Constant Modulus Blind Adaptive Beamforming Based on Unscented Kalman Filtering

An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state spac...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 22; no. 4; pp. 474 - 478
Main Authors Bhotto, Md Zulfiquar Ali, Bajic, Ivan V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2014.2362932

Cover

More Information
Summary:An unscented Kalman filter-based constant modulus adaptation algorithm (UKF-CMA) is proposed for blind uniform linear beamforming. The proposed algorithm is obtained by first developing a model of the constant modulus (CM) criterion and then fitting that model into the Kalman filter-style state space model by using an auxiliary parameter. The proposed algorithm does not require a priori information about the process noise and measurement noise covariance matrices and hence it can be applied readily. Simulation results demonstrate that the proposed algorithm offers improved performance compared to the recursive least square-based CM (RLS-CMA) and least-mean square-based CM (LMS-CMA) algorithms for adaptive blind beamforming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2014.2362932