 – volume: 25 start-page: 1199 issue: 11 year: 2010 ident: 573_CR31 publication-title: Mater Manuf Process doi: 10.1080/10426910903536733 – volume: 10 start-page: 1480 issue: 11 year: 2020 ident: 573_CR14 publication-title: Metals doi: 10.3390/met10111480 – volume: 29 start-page: 232 year: 2017 ident: 573_CR4 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2017.07.015 – volume: 222 start-page: 280 year: 2015 ident: 573_CR6 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2015.03.015 – volume: 59 start-page: 118 year: 2018 ident: 573_CR23 publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2017.11.013 – ident: 573_CR21 doi: 10.3176/proc.2021.4.20 – volume: 11 start-page: 526 issue: 5 year: 2006 ident: 573_CR8 publication-title: Sci Technol Weld Join doi: 10.1179/174329306X107692 – volume: 3 start-page: 144 issue: 2 year: 2011 ident: 573_CR20 publication-title: Engineering doi: 10.4236/eng.2011.32017 – volume: 29 start-page: 1955 year: 1998 ident: 573_CR27 publication-title: Metall Mater Trans A doi: 10.1007/s11661-998-0021-5 – ident: 573_CR15 doi: 10.3390/met11010066 – ident: 573_CR13 doi: 10.1080/2374068X.2020.1829952 – volume: 54 start-page: 286 year: 2020 ident: 573_CR12 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2020.03.017 – volume: 22 start-page: 2261 issue: 8 year: 2013 ident: 573_CR18 publication-title: J Mater Eng Perform doi: 10.1007/s11665-013-0499-x – volume: 125 start-page: 138 issue: 1 year: 2003 ident: 573_CR29 publication-title: J Manuf Sci Eng doi: 10.1115/1.1537741 – volume: 34 start-page: 566 year: 2018 ident: 573_CR10 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2018.07.002 – volume: 32 start-page: 1189 issue: 5 year: 2001 ident: 573_CR3 publication-title: Metall Mater Trans A doi: 10.1007/s11661-001-0128-4 – volume: 69 start-page: 783 issue: 3 year: 2016 ident: 573_CR16 publication-title: Trans Indian Inst Metals doi: 10.1007/s12666-015-0554-4 – volume: 15 start-page: 545 issue: 5 year: 2019 ident: 573_CR25 publication-title: Fluid Dyn Mater Proc – volume: 38 start-page: 289 issue: 3 year: 2009 ident: 573_CR28 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0288-6  | 
    
| SSID | ssj0015179 | 
    
| Score | 2.4258707 | 
    
| Snippet | This work deals with the use of a multi-objective optimization method using a hybrid statistic algorithm to improve the Friction Stir Welding of aluminum alloy... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 603 | 
    
| SubjectTerms | Alloys Aluminum alloys Aluminum base alloys Axial forces Characterization and Evaluation of Materials Chemistry and Materials Science Diameters Friction stir welding Genetic algorithms Heat affected zone Heat transfer Materials Science Multiple objective analysis Optimization Optimization algorithms Parameters Research Paper Taguchi methods Thermal analysis Variance analysis Velocity  | 
    
| Title | Friction Stir Welding of Aluminum Using a Multi-Objective Optimization Approach Based on Both Taguchi Method and Grey Relational Analysis | 
    
| URI | https://link.springer.com/article/10.1007/s40799-022-00573-6 https://www.proquest.com/docview/3255524257  | 
    
| Volume | 47 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1747-1567 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0015179 issn: 0732-8818 databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1747-1567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015179 issn: 0732-8818 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0732-8818 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1747-1567 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015179 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4ULnrxHfFBxsSbNsI-uvRkQEViAhrEyG3TLq3BwII8foT_2mnpgnowHvfVw05n5pvOzDeEnKtSpH3GfYpg3aOB9DjliQgox_haImJGjGIyus0Wa7wED92w6w7cpq6sMrOJ1lD3Rok5I7_yEfuGFh9fjz-omRplsqtuhMY6yZvAwEwwqNTvl1kEQz9laTh91Hr0TK5pxrbOYSBj-u8xFLOcgJT9dEwrtPkrQWr9Tn2bbGUE0FBdiHiHrKl0l2x-4xHcI5_1Sd_2J8DzrD-BV2UzSjDSUEXb00_nQ7ClASDANtzSR_m-MHTwiCZj6HoxoeoIxqGGvq0HeKeGgoSOeDMjU6Bpp02DSHtwjzsAskI6MYCM22SfvNTvOjcN6mYs0ASh1IwialURl4knAsG1rohAM1ZhSrLQ0zIUqKNcRVEkMHQxKUqMTnqCK2aY-4QMuX9AcukoVYcEylqW8XkoeGTypUlF89AraaU839cJjwqknP3gOHEE5GYOxiBeUidbocQolNgKJWYFcrH8Zryg3_jz7bNMbjFqiUl9iFSN5tN4tXsK5DITaOzUdfrHkkf_WPKYbJgh9IsCshOSm03m6hShykwW7X4sknztrvXUxqvbtvcF9_vl0w | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQHFoupS-RPqdSe2qtEu-uNz6gKqGkoZBQtUHNzdi7NgqCDeQhxE_gT_HbGDt2aHtAvXDdhw8745lv9vN8Q8h7s5HbhIuEIlhnNNVMUFGolAqsrzUiZsQojtHt9njnIP0-yAZL5Dr2wrhjlTEm-kBdjgr3j_xzgtg38_j4y9k5dVOjHLsaR2ioMFqh3PQSY6GxY9dcXmAJN9nc-Yr2_sBYe7u_1aFhygAtEExMKeI2kwtdMJUqYW1DpZbzBjeaZ8zqTKGXCpPnuULw7kg6xOelEoY77TqlMyfGhClgJU1SgcXfSmu79-PngsdwAlheCDTBuIO5MbTt-OY9LKWcAgAWg16VkPK_U-Mt3v2HovWZr71GHkUJamjOnewxWTLVE7L6h5LhU3LVHg99hwT8mg7H8Nt4TgtGFpoY_YbV7BT84QRQ4Ft-6b4-noda2MegdRq6QaEZJM6hhdm1BLzSQleCvjpyQ1ug6-ddg6pK-IY-CPEonzqBqK7yjBzcy_d_TparUWXWCdStruP9TIncMbZFw4qMbVhjWJLYQuQ1Uo8fWBZBAt1N4jiRC_FmbxSJRpHeKJLXyMfFO2dzAZA7n34X7SZxnzryRVVmNJvIW_-tkU_RoDIEjMkdS774jyXfkgedfndP7u30dl-ShwyB2Pw42yuyPB3PzGsETlP9JngnkMP73hA3GlQmLg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friction+Stir+Welding+of+Aluminum+Using+a+Multi-Objective+Optimization+Approach+Based+on+Both+Taguchi+Method+and+Grey+Relational+Analysis&rft.jtitle=Experimental+techniques+%28Westport%2C+Conn.%29&rft.au=Boukraa%2C+M.&rft.au=Chekifi%2C+T.&rft.au=Lebaal%2C+N.&rft.date=2023-06-01&rft.issn=0732-8818&rft.eissn=1747-1567&rft.volume=47&rft.issue=3&rft.spage=603&rft.epage=617&rft_id=info:doi/10.1007%2Fs40799-022-00573-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40799_022_00573_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0732-8818&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0732-8818&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0732-8818&client=summon |