A comprehensive parametric study and multi-objective optimization of turbulent jet array impingement for uniform cooling of gas turbine blades with minimized compression power
In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections of gas turbine blades to maximize the heat transfer uniformity on the target plate and minimize the air compression power consumption at diff...
        Saved in:
      
    
          | Published in | International journal of thermal sciences Vol. 201; p. 109035 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Masson SAS
    
        01.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1290-0729 | 
| DOI | 10.1016/j.ijthermalsci.2024.109035 | 
Cover
| Abstract | In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections of gas turbine blades to maximize the heat transfer uniformity on the target plate and minimize the air compression power consumption at different desired Nusselt numbers. The validated numerical method based on RANS equations is utilized to determine the effects of Reynolds number (2500≤Re≤35000), jet spacings (3≤Px,Py≤8), and the jet-to-target distance (0.75≤Pz≤3) on air compression power (Wc), average Nusselt number (Nu‾), and heat transfer uniformity index (UI). According to the parametric study, the increase of Re improves Nu‾ and UI, while intensively increasing Wc. The effect of jet-to-target distance is a function of jet spacings; with the increase of Pz at low jet spacings, Wc,Nu‾, and UI are reduced. Although, at large spacings, Nu‾ and UI increase with Pz, and Wc is independent of Pz. Additionally, the increase of Px decreases Wc, Nu‾, and UI. Increasing Py reduces Nu‾ and Wc. But at small Px and Pz, the UI is descending; while at large Px and Pz, the UI tends to ascend. Three high-accuracy surrogate models are developed using backpropagation artificial neural networks (ANN) for estimating Wc, Nu‾, and UI for input design variables. Sobol global sensitivity analysis is also performed based on the developed models for quantifying the influence of design variables and their interactions on objective functions. As expected, the results indicate that Wc and Nu‾ are the most sensitive to Re, and UI is mainly affected by Px, whereas Py is more affecting the uniformity index rather than compression power. Finally, to find out the best design and flow conditions, optimizations are conducted by the NSGA-II algorithm. The optimal Pareto frontier and final decided solutions by TOPSIS and LINMAP methods are then demonstrated for the desired Nusselt number (NuD) of 70. The TOPSIS method indicates Px=4.70, Py=3.25, Pz=1.40, and Re = 13800 as the best compromise for optimization. The analysis of Pareto solutions in the range of NuD from 35 to 130 suggests a variety of optimal flow and geometrical arrangements for a trade-off between objective functions; therefore, at most, 50% less compression power or 5% more uniformity is approachable corresponding to the design requirements.
[Display omitted]
•The impingement performance was analyzed by a parametric study.•The objective functions included compression power, average Nusselt number, and uniformity index.•High-accuracy surrogate ANN models were used to estimate the objective functions.•Sobol sensitivity analysis was conducted via ANN models.•The optimal designs were presented by NSGA-II for a variety of desired Nusselt numbers. | 
    
|---|---|
| AbstractList | In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections of gas turbine blades to maximize the heat transfer uniformity on the target plate and minimize the air compression power consumption at different desired Nusselt numbers. The validated numerical method based on RANS equations is utilized to determine the effects of Reynolds number (2500≤Re≤35000), jet spacings (3≤Px,Py≤8), and the jet-to-target distance (0.75≤Pz≤3) on air compression power (Wc), average Nusselt number (Nu‾), and heat transfer uniformity index (UI). According to the parametric study, the increase of Re improves Nu‾ and UI, while intensively increasing Wc. The effect of jet-to-target distance is a function of jet spacings; with the increase of Pz at low jet spacings, Wc,Nu‾, and UI are reduced. Although, at large spacings, Nu‾ and UI increase with Pz, and Wc is independent of Pz. Additionally, the increase of Px decreases Wc, Nu‾, and UI. Increasing Py reduces Nu‾ and Wc. But at small Px and Pz, the UI is descending; while at large Px and Pz, the UI tends to ascend. Three high-accuracy surrogate models are developed using backpropagation artificial neural networks (ANN) for estimating Wc, Nu‾, and UI for input design variables. Sobol global sensitivity analysis is also performed based on the developed models for quantifying the influence of design variables and their interactions on objective functions. As expected, the results indicate that Wc and Nu‾ are the most sensitive to Re, and UI is mainly affected by Px, whereas Py is more affecting the uniformity index rather than compression power. Finally, to find out the best design and flow conditions, optimizations are conducted by the NSGA-II algorithm. The optimal Pareto frontier and final decided solutions by TOPSIS and LINMAP methods are then demonstrated for the desired Nusselt number (NuD) of 70. The TOPSIS method indicates Px=4.70, Py=3.25, Pz=1.40, and Re = 13800 as the best compromise for optimization. The analysis of Pareto solutions in the range of NuD from 35 to 130 suggests a variety of optimal flow and geometrical arrangements for a trade-off between objective functions; therefore, at most, 50% less compression power or 5% more uniformity is approachable corresponding to the design requirements.
[Display omitted]
•The impingement performance was analyzed by a parametric study.•The objective functions included compression power, average Nusselt number, and uniformity index.•High-accuracy surrogate ANN models were used to estimate the objective functions.•Sobol sensitivity analysis was conducted via ANN models.•The optimal designs were presented by NSGA-II for a variety of desired Nusselt numbers. | 
    
| ArticleNumber | 109035 | 
    
| Author | Kowsary, Farshad Bahman Jahromi, Hooman  | 
    
| Author_xml | – sequence: 1 givenname: Hooman orcidid: 0009-0001-2827-8843 surname: Bahman Jahromi fullname: Bahman Jahromi, Hooman email: Hooman.Bahman@ut.ac.ir – sequence: 2 givenname: Farshad surname: Kowsary fullname: Kowsary, Farshad  | 
    
| BookMark | eNqNkc1OHTEMhbMAqUD7DlH3c5vJ_KYrEJSChNQNrKNM4uF6NElGSQZ0-1J9xWa4LKquWFmyfT7bx-fkxHkHhHwt2a5kZftt2uGU9hCsmqPGHWe8zgXBquaEnJVcsIJ1XHwi5zFOjLFOMHFG_lxR7e0SYA8u4gvQRQVlIQXUNKbVHKhyhtp1Tlj4YQKdtia_JLT4WyX0jvqRpjUM6wwu0QkSVSGoA0W7oHsGu2VHH-jqMAebx_k5FzbZs4pvUnRAh1kZiPQV055adBsezPtuMW5zFv8K4TM5HfN98OU9XpCn2x-P13fFw6-f99dXD4WueJ0KDp3o27Yu9Wj6ng9cdH3b6Jo1vK5hrFQzQNUZpXqtQPSs6dgwtMKMvWKNZlBdkO9Hrg4-xgCjXAJaFQ6yZHKzW07yX7vlZrc82p3Fl_-JNaY3s1JQOH8McXNEQD7yBSHI3AFOg8GQnyCNx49g_gKTVbC6 | 
    
| CitedBy_id | crossref_primary_10_32604_fhmt_2024_059734 crossref_primary_10_1016_j_icheatmasstransfer_2024_108192 crossref_primary_10_1016_j_ijthermalsci_2024_109587 crossref_primary_10_1016_j_ijthermalsci_2024_109674 crossref_primary_10_3390_en17133177  | 
    
| Cites_doi | 10.1109/23.589532 10.1111/1541-4337.13175 10.1016/j.ijheatmasstransfer.2009.09.027 10.1016/j.ijthermalsci.2023.108161 10.1016/j.applthermaleng.2021.117347 10.1016/j.applthermaleng.2023.120452 10.1016/j.applthermaleng.2023.122101 10.1016/j.applthermaleng.2017.12.075 10.1016/j.icheatmasstransfer.2020.104978 10.1016/j.ijheatmasstransfer.2008.05.004 10.1016/j.applthermaleng.2019.01.037 10.1016/j.ijheatmasstransfer.2023.124664 10.1109/TCPMT.2023.3288612 10.1016/S0017-9310(01)00043-6 10.1115/1.4033670 10.1016/j.ijheatmasstransfer.2016.12.017 10.1016/j.ijheatmasstransfer.2017.08.065 10.1016/j.ijheatfluidflow.2023.109135 10.1016/j.ijft.2022.100203 10.1016/j.ijthermalsci.2022.107907 10.1016/j.ijheatmasstransfer.2020.119978 10.1016/j.ijheatmasstransfer.2018.11.073 10.1016/j.foodcont.2015.06.047 10.1115/1.4025228 10.1016/j.ijheatmasstransfer.2016.05.108 10.1016/j.applthermaleng.2022.118613 10.1016/j.ijthermalsci.2022.107710 10.1007/s00231-013-1202-3 10.1016/j.ijthermalsci.2023.108707 10.1016/j.ijheatmasstransfer.2022.123633 10.1016/j.ijheatmasstransfer.2015.01.025 10.3390/aerospace9020087 10.1115/1.4049618 10.1115/1.4049496 10.1115/1.4029848 10.1016/j.cpc.2009.09.018 10.1007/BF02291658 10.1016/j.ijheatmasstransfer.2023.124041 10.1007/s11082-022-03799-1 10.1016/j.ijthermalsci.2021.106862  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Masson SAS | 
    
| Copyright_xml | – notice: 2024 Elsevier Masson SAS | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.ijthermalsci.2024.109035 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_ijthermalsci_2024_109035 S1290072924001571  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c324t-2e7986641cfd882b297865c405244ef3a5be37daa8cae980570bb69df8a05c0e3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1290-0729 | 
    
| IngestDate | Wed Oct 01 03:27:50 EDT 2025 Thu Apr 24 22:52:11 EDT 2025 Sat Oct 19 15:54:30 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Jet arrays impingement Parametric study Heat transfer uniformity Compression power Computational fluid dynamics (CFD)  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c324t-2e7986641cfd882b297865c405244ef3a5be37daa8cae980570bb69df8a05c0e3 | 
    
| ORCID | 0009-0001-2827-8843 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_ijthermalsci_2024_109035 crossref_citationtrail_10_1016_j_ijthermalsci_2024_109035 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2024_109035  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2024 2024-07-00  | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal of thermal sciences | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Masson SAS | 
    
| Publisher_xml | – name: Elsevier Masson SAS | 
    
| References | Ekkad, Singh (bib16) 2021; 143 Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (bib44) 2010; 181 Yang, Qiu, Wu, Li, Jiang, Huang (bib30) 2023; 187 Hossain, Ameri, Gregory, Bons (bib38) 2021; 143 Bijarchi, Kowsary (bib25) 2018; 132 Prevost, Battaglioli, Jenkins, Robinson (bib15) 2022; 16 Zhou, Tian, Lv, Dong (bib29) 2022; 179 Kim, Ki, Bang, Han, Seo, Ahn, Maeng, Lee, Nam (bib37) 2024; 239 Zhou, Guan, Li, Zhang (bib10) 2023; 184 Lam, Prakash (bib32) 2017; 108 Naphon, Wiriyasart, Arisariyawong, Nakharintr (bib34) 2019; 131 Klinkhamer, Iyer, Member, Etemadi, Balachandar, Barron (bib4) 2023; 13 Barewar, Joshi, Sharma, Kalos, Bakthavatchalam, Chougule, Habib, Saha (bib14) 2023; 39 Djordjević, Jordović-Pavlović, Ćojbašić, Galović, Popović, Nešić, Markushev (bib43) 2022; 54 Bijarchi, Eghtesad, Afshin, Shafii (bib24) 2019; 150 Goodro, Park, Ligrani, Fox, Moon (bib17) 2008; 51 Baz, Elshenawy, El-Agouz, El-Samadony, Marzouk (bib28) 2024; 196 Sola, Sevilla (bib42) 1997; 44 Streufert, Yan, Baygloo (bib47) 2012; vol. 7 Brakmann, Chen, Weigand, Crawford (bib41) 2016; 138 Mahmoudabadbozchelou, Eghtesad, Jamali, Afshin (bib35) 2020; 119 Forster, Weigand (bib1) 2021; 164 Lee, Ren, Haegele, Potts, Sik Jin, Ligrani, Fox, Moon (bib18) 2014; 136 Khan, Hamdan, Al-Omari, Elnajjar (bib2) 2023; 208 Byon (bib23) 2015; 84 Menter, Lechner, Matyushenko (bib39) 2021 Sharkey, Menter (bib40) 2019 Youn, Choi, Kim (bib19) 2021; 197 Yildizeli, Cadirci (bib21) 2020; 158 Choo, Kim (bib20) 2010; 53 Wang, Deng, Xu, He, Zhao, Zou, Liu, Yue (bib7) 2016; 59 Rao, Li, Liu, Yang (bib13) 2023; 101 Klinkhamer, Abishek, Iyer, Balachandar, Barron (bib3) 2022; 34 Nobari, Prodanovic, Militzer (bib5) 2016; 101 Forouzanmehr, Shariatmadar, Kowsary, Ashjaee (bib26) 2015; 137 Xi, Gao, Xu, Zhao, Ruan, Li (bib22) 2022; 9 Srinivasan, Shocker (bib45) 1973; 38 Luan, Rao, Yan (bib11) 2023; 201 Cui, Shi, Yu, Zhang, Liu, Liu (bib36) 2023; 227 San, Lai (bib31) 2001; 44 Hwang, Yoon (bib46) 1981 Yu, Zhu, Sun, Yuan, Ding (bib6) 2017; 115 Ricklick, Claretti, Kapat (bib27) 2010 Dai, fa Diao (bib8) 2022; 212 Altay, Selçuk, Abacı, Erdem, Dirim, Şentürk, Kaymak‐Ertekin (bib9) 2023; 22 Chang, Lee (bib12) 2023; 217 Husain, Kim, Kim (bib33) 2013; 49 Goodro (10.1016/j.ijthermalsci.2024.109035_bib17) 2008; 51 Forouzanmehr (10.1016/j.ijthermalsci.2024.109035_bib26) 2015; 137 Hwang (10.1016/j.ijthermalsci.2024.109035_bib46) 1981 Chang (10.1016/j.ijthermalsci.2024.109035_bib12) 2023; 217 Dai (10.1016/j.ijthermalsci.2024.109035_bib8) 2022; 212 Yildizeli (10.1016/j.ijthermalsci.2024.109035_bib21) 2020; 158 San (10.1016/j.ijthermalsci.2024.109035_bib31) 2001; 44 Klinkhamer (10.1016/j.ijthermalsci.2024.109035_bib4) 2023; 13 Naphon (10.1016/j.ijthermalsci.2024.109035_bib34) 2019; 131 Youn (10.1016/j.ijthermalsci.2024.109035_bib19) 2021; 197 Yang (10.1016/j.ijthermalsci.2024.109035_bib30) 2023; 187 Cui (10.1016/j.ijthermalsci.2024.109035_bib36) 2023; 227 Klinkhamer (10.1016/j.ijthermalsci.2024.109035_bib3) 2022; 34 Husain (10.1016/j.ijthermalsci.2024.109035_bib33) 2013; 49 Nobari (10.1016/j.ijthermalsci.2024.109035_bib5) 2016; 101 Menter (10.1016/j.ijthermalsci.2024.109035_bib39) 2021 Luan (10.1016/j.ijthermalsci.2024.109035_bib11) 2023; 201 Choo (10.1016/j.ijthermalsci.2024.109035_bib20) 2010; 53 Bijarchi (10.1016/j.ijthermalsci.2024.109035_bib24) 2019; 150 Sola (10.1016/j.ijthermalsci.2024.109035_bib42) 1997; 44 Zhou (10.1016/j.ijthermalsci.2024.109035_bib10) 2023; 184 Bijarchi (10.1016/j.ijthermalsci.2024.109035_bib25) 2018; 132 Hossain (10.1016/j.ijthermalsci.2024.109035_bib38) 2021; 143 Djordjević (10.1016/j.ijthermalsci.2024.109035_bib43) 2022; 54 Byon (10.1016/j.ijthermalsci.2024.109035_bib23) 2015; 84 Srinivasan (10.1016/j.ijthermalsci.2024.109035_bib45) 1973; 38 Barewar (10.1016/j.ijthermalsci.2024.109035_bib14) 2023; 39 Brakmann (10.1016/j.ijthermalsci.2024.109035_bib41) 2016; 138 Xi (10.1016/j.ijthermalsci.2024.109035_bib22) 2022; 9 Forster (10.1016/j.ijthermalsci.2024.109035_bib1) 2021; 164 Rao (10.1016/j.ijthermalsci.2024.109035_bib13) 2023; 101 Ekkad (10.1016/j.ijthermalsci.2024.109035_bib16) 2021; 143 Mahmoudabadbozchelou (10.1016/j.ijthermalsci.2024.109035_bib35) 2020; 119 Kim (10.1016/j.ijthermalsci.2024.109035_bib37) 2024; 239 Khan (10.1016/j.ijthermalsci.2024.109035_bib2) 2023; 208 Ricklick (10.1016/j.ijthermalsci.2024.109035_bib27) 2010 Lee (10.1016/j.ijthermalsci.2024.109035_bib18) 2014; 136 Lam (10.1016/j.ijthermalsci.2024.109035_bib32) 2017; 108 Wang (10.1016/j.ijthermalsci.2024.109035_bib7) 2016; 59 Altay (10.1016/j.ijthermalsci.2024.109035_bib9) 2023; 22 Baz (10.1016/j.ijthermalsci.2024.109035_bib28) 2024; 196 Sharkey (10.1016/j.ijthermalsci.2024.109035_bib40) 2019 Saltelli (10.1016/j.ijthermalsci.2024.109035_bib44) 2010; 181 Prevost (10.1016/j.ijthermalsci.2024.109035_bib15) 2022; 16 Streufert (10.1016/j.ijthermalsci.2024.109035_bib47) 2012; vol. 7 Yu (10.1016/j.ijthermalsci.2024.109035_bib6) 2017; 115 Zhou (10.1016/j.ijthermalsci.2024.109035_bib29) 2022; 179  | 
    
| References_xml | – volume: 227 year: 2023 ident: bib36 article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm publication-title: Appl. Therm. Eng. – volume: 115 start-page: 368 year: 2017 end-page: 378 ident: bib6 article-title: Heat transfer rate and uniformity of mist flow jet impingement for glass tempering publication-title: Int. J. Heat Mass Transf. – start-page: 675 year: 2010 end-page: 684 ident: bib27 article-title: Channel height and jet spacing effect on heat transfer and uniformity coefficient on an inline row impingement Channel publication-title: Proc. ASME Turbo Expo 2010 Power Land, Sea Air – volume: 16 year: 2022 ident: bib15 article-title: Enhancing jet array heat transfer: review of geometric features of nozzle and target plates publication-title: Int. J. Thermofluids – volume: 132 start-page: 128 year: 2018 end-page: 139 ident: bib25 article-title: Inverse optimization design of an impinging co-axial jet in order to achieve heat flux uniformity over the target object publication-title: Appl. Therm. Eng. – volume: 212 year: 2022 ident: bib8 article-title: Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet publication-title: Appl. Therm. Eng. – year: 1981 ident: bib46 article-title: Multiple Attribute Decision Making: Methods and Applications A State-Of-The-Art Survey – volume: 187 year: 2023 ident: bib30 article-title: Temperature uniformity characteristics of array jet impingement cooling with the maximum cross-flow scheme publication-title: Int. J. Therm. Sci. – volume: 51 start-page: 6243 year: 2008 end-page: 6253 ident: bib17 article-title: Effects of hole spacing on spatially-resolved jet array impingement heat transfer publication-title: Int. J. Heat Mass Transf. – volume: 84 start-page: 1056 year: 2015 end-page: 1060 ident: bib23 article-title: Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power publication-title: Int. J. Heat Mass Transf. – volume: 138 start-page: 1 year: 2016 end-page: 9 ident: bib41 article-title: Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin Fins1 publication-title: J. Turbomach. – volume: 44 start-page: 3997 year: 2001 end-page: 4007 ident: bib31 article-title: Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets publication-title: Int. J. Heat Mass Transf. – volume: 217 year: 2023 ident: bib12 article-title: Effect of grooved nozzle plate on aerothermal performance of rotating impingement-jet and pin-fin channel in axial-flow mode publication-title: Int. J. Heat Mass Transf. – volume: 119 year: 2020 ident: bib35 article-title: Entropy analysis and thermal optimization of nanofluid impinging jet using artificial neural network and genetic algorithm publication-title: Int. Commun. Heat Mass Tran. – volume: 38 start-page: 337 year: 1973 end-page: 369 ident: bib45 article-title: Linear programming techniques for multidimensional analysis of preferences publication-title: Psychometrika – volume: 108 start-page: 880 year: 2017 end-page: 900 ident: bib32 article-title: A numerical investigation and design optimization of impingement cooling system with an array of air jets publication-title: Int. J. Heat Mass Transf. – volume: 131 start-page: 329 year: 2019 end-page: 340 ident: bib34 article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 181 start-page: 259 year: 2010 end-page: 270 ident: bib44 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comput. Phys. Commun. – volume: vol. 7 start-page: 2201 year: 2012 end-page: 2209 ident: bib47 article-title: Jet-to-Plate distance effect on heat transfer from a flat plate to an impinging jet at various Reynolds numbers publication-title: Fluids Heat Transf. Parts A, B, C, D – volume: 39 year: 2023 ident: bib14 article-title: Optimization of jet impingement heat transfer: a review on advanced techniques and parameters publication-title: Therm. Sci. Eng. Prog. – volume: 184 year: 2023 ident: bib10 article-title: Numerical investigation on conjugate cooling performance of double swirl cooling at vane leading edge publication-title: Int. J. Therm. Sci. – volume: 208 year: 2023 ident: bib2 article-title: A comparison of oscillating sweeping jet and steady normal jet in cooling gas turbine leading edge: numerical analysis publication-title: Int. J. Heat Mass Transf. – volume: 137 start-page: 1 year: 2015 end-page: 8 ident: bib26 article-title: Achieving heat flux uniformity using an optimal arrangement of impinging jet arrays publication-title: J. Heat Tran. – volume: 197 year: 2021 ident: bib19 article-title: Numerical investigation of jet array impingement cooling with effusion holes publication-title: Appl. Therm. Eng. – volume: 101 start-page: 1138 year: 2016 end-page: 1150 ident: bib5 article-title: Heat transfer of a stationary steel plate during water jet impingement cooling publication-title: Int. J. Heat Mass Transf. – volume: 22 start-page: 3084 year: 2023 end-page: 3104 ident: bib9 article-title: Recent progress in food processing applications of air impingement technology: a review publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 34 year: 2022 ident: bib3 article-title: Characterization of a jet impingement heat sink for power electronics cooling publication-title: Therm. Sci. Eng. Prog. – volume: 179 year: 2022 ident: bib29 article-title: Numerical investigation on flow and heat transfer characteristics of single row jet impingement cooling with varying jet diameter publication-title: Int. J. Therm. Sci. – volume: 239 year: 2024 ident: bib37 article-title: Optimizing Energy-Efficient jet impingement cooling using an artificial neural network (ANN) surrogate model for high heat flux Semiconductors publication-title: Appl. Therm. Eng. – volume: 164 year: 2021 ident: bib1 article-title: Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade publication-title: Int. J. Therm. Sci. – volume: 13 start-page: 765 year: 2023 end-page: 787 ident: bib4 article-title: Jet impingement heat sinks with application toward power electronics cooling : a review publication-title: IEEE Trans. Components, Packag. Manuf. Technol. – start-page: 1 year: 2019 end-page: 13 ident: bib40 article-title: A numerical investigation of the turbulent flow around a scale model JBC hull using the generalized k-ω (GEKO) turbulence model publication-title: 11th Int. Work. Sh. Mar. Hydrodyn. – volume: 44 start-page: 1464 year: 1997 end-page: 1468 ident: bib42 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Trans. Nucl. Sci. – volume: 54 start-page: 501 year: 2022 ident: bib43 article-title: Influence of data scaling and normalization on overall neural network performances in photoacoustics publication-title: Opt. Quant. Electron. – volume: 101 year: 2023 ident: bib13 article-title: Experimental and numerical studies on enhanced effusion cooling with shallowly dimpled film holes on double-wall structure surface publication-title: Int. J. Heat Fluid Flow – volume: 143 start-page: 1 year: 2021 end-page: 15 ident: bib16 article-title: A modern review on jet impingement heat transfer methods publication-title: J. Heat Tran. – volume: 143 year: 2021 ident: bib38 article-title: Experimental investigation of innovative cooling schemes on an additively manufactured engine scale turbine nozzle guide vane publication-title: J. Turbomach. – volume: 49 start-page: 1613 year: 2013 end-page: 1624 ident: bib33 article-title: Performance analysis and design optimization of micro-jet impingement heat sink publication-title: Heat Mass Tran. – volume: 53 start-page: 320 year: 2010 end-page: 326 ident: bib20 article-title: Heat transfer characteristics of impinging air jets under a fixed pumping power condition publication-title: Int. J. Heat Mass Transf. – volume: 196 year: 2024 ident: bib28 article-title: Experimental study on air impinging jet for effective cooling of multiple protruding heat sources publication-title: Int. J. Therm. Sci. – year: 2021 ident: bib39 article-title: Best Practice: Generalized K-ω (GEKO) Two-Equation Turbulence Modeling in Ansys CFD – volume: 59 start-page: 743 year: 2016 end-page: 749 ident: bib7 article-title: Optimization of air jet impingement drying of okara using response surface methodology publication-title: Food Control – volume: 136 start-page: 1 year: 2014 end-page: 13 ident: bib18 article-title: Effects of jet-to-target plate distance and Reynolds number on jet array impingement heat transfer publication-title: J. Turbomach. – volume: 150 start-page: 781 year: 2019 end-page: 790 ident: bib24 article-title: Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet publication-title: Appl. Therm. Eng. – volume: 201 year: 2023 ident: bib11 article-title: Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes publication-title: Int. J. Heat Mass Transf. – volume: 9 start-page: 87 year: 2022 ident: bib22 article-title: Numerical investigation and parameter sensitivity analysis on flow and heat transfer performance of jet array impingement cooling in a quasi-leading-edge channel publication-title: Aerospace – volume: 158 year: 2020 ident: bib21 article-title: Multi-objective optimization of multiple impinging jet system through genetic algorithm publication-title: Int. J. Heat Mass Transf. – volume: 44 start-page: 1464 year: 1997 ident: 10.1016/j.ijthermalsci.2024.109035_bib42 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.589532 – volume: 22 start-page: 3084 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib9 article-title: Recent progress in food processing applications of air impingement technology: a review publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.13175 – volume: 53 start-page: 320 year: 2010 ident: 10.1016/j.ijthermalsci.2024.109035_bib20 article-title: Heat transfer characteristics of impinging air jets under a fixed pumping power condition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.09.027 – volume: 187 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib30 article-title: Temperature uniformity characteristics of array jet impingement cooling with the maximum cross-flow scheme publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108161 – year: 2021 ident: 10.1016/j.ijthermalsci.2024.109035_bib39 – volume: 197 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109035_bib19 article-title: Numerical investigation of jet array impingement cooling with effusion holes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117347 – volume: 227 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib36 article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120452 – volume: 239 year: 2024 ident: 10.1016/j.ijthermalsci.2024.109035_bib37 article-title: Optimizing Energy-Efficient jet impingement cooling using an artificial neural network (ANN) surrogate model for high heat flux Semiconductors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.122101 – volume: 132 start-page: 128 year: 2018 ident: 10.1016/j.ijthermalsci.2024.109035_bib25 article-title: Inverse optimization design of an impinging co-axial jet in order to achieve heat flux uniformity over the target object publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.075 – volume: 119 year: 2020 ident: 10.1016/j.ijthermalsci.2024.109035_bib35 article-title: Entropy analysis and thermal optimization of nanofluid impinging jet using artificial neural network and genetic algorithm publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2020.104978 – start-page: 1 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109035_bib40 article-title: A numerical investigation of the turbulent flow around a scale model JBC hull using the generalized k-ω (GEKO) turbulence model – volume: 51 start-page: 6243 year: 2008 ident: 10.1016/j.ijthermalsci.2024.109035_bib17 article-title: Effects of hole spacing on spatially-resolved jet array impingement heat transfer publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.05.004 – volume: 150 start-page: 781 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109035_bib24 article-title: Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.01.037 – volume: 217 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib12 article-title: Effect of grooved nozzle plate on aerothermal performance of rotating impingement-jet and pin-fin channel in axial-flow mode publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124664 – volume: 13 start-page: 765 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib4 article-title: Jet impingement heat sinks with application toward power electronics cooling : a review publication-title: IEEE Trans. Components, Packag. Manuf. Technol. doi: 10.1109/TCPMT.2023.3288612 – volume: 44 start-page: 3997 year: 2001 ident: 10.1016/j.ijthermalsci.2024.109035_bib31 article-title: Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00043-6 – volume: 138 start-page: 1 year: 2016 ident: 10.1016/j.ijthermalsci.2024.109035_bib41 article-title: Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin Fins1 publication-title: J. Turbomach. doi: 10.1115/1.4033670 – volume: 108 start-page: 880 year: 2017 ident: 10.1016/j.ijthermalsci.2024.109035_bib32 article-title: A numerical investigation and design optimization of impingement cooling system with an array of air jets publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.12.017 – volume: 115 start-page: 368 year: 2017 ident: 10.1016/j.ijthermalsci.2024.109035_bib6 article-title: Heat transfer rate and uniformity of mist flow jet impingement for glass tempering publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.08.065 – start-page: 675 year: 2010 ident: 10.1016/j.ijthermalsci.2024.109035_bib27 article-title: Channel height and jet spacing effect on heat transfer and uniformity coefficient on an inline row impingement Channel – volume: 101 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib13 article-title: Experimental and numerical studies on enhanced effusion cooling with shallowly dimpled film holes on double-wall structure surface publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2023.109135 – volume: 16 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109035_bib15 article-title: Enhancing jet array heat transfer: review of geometric features of nozzle and target plates publication-title: Int. J. Thermofluids doi: 10.1016/j.ijft.2022.100203 – volume: 184 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib10 article-title: Numerical investigation on conjugate cooling performance of double swirl cooling at vane leading edge publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.107907 – volume: 158 year: 2020 ident: 10.1016/j.ijthermalsci.2024.109035_bib21 article-title: Multi-objective optimization of multiple impinging jet system through genetic algorithm publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119978 – volume: 131 start-page: 329 year: 2019 ident: 10.1016/j.ijthermalsci.2024.109035_bib34 article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.073 – volume: 59 start-page: 743 year: 2016 ident: 10.1016/j.ijthermalsci.2024.109035_bib7 article-title: Optimization of air jet impingement drying of okara using response surface methodology publication-title: Food Control doi: 10.1016/j.foodcont.2015.06.047 – volume: 136 start-page: 1 year: 2014 ident: 10.1016/j.ijthermalsci.2024.109035_bib18 article-title: Effects of jet-to-target plate distance and Reynolds number on jet array impingement heat transfer publication-title: J. Turbomach. doi: 10.1115/1.4025228 – volume: 101 start-page: 1138 year: 2016 ident: 10.1016/j.ijthermalsci.2024.109035_bib5 article-title: Heat transfer of a stationary steel plate during water jet impingement cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.108 – volume: 212 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109035_bib8 article-title: Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118613 – volume: 179 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109035_bib29 article-title: Numerical investigation on flow and heat transfer characteristics of single row jet impingement cooling with varying jet diameter publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2022.107710 – volume: 49 start-page: 1613 year: 2013 ident: 10.1016/j.ijthermalsci.2024.109035_bib33 article-title: Performance analysis and design optimization of micro-jet impingement heat sink publication-title: Heat Mass Tran. doi: 10.1007/s00231-013-1202-3 – volume: 196 year: 2024 ident: 10.1016/j.ijthermalsci.2024.109035_bib28 article-title: Experimental study on air impinging jet for effective cooling of multiple protruding heat sources publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2023.108707 – volume: 201 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib11 article-title: Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123633 – volume: 84 start-page: 1056 year: 2015 ident: 10.1016/j.ijthermalsci.2024.109035_bib23 article-title: Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.01.025 – volume: 9 start-page: 87 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109035_bib22 article-title: Numerical investigation and parameter sensitivity analysis on flow and heat transfer performance of jet array impingement cooling in a quasi-leading-edge channel publication-title: Aerospace doi: 10.3390/aerospace9020087 – volume: 143 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109035_bib38 article-title: Experimental investigation of innovative cooling schemes on an additively manufactured engine scale turbine nozzle guide vane publication-title: J. Turbomach. doi: 10.1115/1.4049618 – year: 1981 ident: 10.1016/j.ijthermalsci.2024.109035_bib46 – volume: vol. 7 start-page: 2201 year: 2012 ident: 10.1016/j.ijthermalsci.2024.109035_bib47 article-title: Jet-to-Plate distance effect on heat transfer from a flat plate to an impinging jet at various Reynolds numbers – volume: 143 start-page: 1 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109035_bib16 article-title: A modern review on jet impingement heat transfer methods publication-title: J. Heat Tran. doi: 10.1115/1.4049496 – volume: 137 start-page: 1 year: 2015 ident: 10.1016/j.ijthermalsci.2024.109035_bib26 article-title: Achieving heat flux uniformity using an optimal arrangement of impinging jet arrays publication-title: J. Heat Tran. doi: 10.1115/1.4029848 – volume: 181 start-page: 259 year: 2010 ident: 10.1016/j.ijthermalsci.2024.109035_bib44 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.09.018 – volume: 38 start-page: 337 year: 1973 ident: 10.1016/j.ijthermalsci.2024.109035_bib45 article-title: Linear programming techniques for multidimensional analysis of preferences publication-title: Psychometrika doi: 10.1007/BF02291658 – volume: 208 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib2 article-title: A comparison of oscillating sweeping jet and steady normal jet in cooling gas turbine leading edge: numerical analysis publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124041 – volume: 39 year: 2023 ident: 10.1016/j.ijthermalsci.2024.109035_bib14 article-title: Optimization of jet impingement heat transfer: a review on advanced techniques and parameters publication-title: Therm. Sci. Eng. Prog. – volume: 54 start-page: 501 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109035_bib43 article-title: Influence of data scaling and normalization on overall neural network performances in photoacoustics publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-022-03799-1 – volume: 164 year: 2021 ident: 10.1016/j.ijthermalsci.2024.109035_bib1 article-title: Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.106862 – volume: 34 year: 2022 ident: 10.1016/j.ijthermalsci.2024.109035_bib3 article-title: Characterization of a jet impingement heat sink for power electronics cooling publication-title: Therm. Sci. Eng. Prog.  | 
    
| SSID | ssj0007909 | 
    
| Score | 2.4735596 | 
    
| Snippet | In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 109035 | 
    
| SubjectTerms | Compression power Computational fluid dynamics (CFD) Heat transfer uniformity Jet arrays impingement Parametric study  | 
    
| Title | A comprehensive parametric study and multi-objective optimization of turbulent jet array impingement for uniform cooling of gas turbine blades with minimized compression power | 
    
| URI | https://dx.doi.org/10.1016/j.ijthermalsci.2024.109035 | 
    
| Volume | 201 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1290-0729 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007909 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1290-0729 databaseCode: .~1 dateStart: 19990101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007909 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1290-0729 databaseCode: AIKHN dateStart: 19990101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007909 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1290-0729 databaseCode: ACRLP dateStart: 19990101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007909 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1290-0729 databaseCode: AKRWK dateStart: 19990101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007909 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvcChagtVoQXNgWvY7Nr58IHDCoG2RXABJG6RPyaQFcmult1DL_1L_MXOOAksUg9IPSbyJJbHmnm23rwR4ijTXim0PkqNTiLFPJoc0zhCxNKkuS1NqIW5vEont-rXXXK3IU77WhimVXaxv43pIVp3bwbdag7mVTW45hsU1r1mFuQwCXXkSmXcxeD4zyvNI9OB5sGDIx7dC48Gjlc1ZZRVk6NdRWfFkWJ1pTi0fvtHklpLPOefxMcOMcK4ndRnsYHNF7G9piO4I57HwNTwBT60dHRgQe-ae2U5CPqxYBoPgTsYzey0jXEwo2hRd2WYMCuBko9dcRKCKS7BLBbmN1Q111OFK0QgeAurhiu5avodN_u5Z7N78xRMaTpgH43HJ-DLXWDREvo8-m5uTLdtYM5d2XbF7fnZzekk6joxRI4A1zIaYabzNFVDV3qC5HZEZ880cQT2CB1gKU1iUWbemNwZ1DlhwNjaVPsyN3HiYpRfxWYza_CbgNJgEktHYSbOFaqhdlJ6baTKjLRDjXtC90tfuE6mnLtlPBY9H21arLutYLcVrdv2hHyxnbdiHe-yOuk9XLzZegVllXfY7_-n_XexxU8tB_iH2FwuVnhASGdpD8NWPhQfxj8vJld_AdHIBkc | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCdGgzBGnTIq-2N3RVLJvUg0OHwGjgtk6WJkA2gY9TIiOSDcceuvQv5S_2jpJaF-gQIKvEkwgecfeR-O47IT5l2iuF1kep0UmkmEeTYxpHiFiaNLelCbUwF5fp5Fp9u0lutsS4r4VhWmUX-9uYHqJ192TQreZgUVWDH3yDwrrXzIIcJlxH_kIlo4xPYKe__vI8Mh14Hjw64uG98mggeVUzhlk1edpVdFgcKZZXikPvt_9kqY3Mc74ndjvICGftrF6LLWzeiJ0NIcF98XgGzA1f4l3LRwdW9K65WZaDICALpvEQyIPR3M7aIAdzChd1V4cJ8xIo-9g1ZyGY4QrMcml-QlVzQVW4QwTCt7BuuJSrpt9xt59bNrs1D8GUpgP23nh8AL7dBVYtoc-j7-bGfNsGFtyW7a24Pv9yNZ5EXSuGyBHiWkUjzHSepmroSk-Y3I7o8JkmjtAewQMspUksyswbkzuDOicQGFubal_mJk5cjPKd2G7mDR4IKA0msXQUZ-JcoRpqJ6XXRqrMSDvUeCh0v_SF63TKuV3GfdET0mbFptsKdlvRuu1QyD-2i1at40lWn3sPF__svYLSyhPsj55p_1G8nFxdTIvp18vvx-IVv2kJwSdie7Vc43uCPSv7IWzr38gyB9w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+parametric+study+and+multi-objective+optimization+of+turbulent+jet+array+impingement+for+uniform+cooling+of+gas+turbine+blades+with+minimized+compression+power&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Bahman+Jahromi%2C+Hooman&rft.au=Kowsary%2C+Farshad&rft.date=2024-07-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.volume=201&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2024.109035&rft.externalDocID=S1290072924001571 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |