System identification and subsequent discharge estimation based on level data alone—Gradually varied flow condition

Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the rating curve development process with all its impediments in practice. Many attempts have been made in this regard especially in the last decad...

Full description

Saved in:
Bibliographic Details
Published inFlow measurement and instrumentation Vol. 36; pp. 24 - 31
Main Authors Damangir, H., Abedini, M.J.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2014
Subjects
Online AccessGet full text
ISSN0955-5986
1873-6998
DOI10.1016/j.flowmeasinst.2014.01.002

Cover

Abstract Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the rating curve development process with all its impediments in practice. Many attempts have been made in this regard especially in the last decade which led to the development of methodologies based on hydraulic or hydrologic routing approaches. Although flow regime is considered to be transient in the literature associated to this subject, it seems that the flow under steady state condition is ignored. In this study the system identification (roughness coefficient determination) and subsequent discharge estimation is carried out for the steady state gradually varied flow condition in two cases: the first case is a wide rectangular channel with constant primarily unknown Chezy's roughness coefficient and the second one is a nonprismatic trapezoidal channel with constant primarily unknown Manning's roughness coefficient. In this regard, it was assumed that there exists a number of depth/stage observations along the reach and it was attempted to find an appropriate pair of roughness coefficient and discharge which produces a longitudinal steady state gradually varied flow profile similar to the one observed. It is shown that the problem can be treated as an optimization problem in which the sum of the squared deviations of calculated flow profile depths from the observed one is considered as the objective function. In order to choose an appropriate optimum search technique, the objective function contour map is drawn which demonstrates that the objective function surface is flat and highly near optimum in a wide range of roughness coefficient and discharge pairs. Hence, the derivative-based optimization approaches were rejected. Since the genetic algorithm is a derivative free adaptive exploratory optimum search technique parallel processing capability on a set of candidates, this method is utilized in this study to solve the corresponding optimization problem. The standard genetic algorithm is modified in order to prevent getting trapped in local optima. This modification guarantees the achievement of the global optimum solution. This GA-based optimization technique for system identification and subsequent discharge estimation in channel with depth/stage observations alone in steady state gradually varied flow condition leads to the desired performance through which the objective pair of roughness coefficient and discharge can be obtained in both wide rectangular and nonprismatic trapezoidal geometric conditions. •Discharge estimation can be accomplished in a channel having stage observations alone.•Roughness coefficient can also be determined through discharge estimation process.•Discharge estimation in GVF condition can be treated as an optimization problem.•Implementation of GA to handle a nearly flat objective function which has numerous local optima.•Modified genetic algorithm can reliably determine the appropriate pair of roughness coefficient and flow discharge.
AbstractList Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the rating curve development process with all its impediments in practice. Many attempts have been made in this regard especially in the last decade which led to the development of methodologies based on hydraulic or hydrologic routing approaches. Although flow regime is considered to be transient in the literature associated to this subject, it seems that the flow under steady state condition is ignored. In this study the system identification (roughness coefficient determination) and subsequent discharge estimation is carried out for the steady state gradually varied flow condition in two cases: the first case is a wide rectangular channel with constant primarily unknown Chezy's roughness coefficient and the second one is a nonprismatic trapezoidal channel with constant primarily unknown Manning's roughness coefficient. In this regard, it was assumed that there exists a number of depth/stage observations along the reach and it was attempted to find an appropriate pair of roughness coefficient and discharge which produces a longitudinal steady state gradually varied flow profile similar to the one observed. It is shown that the problem can be treated as an optimization problem in which the sum of the squared deviations of calculated flow profile depths from the observed one is considered as the objective function. In order to choose an appropriate optimum search technique, the objective function contour map is drawn which demonstrates that the objective function surface is flat and highly near optimum in a wide range of roughness coefficient and discharge pairs. Hence, the derivative-based optimization approaches were rejected. Since the genetic algorithm is a derivative free adaptive exploratory optimum search technique parallel processing capability on a set of candidates, this method is utilized in this study to solve the corresponding optimization problem. The standard genetic algorithm is modified in order to prevent getting trapped in local optima. This modification guarantees the achievement of the global optimum solution. This GA-based optimization technique for system identification and subsequent discharge estimation in channel with depth/stage observations alone in steady state gradually varied flow condition leads to the desired performance through which the objective pair of roughness coefficient and discharge can be obtained in both wide rectangular and nonprismatic trapezoidal geometric conditions. •Discharge estimation can be accomplished in a channel having stage observations alone.•Roughness coefficient can also be determined through discharge estimation process.•Discharge estimation in GVF condition can be treated as an optimization problem.•Implementation of GA to handle a nearly flat objective function which has numerous local optima.•Modified genetic algorithm can reliably determine the appropriate pair of roughness coefficient and flow discharge.
Author Abedini, M.J.
Damangir, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Damangir
  fullname: Damangir, H.
– sequence: 2
  givenname: M.J.
  surname: Abedini
  fullname: Abedini, M.J.
  email: abedini@shirazu.ac.ir
BookMark eNqNkE1OwzAQhS1UJNrCHSz2CXZ-nIQVqEBBqsQCWFuOPQZXbgK2W9Qdh-CEnASHskCsuprR6L2nN98Ejbq-A4ROKUkpoexsmWrbv69AeNP5kGaEFimhKSHZARrTusoT1jT1CI1JU5ZJ2dTsCE28XxJCapJXY7R-2PoAK2wUdMFoI0UwfYdFp7Bftx7e1vGOlfHyRbhnwOCDWe00rfCgcFwsbMBiJYLAwsZ-Xx-fcyfUWli7xRvhTJQNNbHsO2UG7zE61MJ6OPmdU_R0c_04u00W9_O72eUikXlWhKTMZSHavKJMtQ0tWAGUAs2yighdacVUqQmr25pmBKSAnLKyqJscNANVVrLIp-hilytd770DzaUJP-2DE8ZySviAkS_5X4x8wMgJ5RFjjDj_F_HqIgG33c98tTNDfHJjwHEvDXQSlHEgA1e92SfmG6UmnXI
CitedBy_id crossref_primary_10_1016_j_flowmeasinst_2017_05_001
crossref_primary_10_3390_hydrology11020012
crossref_primary_10_1155_2021_5547889
crossref_primary_10_1061__ASCE_HE_1943_5584_0001848
crossref_primary_10_1007_s40996_018_0149_5
crossref_primary_10_1590_2318_0331_011616007
crossref_primary_10_1029_2017WR022498
crossref_primary_10_1109_JSEN_2019_2923854
Cites_doi 10.1061/(ASCE)1084-0699(2005)10:1(58)
10.1016/j.advwatres.2009.05.001
10.1080/02626669409492767
10.1680/iicep.1978.2802
10.5194/hess-13-847-2009
10.1016/j.flowmeasinst.2012.04.007
10.1061/(ASCE)1084-0699(1998)3:2(115)
10.1061/(ASCE)HE.1943-5584.0000345
10.1061/(ASCE)WR.1943-5452.0000053
10.1016/j.cageo.2011.08.024
10.5194/hess-3-541-1999
10.1623/hysj.51.3.365
10.1029/2009WR008103
10.1080/19942060.2011.11015380
10.1061/(ASCE)0733-9437(2004)130:1(88)
10.1061/(ASCE)IR.1943-4774.0000397
10.1080/02626669409492766
10.1061/(ASCE)1084-0699(2001)6:1(78)
10.1029/2005WR004609
10.1016/S0022-1694(97)00131-5
10.1111/j.1752-1688.1975.tb00674.x
10.1080/00221686.2010.507352
10.1061/(ASCE)1084-0699(1998)3:2(109)
10.1016/j.flowmeasinst.2012.04.002
10.1029/94WR00536
10.1061/(ASCE)0733-9429(2004)130:9(870)
10.1680/wama.2011.164.5.257
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.flowmeasinst.2014.01.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-6998
EndPage 31
ExternalDocumentID 10_1016_j_flowmeasinst_2014_01_002
S095559861400003X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c324t-53c4ab3716db91464e11e12270af7fd6d5f068b8120ecae31654893ef6ed57c43
IEDL.DBID .~1
ISSN 0955-5986
IngestDate Thu Apr 24 23:12:11 EDT 2025
Wed Oct 01 02:51:01 EDT 2025
Fri Feb 23 02:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Discharge estimation
Genetic algorithm (GA)
System identification
Gradually varied flow (GVF)
Depth/stage measurement alone
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-53c4ab3716db91464e11e12270af7fd6d5f068b8120ecae31654893ef6ed57c43
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_flowmeasinst_2014_01_002
crossref_primary_10_1016_j_flowmeasinst_2014_01_002
elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2014_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
2014-04-00
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationTitle Flow measurement and instrumentation
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dottori, Martina, Todini (bib2) 2009; 13
Perumal, Moramarco, Sahoo, Barbetta (bib23) 2010; 46
Perumal, Shrestha, Chaube (bib7) 2004; 130
Moramarco, Barbetta, Melone, Singh (bib16) 2005; 10
Perumal (bib18) 1994; 39
Chaudhry (bib31) 2008
Petersen-Øverleir (bib8) 2006; 51
Perumal, Moramarco, Sahoo, Barbetta (bib17) 2007; 43
Franchini, Lamberti (bib12) 1994; 30
Perumal, RangaRaju (bib20) 1998; 3
Ferro (bib11) 2012; 128
Bonakdari, Baghalian, Nazari, Fazli (bib33) 2011; 5
Henderson (bib25) 1988
Fread (bib4) 1975; 11
Vatankhah, Mahdavi (bib10) 2012; 26
Vatankhah, Easa (bib30) 2011; 164
Homayoon, Abedini (bib26) 2014
Birkhead, James (bib13) 1998; 205
Chow, Maidment, Mays (bib6) 1988
Perumal, RangaRaju (bib21) 1998; 3
Moramarco, Singh (bib15) 2001; 6
Perumal (bib19) 1994; 39
Barbetta, Moramarco, Franchini, Melone, Brocca, Singh (bib22) 2011; 16
Aricó, Nasello, Tucciarelli (bib24) 2009; 32
ASCE Task Committee on Evolutionary Computation in Environmental and Water Resources Engineering (bib32) 2010; 136
Herschy (bib1) 1995
Abedini, Nasseri, Burn (bib34) 2012; 41
Fread DL. A dynamic model of stage-discharge relations affected by changing discharge. NOAA Technical Memorandum NWS HYDRO-16, USA; 1976. p. 56.
Franchini, Lamberti, Di Giammarco (bib14) 1999; 3
Venutelli (bib28) 2004; 130
Aricó, Corato, Tucciarelli, Ben Meftah, Petrillo, Mossa (bib3) 2010; 48
Homayoon, Abedini (bib29) 2007
Kumar (bib27) 1978; 65
Haddadi, Rahimpour (bib9) 2012; 26
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib7) 2004; 130
ASCE Task Committee on Evolutionary Computation in Environmental and Water Resources Engineering (10.1016/j.flowmeasinst.2014.01.002_bib32) 2010; 136
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib21) 1998; 3
10.1016/j.flowmeasinst.2014.01.002_bib5
Ferro (10.1016/j.flowmeasinst.2014.01.002_bib11) 2012; 128
Barbetta (10.1016/j.flowmeasinst.2014.01.002_bib22) 2011; 16
Petersen-Øverleir (10.1016/j.flowmeasinst.2014.01.002_bib8) 2006; 51
Abedini (10.1016/j.flowmeasinst.2014.01.002_bib34) 2012; 41
Henderson (10.1016/j.flowmeasinst.2014.01.002_bib25) 1988
Aricó (10.1016/j.flowmeasinst.2014.01.002_bib24) 2009; 32
Birkhead (10.1016/j.flowmeasinst.2014.01.002_bib13) 1998; 205
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib19) 1994; 39
Kumar (10.1016/j.flowmeasinst.2014.01.002_bib27) 1978; 65
Venutelli (10.1016/j.flowmeasinst.2014.01.002_bib28) 2004; 130
Franchini (10.1016/j.flowmeasinst.2014.01.002_bib14) 1999; 3
Vatankhah (10.1016/j.flowmeasinst.2014.01.002_bib10) 2012; 26
Moramarco (10.1016/j.flowmeasinst.2014.01.002_bib15) 2001; 6
Fread (10.1016/j.flowmeasinst.2014.01.002_bib4) 1975; 11
Aricó (10.1016/j.flowmeasinst.2014.01.002_bib3) 2010; 48
Homayoon (10.1016/j.flowmeasinst.2014.01.002_bib29) 2007
Vatankhah (10.1016/j.flowmeasinst.2014.01.002_bib30) 2011; 164
Haddadi (10.1016/j.flowmeasinst.2014.01.002_bib9) 2012; 26
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib20) 1998; 3
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib23) 2010; 46
Bonakdari (10.1016/j.flowmeasinst.2014.01.002_bib33) 2011; 5
Franchini (10.1016/j.flowmeasinst.2014.01.002_bib12) 1994; 30
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib17) 2007; 43
Chaudhry (10.1016/j.flowmeasinst.2014.01.002_bib31) 2008
Herschy (10.1016/j.flowmeasinst.2014.01.002_bib1) 1995
Chow (10.1016/j.flowmeasinst.2014.01.002_bib6) 1988
Dottori (10.1016/j.flowmeasinst.2014.01.002_bib2) 2009; 13
Perumal (10.1016/j.flowmeasinst.2014.01.002_bib18) 1994; 39
Moramarco (10.1016/j.flowmeasinst.2014.01.002_bib16) 2005; 10
Homayoon (10.1016/j.flowmeasinst.2014.01.002_bib26) 2014
References_xml – volume: 5
  start-page: 384
  year: 2011
  end-page: 396
  ident: bib33
  article-title: Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm
  publication-title: Eng Appl Comput Fluid Mech
– volume: 164
  start-page: 257
  year: 2011
  end-page: 264
  ident: bib30
  article-title: Direct integration of Manning-based gradually varied flow equation
  publication-title: Proc Inst Civ Eng—Water Manag
– start-page: 523
  year: 2008
  ident: bib31
  article-title: Open-Channel Flow
– volume: 41
  start-page: 136
  year: 2012
  end-page: 146
  ident: bib34
  article-title: The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data
  publication-title: Comput Geosci
– volume: 130
  start-page: 870
  year: 2004
  end-page: 878
  ident: bib7
  article-title: Reproduction of hysteresis in rating curves
  publication-title: J Hydraul Eng, ASCE
– volume: 39
  start-page: 443
  year: 1994
  end-page: 458
  ident: bib19
  article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 2. Verification
  publication-title: Hydrol Sci J
– volume: 32
  start-page: 1223
  year: 2009
  end-page: 1240
  ident: bib24
  article-title: Using unsteady-state water level data to estimate channel roughness and discharge hydrograph
  publication-title: Adv Water Resour
– volume: 46
  start-page: W03522
  year: 2010
  ident: bib23
  article-title: On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites
  publication-title: Water Resour Res
– year: 2014
  ident: bib26
  article-title: Critical assessment of various gradually varied flow computations via a newly developed analytical solution
  publication-title: J Hydro-Informa
– start-page: 522
  year: 1988
  ident: bib25
  article-title: Open channel flow
– volume: 30
  start-page: 2183
  year: 1994
  end-page: 2196
  ident: bib12
  article-title: A flood routing Muskingum type simulation and forecasting model based on level data alone
  publication-title: Water Resour Res
– volume: 3
  start-page: 541
  year: 1999
  end-page: 548
  ident: bib14
  article-title: Rating curve estimation using local stages, upstream discharge data and a simplified hydraulic model
  publication-title: Hydrol Earth Syst Sci
– volume: 11
  start-page: 213
  year: 1975
  end-page: 228
  ident: bib4
  article-title: Computation of stage-discharge relationships affected by unsteady flow
  publication-title: Water Resour Bull
– volume: 26
  start-page: 79
  year: 2012
  end-page: 84
  ident: bib10
  article-title: Simplified procedure for design of long-throated flumes and weirs
  publication-title: Flow Meas Instrum
– volume: 13
  start-page: 847
  year: 2009
  end-page: 863
  ident: bib2
  article-title: A dynamic rating curve approach to indirect discharge measurement
  publication-title: Hydrol Earth Syst Sci
– volume: 48
  start-page: 612
  year: 2010
  end-page: 619
  ident: bib3
  article-title: Discharge estimation in open channels by means of water level hydrograph analysis
  publication-title: J Hydraul Res
– volume: 205
  start-page: 52
  year: 1998
  end-page: 65
  ident: bib13
  article-title: Synthesis of rating curves from local stage and remote discharge monitoring using nonlinear Muskingum routing
  publication-title: J Hydrol
– start-page: 572
  year: 1988
  ident: bib6
  article-title: Applied hydrology
– reference: Fread DL. A dynamic model of stage-discharge relations affected by changing discharge. NOAA Technical Memorandum NWS HYDRO-16, USA; 1976. p. 56.
– volume: 136
  start-page: 412
  year: 2010
  end-page: 432
  ident: bib32
  article-title: State of the art for genetic algorithms and beyond in water resources planning and management
  publication-title: J Water Resour Plann Manag, ASCE
– volume: 130
  start-page: 88
  year: 2004
  end-page: 91
  ident: bib28
  article-title: Direct integration of the equation of gradually varied flow
  publication-title: J Irrig Drain Eng, ASCE
– volume: 128
  start-page: 257
  year: 2012
  end-page: 265
  ident: bib11
  article-title: A new theoretical solution of the stage-discharge relationship for sharp-crested and broad weirs
  publication-title: J Irrig Drain Eng, ASCE
– volume: 51
  start-page: 365
  year: 2006
  end-page: 388
  ident: bib8
  article-title: Modelling stage-discharge relationships affected by hysteresis using the Jones formula and nonlinear regression
  publication-title: Hydrol Sci J
– volume: 10
  start-page: 58
  year: 2005
  end-page: 69
  ident: bib16
  article-title: Relating local stage and remote discharge with significant lateral inflow
  publication-title: J Hydrol Eng, ASCE
– volume: 6
  start-page: 78
  year: 2001
  end-page: 81
  ident: bib15
  article-title: Simplified method for relating local stage and remote discharge
  publication-title: J Hydrol Eng, ASCE
– volume: 26
  start-page: 63
  year: 2012
  end-page: 67
  ident: bib9
  article-title: A discharge coefficient for a trapezoidal broad-crested weir in subcritical flow
  publication-title: Flow Meas Instrum
– volume: 39
  start-page: 431
  year: 1994
  end-page: 442
  ident: bib18
  article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure
  publication-title: Hydrol Sci J
– year: 1995
  ident: bib1
  article-title: Streamflow measurement
– volume: 43
  start-page: W02412
  year: 2007
  ident: bib17
  article-title: A methodology for discharge estimation and rating curve development at ungauged river sites
  publication-title: Water Resour Res
– volume: 3
  start-page: 109
  year: 1998
  end-page: 114
  ident: bib20
  article-title: Variable-parameter stage-hydrograph routing method. I: theory
  publication-title: J Hydrol Eng, ASCE
– volume: 65
  start-page: 509
  year: 1978
  end-page: 515
  ident: bib27
  article-title: Integral solutions of the gradually varied equation for rectangular and triangular channels
  publication-title: Proc Inst Civ Eng
– volume: 3
  start-page: 115
  year: 1998
  end-page: 121
  ident: bib21
  article-title: Variable-parameter stage-hydrograph routing method. II: evaluation
  publication-title: J Hydrol Eng, ASCE
– volume: 16
  start-page: 540
  year: 2011
  end-page: 557
  ident: bib22
  article-title: Case study: improving real-time stage forecasting Muskingum model by incorporating the rating curve model
  publication-title: J Hydrol Eng, ASCE
– start-page: 424
  year: 2007
  end-page: 433
  ident: bib29
  article-title: An analytical solution for computation of water surface profile in gradually varied flow
  publication-title: Proceedings of the 6th Iranian hydraulic conference
– ident: 10.1016/j.flowmeasinst.2014.01.002_bib5
– volume: 10
  start-page: 58
  issue: 1
  year: 2005
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib16
  article-title: Relating local stage and remote discharge with significant lateral inflow
  publication-title: J Hydrol Eng, ASCE
  doi: 10.1061/(ASCE)1084-0699(2005)10:1(58)
– volume: 32
  start-page: 1223
  issue: 8
  year: 2009
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib24
  article-title: Using unsteady-state water level data to estimate channel roughness and discharge hydrograph
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2009.05.001
– volume: 39
  start-page: 443
  issue: 5
  year: 1994
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib19
  article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 2. Verification
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669409492767
– volume: 65
  start-page: 509
  issue: 2
  year: 1978
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib27
  article-title: Integral solutions of the gradually varied equation for rectangular and triangular channels
  publication-title: Proc Inst Civ Eng
  doi: 10.1680/iicep.1978.2802
– volume: 13
  start-page: 847
  year: 2009
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib2
  article-title: A dynamic rating curve approach to indirect discharge measurement
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-13-847-2009
– volume: 26
  start-page: 79
  year: 2012
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib10
  article-title: Simplified procedure for design of long-throated flumes and weirs
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2012.04.007
– volume: 3
  start-page: 115
  issue: 2
  year: 1998
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib21
  article-title: Variable-parameter stage-hydrograph routing method. II: evaluation
  publication-title: J Hydrol Eng, ASCE
  doi: 10.1061/(ASCE)1084-0699(1998)3:2(115)
– volume: 16
  start-page: 540
  issue: 6
  year: 2011
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib22
  article-title: Case study: improving real-time stage forecasting Muskingum model by incorporating the rating curve model
  publication-title: J Hydrol Eng, ASCE
  doi: 10.1061/(ASCE)HE.1943-5584.0000345
– year: 2014
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib26
  article-title: Critical assessment of various gradually varied flow computations via a newly developed analytical solution
  publication-title: J Hydro-Informa
– volume: 136
  start-page: 412
  issue: 4
  year: 2010
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib32
  article-title: State of the art for genetic algorithms and beyond in water resources planning and management
  publication-title: J Water Resour Plann Manag, ASCE
  doi: 10.1061/(ASCE)WR.1943-5452.0000053
– volume: 41
  start-page: 136
  year: 2012
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib34
  article-title: The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.08.024
– volume: 3
  start-page: 541
  issue: 4
  year: 1999
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib14
  article-title: Rating curve estimation using local stages, upstream discharge data and a simplified hydraulic model
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-3-541-1999
– volume: 51
  start-page: 365
  issue: 3
  year: 2006
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib8
  article-title: Modelling stage-discharge relationships affected by hysteresis using the Jones formula and nonlinear regression
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.51.3.365
– volume: 46
  start-page: W03522
  year: 2010
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib23
  article-title: On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites
  publication-title: Water Resour Res
  doi: 10.1029/2009WR008103
– volume: 5
  start-page: 384
  issue: 3
  year: 2011
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib33
  article-title: Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2011.11015380
– start-page: 522
  year: 1988
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib25
– volume: 130
  start-page: 88
  issue: 1
  year: 2004
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib28
  article-title: Direct integration of the equation of gradually varied flow
  publication-title: J Irrig Drain Eng, ASCE
  doi: 10.1061/(ASCE)0733-9437(2004)130:1(88)
– volume: 128
  start-page: 257
  issue: 3
  year: 2012
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib11
  article-title: A new theoretical solution of the stage-discharge relationship for sharp-crested and broad weirs
  publication-title: J Irrig Drain Eng, ASCE
  doi: 10.1061/(ASCE)IR.1943-4774.0000397
– volume: 39
  start-page: 431
  issue: 5
  year: 1994
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib18
  article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure
  publication-title: Hydrol Sci J
  doi: 10.1080/02626669409492766
– volume: 6
  start-page: 78
  issue: 1
  year: 2001
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib15
  article-title: Simplified method for relating local stage and remote discharge
  publication-title: J Hydrol Eng, ASCE
  doi: 10.1061/(ASCE)1084-0699(2001)6:1(78)
– volume: 43
  start-page: W02412
  year: 2007
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib17
  article-title: A methodology for discharge estimation and rating curve development at ungauged river sites
  publication-title: Water Resour Res
  doi: 10.1029/2005WR004609
– year: 1995
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib1
– volume: 205
  start-page: 52
  year: 1998
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib13
  article-title: Synthesis of rating curves from local stage and remote discharge monitoring using nonlinear Muskingum routing
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(97)00131-5
– volume: 11
  start-page: 213
  issue: 2
  year: 1975
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib4
  article-title: Computation of stage-discharge relationships affected by unsteady flow
  publication-title: Water Resour Bull
  doi: 10.1111/j.1752-1688.1975.tb00674.x
– volume: 48
  start-page: 612
  issue: 5
  year: 2010
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib3
  article-title: Discharge estimation in open channels by means of water level hydrograph analysis
  publication-title: J Hydraul Res
  doi: 10.1080/00221686.2010.507352
– volume: 3
  start-page: 109
  issue: 2
  year: 1998
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib20
  article-title: Variable-parameter stage-hydrograph routing method. I: theory
  publication-title: J Hydrol Eng, ASCE
  doi: 10.1061/(ASCE)1084-0699(1998)3:2(109)
– volume: 26
  start-page: 63
  year: 2012
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib9
  article-title: A discharge coefficient for a trapezoidal broad-crested weir in subcritical flow
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2012.04.002
– start-page: 523
  year: 2008
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib31
– volume: 30
  start-page: 2183
  year: 1994
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib12
  article-title: A flood routing Muskingum type simulation and forecasting model based on level data alone
  publication-title: Water Resour Res
  doi: 10.1029/94WR00536
– start-page: 572
  year: 1988
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib6
– volume: 130
  start-page: 870
  issue: 9
  year: 2004
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib7
  article-title: Reproduction of hysteresis in rating curves
  publication-title: J Hydraul Eng, ASCE
  doi: 10.1061/(ASCE)0733-9429(2004)130:9(870)
– start-page: 424
  year: 2007
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib29
  article-title: An analytical solution for computation of water surface profile in gradually varied flow
– volume: 164
  start-page: 257
  issue: 5
  year: 2011
  ident: 10.1016/j.flowmeasinst.2014.01.002_bib30
  article-title: Direct integration of Manning-based gradually varied flow equation
  publication-title: Proc Inst Civ Eng—Water Manag
  doi: 10.1680/wama.2011.164.5.257
SSID ssj0008037
Score 2.0315907
Snippet Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Depth/stage measurement alone
Discharge estimation
Genetic algorithm (GA)
Gradually varied flow (GVF)
System identification
Title System identification and subsequent discharge estimation based on level data alone—Gradually varied flow condition
URI https://dx.doi.org/10.1016/j.flowmeasinst.2014.01.002
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6998
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008037
  issn: 0955-5986
  databaseCode: AKRWK
  dateStart: 19891001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA2lIuhCtCrWR8nC7djMJDNpFy5KsVbFbrTQ3ZDXQGWs0ofiRvwIv9Av8d55aMWN4G4y5EImN9zHcM4JIcdSygSykO9xwxJPhMZ6GjKZx0yoeaBsiwkkCl8Pov5QXI7CUYV0Sy4MwiqL2J_H9CxaF2-axW42H8fj5g2Kp6G6OLQIWNmPkMEuJN5icPL6DfNosVw3EyZ7OLsUHs0wXkn68HzvFHTlM8RV-iKT8Cx-sfxKUkuJp7dJNoqKkXbyRW2RipvUyPqSjmCNrGY4TjPbJotcgZyObYECyjaeqomlMwgRGW56TpGKiwpJjqLGRk5epJjPLIWHFHFEFKGjVKUPE_fx9n4-VcjZSl_oE_bWluInUWilbYb42iHD3tltt-8VNyt4BgqouRdyI5Tm0CtZ3YZYKZzvOz8IJFOJTGxkw4RFLQ3JnzmjHEfKExQ2LomcDaURfJdUJ7CAPUJZoKG71lwoq0TbSB20onYkNVQ6CXPc1km73MrYFLLjePtFGpf4srt42Q0xuiFmfgxuqBP-ZfuYi2_8yeq09Fj84yjFkCX-YL__T_sDsoajHN5zSKrz6cIdQeUy143saDbISufiqj_4BJlG860
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VIER7QJAWkfKoD1yXeNfedXLggCJKgCQXUik3y6-VgpYkyqNVL1V_BL-QX8LMPmgQl0rcVl6P5PVYM_OtvvkM8FYplWMWiiPheB7J1PnIYiaLuEutSIzvcUmNwuNJNryQX2bp7AAGTS8M0Srr2F_F9DJa1yPdeje7q_m8-43E00hdHCECVfazB_BQpokiBPbu5o7n0eOVcCbOjmh6ozxakrzyYnn1IxiE5RsiVsay1PCs_7H8k6X2Ms_5U3hSl4zsQ7WqZ3AQFm042hMSbMOjksjpNsewqyTI2dzXNKBy55lZeLbBGFESp7eMenFJIikwEtmouhcZJTTP8KEgIhEj7igzxXIRft3-_LQ21LRVXLNLAtee0ScxxNK-pHydwMX5x-lgGNVXK0QOK6htlAonjRUIlrztY7CUIY5DnCSKm1zlPvNpzrOexezPgzNBUM8TVjYhz4JPlZPiObQWuIAXwHhiEV5bIY03su-UTXpZP1MWS52cB-E70G-2Urtad5yuvyh0QzD7rvfdoMkNmsca3dAB8cd2Valv3MvqfeMx_ddZ0pgm7mF_-p_2Z_B4OB2P9Ojz5OtLOKQ3FdfnFbS26114jWXM1r4pj-lvOm_1Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+identification+and+subsequent+discharge+estimation+based+on+level+data+alone%E2%80%94Gradually+varied+flow+condition&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Damangir%2C+H.&rft.au=Abedini%2C+M.J.&rft.date=2014-04-01&rft.issn=0955-5986&rft.volume=36&rft.spage=24&rft.epage=31&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2014.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_flowmeasinst_2014_01_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon