System identification and subsequent discharge estimation based on level data alone—Gradually varied flow condition
Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the rating curve development process with all its impediments in practice. Many attempts have been made in this regard especially in the last decad...
Saved in:
| Published in | Flow measurement and instrumentation Vol. 36; pp. 24 - 31 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0955-5986 1873-6998 |
| DOI | 10.1016/j.flowmeasinst.2014.01.002 |
Cover
| Abstract | Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the rating curve development process with all its impediments in practice. Many attempts have been made in this regard especially in the last decade which led to the development of methodologies based on hydraulic or hydrologic routing approaches. Although flow regime is considered to be transient in the literature associated to this subject, it seems that the flow under steady state condition is ignored. In this study the system identification (roughness coefficient determination) and subsequent discharge estimation is carried out for the steady state gradually varied flow condition in two cases: the first case is a wide rectangular channel with constant primarily unknown Chezy's roughness coefficient and the second one is a nonprismatic trapezoidal channel with constant primarily unknown Manning's roughness coefficient. In this regard, it was assumed that there exists a number of depth/stage observations along the reach and it was attempted to find an appropriate pair of roughness coefficient and discharge which produces a longitudinal steady state gradually varied flow profile similar to the one observed. It is shown that the problem can be treated as an optimization problem in which the sum of the squared deviations of calculated flow profile depths from the observed one is considered as the objective function. In order to choose an appropriate optimum search technique, the objective function contour map is drawn which demonstrates that the objective function surface is flat and highly near optimum in a wide range of roughness coefficient and discharge pairs. Hence, the derivative-based optimization approaches were rejected. Since the genetic algorithm is a derivative free adaptive exploratory optimum search technique parallel processing capability on a set of candidates, this method is utilized in this study to solve the corresponding optimization problem. The standard genetic algorithm is modified in order to prevent getting trapped in local optima. This modification guarantees the achievement of the global optimum solution. This GA-based optimization technique for system identification and subsequent discharge estimation in channel with depth/stage observations alone in steady state gradually varied flow condition leads to the desired performance through which the objective pair of roughness coefficient and discharge can be obtained in both wide rectangular and nonprismatic trapezoidal geometric conditions.
•Discharge estimation can be accomplished in a channel having stage observations alone.•Roughness coefficient can also be determined through discharge estimation process.•Discharge estimation in GVF condition can be treated as an optimization problem.•Implementation of GA to handle a nearly flat objective function which has numerous local optima.•Modified genetic algorithm can reliably determine the appropriate pair of roughness coefficient and flow discharge. |
|---|---|
| AbstractList | Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the rating curve development process with all its impediments in practice. Many attempts have been made in this regard especially in the last decade which led to the development of methodologies based on hydraulic or hydrologic routing approaches. Although flow regime is considered to be transient in the literature associated to this subject, it seems that the flow under steady state condition is ignored. In this study the system identification (roughness coefficient determination) and subsequent discharge estimation is carried out for the steady state gradually varied flow condition in two cases: the first case is a wide rectangular channel with constant primarily unknown Chezy's roughness coefficient and the second one is a nonprismatic trapezoidal channel with constant primarily unknown Manning's roughness coefficient. In this regard, it was assumed that there exists a number of depth/stage observations along the reach and it was attempted to find an appropriate pair of roughness coefficient and discharge which produces a longitudinal steady state gradually varied flow profile similar to the one observed. It is shown that the problem can be treated as an optimization problem in which the sum of the squared deviations of calculated flow profile depths from the observed one is considered as the objective function. In order to choose an appropriate optimum search technique, the objective function contour map is drawn which demonstrates that the objective function surface is flat and highly near optimum in a wide range of roughness coefficient and discharge pairs. Hence, the derivative-based optimization approaches were rejected. Since the genetic algorithm is a derivative free adaptive exploratory optimum search technique parallel processing capability on a set of candidates, this method is utilized in this study to solve the corresponding optimization problem. The standard genetic algorithm is modified in order to prevent getting trapped in local optima. This modification guarantees the achievement of the global optimum solution. This GA-based optimization technique for system identification and subsequent discharge estimation in channel with depth/stage observations alone in steady state gradually varied flow condition leads to the desired performance through which the objective pair of roughness coefficient and discharge can be obtained in both wide rectangular and nonprismatic trapezoidal geometric conditions.
•Discharge estimation can be accomplished in a channel having stage observations alone.•Roughness coefficient can also be determined through discharge estimation process.•Discharge estimation in GVF condition can be treated as an optimization problem.•Implementation of GA to handle a nearly flat objective function which has numerous local optima.•Modified genetic algorithm can reliably determine the appropriate pair of roughness coefficient and flow discharge. |
| Author | Abedini, M.J. Damangir, H. |
| Author_xml | – sequence: 1 givenname: H. surname: Damangir fullname: Damangir, H. – sequence: 2 givenname: M.J. surname: Abedini fullname: Abedini, M.J. email: abedini@shirazu.ac.ir |
| BookMark | eNqNkE1OwzAQhS1UJNrCHSz2CXZ-nIQVqEBBqsQCWFuOPQZXbgK2W9Qdh-CEnASHskCsuprR6L2nN98Ejbq-A4ROKUkpoexsmWrbv69AeNP5kGaEFimhKSHZARrTusoT1jT1CI1JU5ZJ2dTsCE28XxJCapJXY7R-2PoAK2wUdMFoI0UwfYdFp7Bftx7e1vGOlfHyRbhnwOCDWe00rfCgcFwsbMBiJYLAwsZ-Xx-fcyfUWli7xRvhTJQNNbHsO2UG7zE61MJ6OPmdU_R0c_04u00W9_O72eUikXlWhKTMZSHavKJMtQ0tWAGUAs2yighdacVUqQmr25pmBKSAnLKyqJscNANVVrLIp-hilytd770DzaUJP-2DE8ZySviAkS_5X4x8wMgJ5RFjjDj_F_HqIgG33c98tTNDfHJjwHEvDXQSlHEgA1e92SfmG6UmnXI |
| CitedBy_id | crossref_primary_10_1016_j_flowmeasinst_2017_05_001 crossref_primary_10_3390_hydrology11020012 crossref_primary_10_1155_2021_5547889 crossref_primary_10_1061__ASCE_HE_1943_5584_0001848 crossref_primary_10_1007_s40996_018_0149_5 crossref_primary_10_1590_2318_0331_011616007 crossref_primary_10_1029_2017WR022498 crossref_primary_10_1109_JSEN_2019_2923854 |
| Cites_doi | 10.1061/(ASCE)1084-0699(2005)10:1(58) 10.1016/j.advwatres.2009.05.001 10.1080/02626669409492767 10.1680/iicep.1978.2802 10.5194/hess-13-847-2009 10.1016/j.flowmeasinst.2012.04.007 10.1061/(ASCE)1084-0699(1998)3:2(115) 10.1061/(ASCE)HE.1943-5584.0000345 10.1061/(ASCE)WR.1943-5452.0000053 10.1016/j.cageo.2011.08.024 10.5194/hess-3-541-1999 10.1623/hysj.51.3.365 10.1029/2009WR008103 10.1080/19942060.2011.11015380 10.1061/(ASCE)0733-9437(2004)130:1(88) 10.1061/(ASCE)IR.1943-4774.0000397 10.1080/02626669409492766 10.1061/(ASCE)1084-0699(2001)6:1(78) 10.1029/2005WR004609 10.1016/S0022-1694(97)00131-5 10.1111/j.1752-1688.1975.tb00674.x 10.1080/00221686.2010.507352 10.1061/(ASCE)1084-0699(1998)3:2(109) 10.1016/j.flowmeasinst.2012.04.002 10.1029/94WR00536 10.1061/(ASCE)0733-9429(2004)130:9(870) 10.1680/wama.2011.164.5.257 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.flowmeasinst.2014.01.002 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-6998 |
| EndPage | 31 |
| ExternalDocumentID | 10_1016_j_flowmeasinst_2014_01_002 S095559861400003X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SST SSZ T5K UHS WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c324t-53c4ab3716db91464e11e12270af7fd6d5f068b8120ecae31654893ef6ed57c43 |
| IEDL.DBID | .~1 |
| ISSN | 0955-5986 |
| IngestDate | Thu Apr 24 23:12:11 EDT 2025 Wed Oct 01 02:51:01 EDT 2025 Fri Feb 23 02:28:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Discharge estimation Genetic algorithm (GA) System identification Gradually varied flow (GVF) Depth/stage measurement alone |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-53c4ab3716db91464e11e12270af7fd6d5f068b8120ecae31654893ef6ed57c43 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_flowmeasinst_2014_01_002 crossref_primary_10_1016_j_flowmeasinst_2014_01_002 elsevier_sciencedirect_doi_10_1016_j_flowmeasinst_2014_01_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2014 2014-04-00 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
| PublicationDecade | 2010 |
| PublicationTitle | Flow measurement and instrumentation |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dottori, Martina, Todini (bib2) 2009; 13 Perumal, Moramarco, Sahoo, Barbetta (bib23) 2010; 46 Perumal, Shrestha, Chaube (bib7) 2004; 130 Moramarco, Barbetta, Melone, Singh (bib16) 2005; 10 Perumal (bib18) 1994; 39 Chaudhry (bib31) 2008 Petersen-Øverleir (bib8) 2006; 51 Perumal, Moramarco, Sahoo, Barbetta (bib17) 2007; 43 Franchini, Lamberti (bib12) 1994; 30 Perumal, RangaRaju (bib20) 1998; 3 Ferro (bib11) 2012; 128 Bonakdari, Baghalian, Nazari, Fazli (bib33) 2011; 5 Henderson (bib25) 1988 Fread (bib4) 1975; 11 Vatankhah, Mahdavi (bib10) 2012; 26 Vatankhah, Easa (bib30) 2011; 164 Homayoon, Abedini (bib26) 2014 Birkhead, James (bib13) 1998; 205 Chow, Maidment, Mays (bib6) 1988 Perumal, RangaRaju (bib21) 1998; 3 Moramarco, Singh (bib15) 2001; 6 Perumal (bib19) 1994; 39 Barbetta, Moramarco, Franchini, Melone, Brocca, Singh (bib22) 2011; 16 Aricó, Nasello, Tucciarelli (bib24) 2009; 32 ASCE Task Committee on Evolutionary Computation in Environmental and Water Resources Engineering (bib32) 2010; 136 Herschy (bib1) 1995 Abedini, Nasseri, Burn (bib34) 2012; 41 Fread DL. A dynamic model of stage-discharge relations affected by changing discharge. NOAA Technical Memorandum NWS HYDRO-16, USA; 1976. p. 56. Franchini, Lamberti, Di Giammarco (bib14) 1999; 3 Venutelli (bib28) 2004; 130 Aricó, Corato, Tucciarelli, Ben Meftah, Petrillo, Mossa (bib3) 2010; 48 Homayoon, Abedini (bib29) 2007 Kumar (bib27) 1978; 65 Haddadi, Rahimpour (bib9) 2012; 26 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib7) 2004; 130 ASCE Task Committee on Evolutionary Computation in Environmental and Water Resources Engineering (10.1016/j.flowmeasinst.2014.01.002_bib32) 2010; 136 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib21) 1998; 3 10.1016/j.flowmeasinst.2014.01.002_bib5 Ferro (10.1016/j.flowmeasinst.2014.01.002_bib11) 2012; 128 Barbetta (10.1016/j.flowmeasinst.2014.01.002_bib22) 2011; 16 Petersen-Øverleir (10.1016/j.flowmeasinst.2014.01.002_bib8) 2006; 51 Abedini (10.1016/j.flowmeasinst.2014.01.002_bib34) 2012; 41 Henderson (10.1016/j.flowmeasinst.2014.01.002_bib25) 1988 Aricó (10.1016/j.flowmeasinst.2014.01.002_bib24) 2009; 32 Birkhead (10.1016/j.flowmeasinst.2014.01.002_bib13) 1998; 205 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib19) 1994; 39 Kumar (10.1016/j.flowmeasinst.2014.01.002_bib27) 1978; 65 Venutelli (10.1016/j.flowmeasinst.2014.01.002_bib28) 2004; 130 Franchini (10.1016/j.flowmeasinst.2014.01.002_bib14) 1999; 3 Vatankhah (10.1016/j.flowmeasinst.2014.01.002_bib10) 2012; 26 Moramarco (10.1016/j.flowmeasinst.2014.01.002_bib15) 2001; 6 Fread (10.1016/j.flowmeasinst.2014.01.002_bib4) 1975; 11 Aricó (10.1016/j.flowmeasinst.2014.01.002_bib3) 2010; 48 Homayoon (10.1016/j.flowmeasinst.2014.01.002_bib29) 2007 Vatankhah (10.1016/j.flowmeasinst.2014.01.002_bib30) 2011; 164 Haddadi (10.1016/j.flowmeasinst.2014.01.002_bib9) 2012; 26 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib20) 1998; 3 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib23) 2010; 46 Bonakdari (10.1016/j.flowmeasinst.2014.01.002_bib33) 2011; 5 Franchini (10.1016/j.flowmeasinst.2014.01.002_bib12) 1994; 30 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib17) 2007; 43 Chaudhry (10.1016/j.flowmeasinst.2014.01.002_bib31) 2008 Herschy (10.1016/j.flowmeasinst.2014.01.002_bib1) 1995 Chow (10.1016/j.flowmeasinst.2014.01.002_bib6) 1988 Dottori (10.1016/j.flowmeasinst.2014.01.002_bib2) 2009; 13 Perumal (10.1016/j.flowmeasinst.2014.01.002_bib18) 1994; 39 Moramarco (10.1016/j.flowmeasinst.2014.01.002_bib16) 2005; 10 Homayoon (10.1016/j.flowmeasinst.2014.01.002_bib26) 2014 |
| References_xml | – volume: 5 start-page: 384 year: 2011 end-page: 396 ident: bib33 article-title: Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm publication-title: Eng Appl Comput Fluid Mech – volume: 164 start-page: 257 year: 2011 end-page: 264 ident: bib30 article-title: Direct integration of Manning-based gradually varied flow equation publication-title: Proc Inst Civ Eng—Water Manag – start-page: 523 year: 2008 ident: bib31 article-title: Open-Channel Flow – volume: 41 start-page: 136 year: 2012 end-page: 146 ident: bib34 article-title: The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data publication-title: Comput Geosci – volume: 130 start-page: 870 year: 2004 end-page: 878 ident: bib7 article-title: Reproduction of hysteresis in rating curves publication-title: J Hydraul Eng, ASCE – volume: 39 start-page: 443 year: 1994 end-page: 458 ident: bib19 article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 2. Verification publication-title: Hydrol Sci J – volume: 32 start-page: 1223 year: 2009 end-page: 1240 ident: bib24 article-title: Using unsteady-state water level data to estimate channel roughness and discharge hydrograph publication-title: Adv Water Resour – volume: 46 start-page: W03522 year: 2010 ident: bib23 article-title: On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites publication-title: Water Resour Res – year: 2014 ident: bib26 article-title: Critical assessment of various gradually varied flow computations via a newly developed analytical solution publication-title: J Hydro-Informa – start-page: 522 year: 1988 ident: bib25 article-title: Open channel flow – volume: 30 start-page: 2183 year: 1994 end-page: 2196 ident: bib12 article-title: A flood routing Muskingum type simulation and forecasting model based on level data alone publication-title: Water Resour Res – volume: 3 start-page: 541 year: 1999 end-page: 548 ident: bib14 article-title: Rating curve estimation using local stages, upstream discharge data and a simplified hydraulic model publication-title: Hydrol Earth Syst Sci – volume: 11 start-page: 213 year: 1975 end-page: 228 ident: bib4 article-title: Computation of stage-discharge relationships affected by unsteady flow publication-title: Water Resour Bull – volume: 26 start-page: 79 year: 2012 end-page: 84 ident: bib10 article-title: Simplified procedure for design of long-throated flumes and weirs publication-title: Flow Meas Instrum – volume: 13 start-page: 847 year: 2009 end-page: 863 ident: bib2 article-title: A dynamic rating curve approach to indirect discharge measurement publication-title: Hydrol Earth Syst Sci – volume: 48 start-page: 612 year: 2010 end-page: 619 ident: bib3 article-title: Discharge estimation in open channels by means of water level hydrograph analysis publication-title: J Hydraul Res – volume: 205 start-page: 52 year: 1998 end-page: 65 ident: bib13 article-title: Synthesis of rating curves from local stage and remote discharge monitoring using nonlinear Muskingum routing publication-title: J Hydrol – start-page: 572 year: 1988 ident: bib6 article-title: Applied hydrology – reference: Fread DL. A dynamic model of stage-discharge relations affected by changing discharge. NOAA Technical Memorandum NWS HYDRO-16, USA; 1976. p. 56. – volume: 136 start-page: 412 year: 2010 end-page: 432 ident: bib32 article-title: State of the art for genetic algorithms and beyond in water resources planning and management publication-title: J Water Resour Plann Manag, ASCE – volume: 130 start-page: 88 year: 2004 end-page: 91 ident: bib28 article-title: Direct integration of the equation of gradually varied flow publication-title: J Irrig Drain Eng, ASCE – volume: 128 start-page: 257 year: 2012 end-page: 265 ident: bib11 article-title: A new theoretical solution of the stage-discharge relationship for sharp-crested and broad weirs publication-title: J Irrig Drain Eng, ASCE – volume: 51 start-page: 365 year: 2006 end-page: 388 ident: bib8 article-title: Modelling stage-discharge relationships affected by hysteresis using the Jones formula and nonlinear regression publication-title: Hydrol Sci J – volume: 10 start-page: 58 year: 2005 end-page: 69 ident: bib16 article-title: Relating local stage and remote discharge with significant lateral inflow publication-title: J Hydrol Eng, ASCE – volume: 6 start-page: 78 year: 2001 end-page: 81 ident: bib15 article-title: Simplified method for relating local stage and remote discharge publication-title: J Hydrol Eng, ASCE – volume: 26 start-page: 63 year: 2012 end-page: 67 ident: bib9 article-title: A discharge coefficient for a trapezoidal broad-crested weir in subcritical flow publication-title: Flow Meas Instrum – volume: 39 start-page: 431 year: 1994 end-page: 442 ident: bib18 article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure publication-title: Hydrol Sci J – year: 1995 ident: bib1 article-title: Streamflow measurement – volume: 43 start-page: W02412 year: 2007 ident: bib17 article-title: A methodology for discharge estimation and rating curve development at ungauged river sites publication-title: Water Resour Res – volume: 3 start-page: 109 year: 1998 end-page: 114 ident: bib20 article-title: Variable-parameter stage-hydrograph routing method. I: theory publication-title: J Hydrol Eng, ASCE – volume: 65 start-page: 509 year: 1978 end-page: 515 ident: bib27 article-title: Integral solutions of the gradually varied equation for rectangular and triangular channels publication-title: Proc Inst Civ Eng – volume: 3 start-page: 115 year: 1998 end-page: 121 ident: bib21 article-title: Variable-parameter stage-hydrograph routing method. II: evaluation publication-title: J Hydrol Eng, ASCE – volume: 16 start-page: 540 year: 2011 end-page: 557 ident: bib22 article-title: Case study: improving real-time stage forecasting Muskingum model by incorporating the rating curve model publication-title: J Hydrol Eng, ASCE – start-page: 424 year: 2007 end-page: 433 ident: bib29 article-title: An analytical solution for computation of water surface profile in gradually varied flow publication-title: Proceedings of the 6th Iranian hydraulic conference – ident: 10.1016/j.flowmeasinst.2014.01.002_bib5 – volume: 10 start-page: 58 issue: 1 year: 2005 ident: 10.1016/j.flowmeasinst.2014.01.002_bib16 article-title: Relating local stage and remote discharge with significant lateral inflow publication-title: J Hydrol Eng, ASCE doi: 10.1061/(ASCE)1084-0699(2005)10:1(58) – volume: 32 start-page: 1223 issue: 8 year: 2009 ident: 10.1016/j.flowmeasinst.2014.01.002_bib24 article-title: Using unsteady-state water level data to estimate channel roughness and discharge hydrograph publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2009.05.001 – volume: 39 start-page: 443 issue: 5 year: 1994 ident: 10.1016/j.flowmeasinst.2014.01.002_bib19 article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 2. Verification publication-title: Hydrol Sci J doi: 10.1080/02626669409492767 – volume: 65 start-page: 509 issue: 2 year: 1978 ident: 10.1016/j.flowmeasinst.2014.01.002_bib27 article-title: Integral solutions of the gradually varied equation for rectangular and triangular channels publication-title: Proc Inst Civ Eng doi: 10.1680/iicep.1978.2802 – volume: 13 start-page: 847 year: 2009 ident: 10.1016/j.flowmeasinst.2014.01.002_bib2 article-title: A dynamic rating curve approach to indirect discharge measurement publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-13-847-2009 – volume: 26 start-page: 79 year: 2012 ident: 10.1016/j.flowmeasinst.2014.01.002_bib10 article-title: Simplified procedure for design of long-throated flumes and weirs publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2012.04.007 – volume: 3 start-page: 115 issue: 2 year: 1998 ident: 10.1016/j.flowmeasinst.2014.01.002_bib21 article-title: Variable-parameter stage-hydrograph routing method. II: evaluation publication-title: J Hydrol Eng, ASCE doi: 10.1061/(ASCE)1084-0699(1998)3:2(115) – volume: 16 start-page: 540 issue: 6 year: 2011 ident: 10.1016/j.flowmeasinst.2014.01.002_bib22 article-title: Case study: improving real-time stage forecasting Muskingum model by incorporating the rating curve model publication-title: J Hydrol Eng, ASCE doi: 10.1061/(ASCE)HE.1943-5584.0000345 – year: 2014 ident: 10.1016/j.flowmeasinst.2014.01.002_bib26 article-title: Critical assessment of various gradually varied flow computations via a newly developed analytical solution publication-title: J Hydro-Informa – volume: 136 start-page: 412 issue: 4 year: 2010 ident: 10.1016/j.flowmeasinst.2014.01.002_bib32 article-title: State of the art for genetic algorithms and beyond in water resources planning and management publication-title: J Water Resour Plann Manag, ASCE doi: 10.1061/(ASCE)WR.1943-5452.0000053 – volume: 41 start-page: 136 year: 2012 ident: 10.1016/j.flowmeasinst.2014.01.002_bib34 article-title: The use of a genetic algorithm-based search strategy in geostatistics: application to a set of anisotropic piezometric head data publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.08.024 – volume: 3 start-page: 541 issue: 4 year: 1999 ident: 10.1016/j.flowmeasinst.2014.01.002_bib14 article-title: Rating curve estimation using local stages, upstream discharge data and a simplified hydraulic model publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-3-541-1999 – volume: 51 start-page: 365 issue: 3 year: 2006 ident: 10.1016/j.flowmeasinst.2014.01.002_bib8 article-title: Modelling stage-discharge relationships affected by hysteresis using the Jones formula and nonlinear regression publication-title: Hydrol Sci J doi: 10.1623/hysj.51.3.365 – volume: 46 start-page: W03522 year: 2010 ident: 10.1016/j.flowmeasinst.2014.01.002_bib23 article-title: On the practical applicability of the VPMS routing method for rating curve development at ungauged river sites publication-title: Water Resour Res doi: 10.1029/2009WR008103 – volume: 5 start-page: 384 issue: 3 year: 2011 ident: 10.1016/j.flowmeasinst.2014.01.002_bib33 article-title: Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2011.11015380 – start-page: 522 year: 1988 ident: 10.1016/j.flowmeasinst.2014.01.002_bib25 – volume: 130 start-page: 88 issue: 1 year: 2004 ident: 10.1016/j.flowmeasinst.2014.01.002_bib28 article-title: Direct integration of the equation of gradually varied flow publication-title: J Irrig Drain Eng, ASCE doi: 10.1061/(ASCE)0733-9437(2004)130:1(88) – volume: 128 start-page: 257 issue: 3 year: 2012 ident: 10.1016/j.flowmeasinst.2014.01.002_bib11 article-title: A new theoretical solution of the stage-discharge relationship for sharp-crested and broad weirs publication-title: J Irrig Drain Eng, ASCE doi: 10.1061/(ASCE)IR.1943-4774.0000397 – volume: 39 start-page: 431 issue: 5 year: 1994 ident: 10.1016/j.flowmeasinst.2014.01.002_bib18 article-title: Hydrodynamic derivation of a variable parameter Muskingum method: 1. Theory and solution procedure publication-title: Hydrol Sci J doi: 10.1080/02626669409492766 – volume: 6 start-page: 78 issue: 1 year: 2001 ident: 10.1016/j.flowmeasinst.2014.01.002_bib15 article-title: Simplified method for relating local stage and remote discharge publication-title: J Hydrol Eng, ASCE doi: 10.1061/(ASCE)1084-0699(2001)6:1(78) – volume: 43 start-page: W02412 year: 2007 ident: 10.1016/j.flowmeasinst.2014.01.002_bib17 article-title: A methodology for discharge estimation and rating curve development at ungauged river sites publication-title: Water Resour Res doi: 10.1029/2005WR004609 – year: 1995 ident: 10.1016/j.flowmeasinst.2014.01.002_bib1 – volume: 205 start-page: 52 year: 1998 ident: 10.1016/j.flowmeasinst.2014.01.002_bib13 article-title: Synthesis of rating curves from local stage and remote discharge monitoring using nonlinear Muskingum routing publication-title: J Hydrol doi: 10.1016/S0022-1694(97)00131-5 – volume: 11 start-page: 213 issue: 2 year: 1975 ident: 10.1016/j.flowmeasinst.2014.01.002_bib4 article-title: Computation of stage-discharge relationships affected by unsteady flow publication-title: Water Resour Bull doi: 10.1111/j.1752-1688.1975.tb00674.x – volume: 48 start-page: 612 issue: 5 year: 2010 ident: 10.1016/j.flowmeasinst.2014.01.002_bib3 article-title: Discharge estimation in open channels by means of water level hydrograph analysis publication-title: J Hydraul Res doi: 10.1080/00221686.2010.507352 – volume: 3 start-page: 109 issue: 2 year: 1998 ident: 10.1016/j.flowmeasinst.2014.01.002_bib20 article-title: Variable-parameter stage-hydrograph routing method. I: theory publication-title: J Hydrol Eng, ASCE doi: 10.1061/(ASCE)1084-0699(1998)3:2(109) – volume: 26 start-page: 63 year: 2012 ident: 10.1016/j.flowmeasinst.2014.01.002_bib9 article-title: A discharge coefficient for a trapezoidal broad-crested weir in subcritical flow publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2012.04.002 – start-page: 523 year: 2008 ident: 10.1016/j.flowmeasinst.2014.01.002_bib31 – volume: 30 start-page: 2183 year: 1994 ident: 10.1016/j.flowmeasinst.2014.01.002_bib12 article-title: A flood routing Muskingum type simulation and forecasting model based on level data alone publication-title: Water Resour Res doi: 10.1029/94WR00536 – start-page: 572 year: 1988 ident: 10.1016/j.flowmeasinst.2014.01.002_bib6 – volume: 130 start-page: 870 issue: 9 year: 2004 ident: 10.1016/j.flowmeasinst.2014.01.002_bib7 article-title: Reproduction of hysteresis in rating curves publication-title: J Hydraul Eng, ASCE doi: 10.1061/(ASCE)0733-9429(2004)130:9(870) – start-page: 424 year: 2007 ident: 10.1016/j.flowmeasinst.2014.01.002_bib29 article-title: An analytical solution for computation of water surface profile in gradually varied flow – volume: 164 start-page: 257 issue: 5 year: 2011 ident: 10.1016/j.flowmeasinst.2014.01.002_bib30 article-title: Direct integration of Manning-based gradually varied flow equation publication-title: Proc Inst Civ Eng—Water Manag doi: 10.1680/wama.2011.164.5.257 |
| SSID | ssj0008037 |
| Score | 2.0315907 |
| Snippet | Discharge estimation via depth/stage measurement alone in a channel reach with unknown roughness coefficient seems to be important, since it can replace the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 24 |
| SubjectTerms | Depth/stage measurement alone Discharge estimation Genetic algorithm (GA) Gradually varied flow (GVF) System identification |
| Title | System identification and subsequent discharge estimation based on level data alone—Gradually varied flow condition |
| URI | https://dx.doi.org/10.1016/j.flowmeasinst.2014.01.002 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008037 issn: 0955-5986 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008037 issn: 0955-5986 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1873-6998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008037 issn: 0955-5986 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008037 issn: 0955-5986 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6998 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008037 issn: 0955-5986 databaseCode: AKRWK dateStart: 19891001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA2lIuhCtCrWR8nC7djMJDNpFy5KsVbFbrTQ3ZDXQGWs0ofiRvwIv9Av8d55aMWN4G4y5EImN9zHcM4JIcdSygSykO9xwxJPhMZ6GjKZx0yoeaBsiwkkCl8Pov5QXI7CUYV0Sy4MwiqL2J_H9CxaF2-axW42H8fj5g2Kp6G6OLQIWNmPkMEuJN5icPL6DfNosVw3EyZ7OLsUHs0wXkn68HzvFHTlM8RV-iKT8Cx-sfxKUkuJp7dJNoqKkXbyRW2RipvUyPqSjmCNrGY4TjPbJotcgZyObYECyjaeqomlMwgRGW56TpGKiwpJjqLGRk5epJjPLIWHFHFEFKGjVKUPE_fx9n4-VcjZSl_oE_bWluInUWilbYb42iHD3tltt-8VNyt4BgqouRdyI5Tm0CtZ3YZYKZzvOz8IJFOJTGxkw4RFLQ3JnzmjHEfKExQ2LomcDaURfJdUJ7CAPUJZoKG71lwoq0TbSB20onYkNVQ6CXPc1km73MrYFLLjePtFGpf4srt42Q0xuiFmfgxuqBP-ZfuYi2_8yeq09Fj84yjFkCX-YL__T_sDsoajHN5zSKrz6cIdQeUy143saDbISufiqj_4BJlG860 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VIER7QJAWkfKoD1yXeNfedXLggCJKgCQXUik3y6-VgpYkyqNVL1V_BL-QX8LMPmgQl0rcVl6P5PVYM_OtvvkM8FYplWMWiiPheB7J1PnIYiaLuEutSIzvcUmNwuNJNryQX2bp7AAGTS8M0Srr2F_F9DJa1yPdeje7q_m8-43E00hdHCECVfazB_BQpokiBPbu5o7n0eOVcCbOjmh6ozxakrzyYnn1IxiE5RsiVsay1PCs_7H8k6X2Ms_5U3hSl4zsQ7WqZ3AQFm042hMSbMOjksjpNsewqyTI2dzXNKBy55lZeLbBGFESp7eMenFJIikwEtmouhcZJTTP8KEgIhEj7igzxXIRft3-_LQ21LRVXLNLAtee0ScxxNK-pHydwMX5x-lgGNVXK0QOK6htlAonjRUIlrztY7CUIY5DnCSKm1zlPvNpzrOexezPgzNBUM8TVjYhz4JPlZPiObQWuIAXwHhiEV5bIY03su-UTXpZP1MWS52cB-E70G-2Urtad5yuvyh0QzD7rvfdoMkNmsca3dAB8cd2Valv3MvqfeMx_ddZ0pgm7mF_-p_2Z_B4OB2P9Ojz5OtLOKQ3FdfnFbS26114jWXM1r4pj-lvOm_1Qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+identification+and+subsequent+discharge+estimation+based+on+level+data+alone%E2%80%94Gradually+varied+flow+condition&rft.jtitle=Flow+measurement+and+instrumentation&rft.au=Damangir%2C+H.&rft.au=Abedini%2C+M.J.&rft.date=2014-04-01&rft.issn=0955-5986&rft.volume=36&rft.spage=24&rft.epage=31&rft_id=info:doi/10.1016%2Fj.flowmeasinst.2014.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_flowmeasinst_2014_01_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-5986&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-5986&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-5986&client=summon |