A comprehensive parametric study and multi-objective optimization of turbulent jet array impingement for uniform cooling of gas turbine blades with minimized compression power

In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections of gas turbine blades to maximize the heat transfer uniformity on the target plate and minimize the air compression power consumption at diff...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of thermal sciences Vol. 201; p. 109035
Main Authors Bahman Jahromi, Hooman, Kowsary, Farshad
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.07.2024
Subjects
Online AccessGet full text
ISSN1290-0729
DOI10.1016/j.ijthermalsci.2024.109035

Cover

Abstract In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections of gas turbine blades to maximize the heat transfer uniformity on the target plate and minimize the air compression power consumption at different desired Nusselt numbers. The validated numerical method based on RANS equations is utilized to determine the effects of Reynolds number (2500≤Re≤35000), jet spacings (3≤Px,Py≤8), and the jet-to-target distance (0.75≤Pz≤3) on air compression power (Wc), average Nusselt number (Nu‾), and heat transfer uniformity index (UI). According to the parametric study, the increase of Re improves Nu‾ and UI, while intensively increasing Wc. The effect of jet-to-target distance is a function of jet spacings; with the increase of Pz at low jet spacings, Wc,Nu‾, and UI are reduced. Although, at large spacings, Nu‾ and UI increase with Pz, and Wc is independent of Pz. Additionally, the increase of Px decreases Wc, Nu‾, and UI. Increasing Py reduces Nu‾ and Wc. But at small Px and Pz, the UI is descending; while at large Px and Pz, the UI tends to ascend. Three high-accuracy surrogate models are developed using backpropagation artificial neural networks (ANN) for estimating Wc, Nu‾, and UI for input design variables. Sobol global sensitivity analysis is also performed based on the developed models for quantifying the influence of design variables and their interactions on objective functions. As expected, the results indicate that Wc and Nu‾ are the most sensitive to Re, and UI is mainly affected by Px, whereas Py is more affecting the uniformity index rather than compression power. Finally, to find out the best design and flow conditions, optimizations are conducted by the NSGA-II algorithm. The optimal Pareto frontier and final decided solutions by TOPSIS and LINMAP methods are then demonstrated for the desired Nusselt number (NuD) of 70. The TOPSIS method indicates Px=4.70, Py=3.25, Pz=1.40, and Re = 13800 as the best compromise for optimization. The analysis of Pareto solutions in the range of NuD from 35 to 130 suggests a variety of optimal flow and geometrical arrangements for a trade-off between objective functions; therefore, at most, 50% less compression power or 5% more uniformity is approachable corresponding to the design requirements. [Display omitted] •The impingement performance was analyzed by a parametric study.•The objective functions included compression power, average Nusselt number, and uniformity index.•High-accuracy surrogate ANN models were used to estimate the objective functions.•Sobol sensitivity analysis was conducted via ANN models.•The optimal designs were presented by NSGA-II for a variety of desired Nusselt numbers.
AbstractList In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections of gas turbine blades to maximize the heat transfer uniformity on the target plate and minimize the air compression power consumption at different desired Nusselt numbers. The validated numerical method based on RANS equations is utilized to determine the effects of Reynolds number (2500≤Re≤35000), jet spacings (3≤Px,Py≤8), and the jet-to-target distance (0.75≤Pz≤3) on air compression power (Wc), average Nusselt number (Nu‾), and heat transfer uniformity index (UI). According to the parametric study, the increase of Re improves Nu‾ and UI, while intensively increasing Wc. The effect of jet-to-target distance is a function of jet spacings; with the increase of Pz at low jet spacings, Wc,Nu‾, and UI are reduced. Although, at large spacings, Nu‾ and UI increase with Pz, and Wc is independent of Pz. Additionally, the increase of Px decreases Wc, Nu‾, and UI. Increasing Py reduces Nu‾ and Wc. But at small Px and Pz, the UI is descending; while at large Px and Pz, the UI tends to ascend. Three high-accuracy surrogate models are developed using backpropagation artificial neural networks (ANN) for estimating Wc, Nu‾, and UI for input design variables. Sobol global sensitivity analysis is also performed based on the developed models for quantifying the influence of design variables and their interactions on objective functions. As expected, the results indicate that Wc and Nu‾ are the most sensitive to Re, and UI is mainly affected by Px, whereas Py is more affecting the uniformity index rather than compression power. Finally, to find out the best design and flow conditions, optimizations are conducted by the NSGA-II algorithm. The optimal Pareto frontier and final decided solutions by TOPSIS and LINMAP methods are then demonstrated for the desired Nusselt number (NuD) of 70. The TOPSIS method indicates Px=4.70, Py=3.25, Pz=1.40, and Re = 13800 as the best compromise for optimization. The analysis of Pareto solutions in the range of NuD from 35 to 130 suggests a variety of optimal flow and geometrical arrangements for a trade-off between objective functions; therefore, at most, 50% less compression power or 5% more uniformity is approachable corresponding to the design requirements. [Display omitted] •The impingement performance was analyzed by a parametric study.•The objective functions included compression power, average Nusselt number, and uniformity index.•High-accuracy surrogate ANN models were used to estimate the objective functions.•Sobol sensitivity analysis was conducted via ANN models.•The optimal designs were presented by NSGA-II for a variety of desired Nusselt numbers.
ArticleNumber 109035
Author Kowsary, Farshad
Bahman Jahromi, Hooman
Author_xml – sequence: 1
  givenname: Hooman
  orcidid: 0009-0001-2827-8843
  surname: Bahman Jahromi
  fullname: Bahman Jahromi, Hooman
  email: Hooman.Bahman@ut.ac.ir
– sequence: 2
  givenname: Farshad
  surname: Kowsary
  fullname: Kowsary, Farshad
BookMark eNqNkc1OHTEMhbMAqUD7DlH3c5vJ_KYrEJSChNQNrKNM4uF6NElGSQZ0-1J9xWa4LKquWFmyfT7bx-fkxHkHhHwt2a5kZftt2uGU9hCsmqPGHWe8zgXBquaEnJVcsIJ1XHwi5zFOjLFOMHFG_lxR7e0SYA8u4gvQRQVlIQXUNKbVHKhyhtp1Tlj4YQKdtia_JLT4WyX0jvqRpjUM6wwu0QkSVSGoA0W7oHsGu2VHH-jqMAebx_k5FzbZs4pvUnRAh1kZiPQV055adBsezPtuMW5zFv8K4TM5HfN98OU9XpCn2x-P13fFw6-f99dXD4WueJ0KDp3o27Yu9Wj6ng9cdH3b6Jo1vK5hrFQzQNUZpXqtQPSs6dgwtMKMvWKNZlBdkO9Hrg4-xgCjXAJaFQ6yZHKzW07yX7vlZrc82p3Fl_-JNaY3s1JQOH8McXNEQD7yBSHI3AFOg8GQnyCNx49g_gKTVbC6
CitedBy_id crossref_primary_10_32604_fhmt_2024_059734
crossref_primary_10_1016_j_icheatmasstransfer_2024_108192
crossref_primary_10_1016_j_ijthermalsci_2024_109587
crossref_primary_10_1016_j_ijthermalsci_2024_109674
crossref_primary_10_3390_en17133177
Cites_doi 10.1109/23.589532
10.1111/1541-4337.13175
10.1016/j.ijheatmasstransfer.2009.09.027
10.1016/j.ijthermalsci.2023.108161
10.1016/j.applthermaleng.2021.117347
10.1016/j.applthermaleng.2023.120452
10.1016/j.applthermaleng.2023.122101
10.1016/j.applthermaleng.2017.12.075
10.1016/j.icheatmasstransfer.2020.104978
10.1016/j.ijheatmasstransfer.2008.05.004
10.1016/j.applthermaleng.2019.01.037
10.1016/j.ijheatmasstransfer.2023.124664
10.1109/TCPMT.2023.3288612
10.1016/S0017-9310(01)00043-6
10.1115/1.4033670
10.1016/j.ijheatmasstransfer.2016.12.017
10.1016/j.ijheatmasstransfer.2017.08.065
10.1016/j.ijheatfluidflow.2023.109135
10.1016/j.ijft.2022.100203
10.1016/j.ijthermalsci.2022.107907
10.1016/j.ijheatmasstransfer.2020.119978
10.1016/j.ijheatmasstransfer.2018.11.073
10.1016/j.foodcont.2015.06.047
10.1115/1.4025228
10.1016/j.ijheatmasstransfer.2016.05.108
10.1016/j.applthermaleng.2022.118613
10.1016/j.ijthermalsci.2022.107710
10.1007/s00231-013-1202-3
10.1016/j.ijthermalsci.2023.108707
10.1016/j.ijheatmasstransfer.2022.123633
10.1016/j.ijheatmasstransfer.2015.01.025
10.3390/aerospace9020087
10.1115/1.4049618
10.1115/1.4049496
10.1115/1.4029848
10.1016/j.cpc.2009.09.018
10.1007/BF02291658
10.1016/j.ijheatmasstransfer.2023.124041
10.1007/s11082-022-03799-1
10.1016/j.ijthermalsci.2021.106862
ContentType Journal Article
Copyright 2024 Elsevier Masson SAS
Copyright_xml – notice: 2024 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ijthermalsci.2024.109035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijthermalsci_2024_109035
S1290072924001571
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c324t-2e7986641cfd882b297865c405244ef3a5be37daa8cae980570bb69df8a05c0e3
IEDL.DBID .~1
ISSN 1290-0729
IngestDate Wed Oct 01 03:27:50 EDT 2025
Thu Apr 24 22:52:11 EDT 2025
Sat Oct 19 15:54:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Jet arrays impingement
Parametric study
Heat transfer uniformity
Compression power
Computational fluid dynamics (CFD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-2e7986641cfd882b297865c405244ef3a5be37daa8cae980570bb69df8a05c0e3
ORCID 0009-0001-2827-8843
ParticipantIDs crossref_primary_10_1016_j_ijthermalsci_2024_109035
crossref_citationtrail_10_1016_j_ijthermalsci_2024_109035
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2024_109035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle International journal of thermal sciences
PublicationYear 2024
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Ekkad, Singh (bib16) 2021; 143
Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (bib44) 2010; 181
Yang, Qiu, Wu, Li, Jiang, Huang (bib30) 2023; 187
Hossain, Ameri, Gregory, Bons (bib38) 2021; 143
Bijarchi, Kowsary (bib25) 2018; 132
Prevost, Battaglioli, Jenkins, Robinson (bib15) 2022; 16
Zhou, Tian, Lv, Dong (bib29) 2022; 179
Kim, Ki, Bang, Han, Seo, Ahn, Maeng, Lee, Nam (bib37) 2024; 239
Zhou, Guan, Li, Zhang (bib10) 2023; 184
Lam, Prakash (bib32) 2017; 108
Naphon, Wiriyasart, Arisariyawong, Nakharintr (bib34) 2019; 131
Klinkhamer, Iyer, Member, Etemadi, Balachandar, Barron (bib4) 2023; 13
Barewar, Joshi, Sharma, Kalos, Bakthavatchalam, Chougule, Habib, Saha (bib14) 2023; 39
Djordjević, Jordović-Pavlović, Ćojbašić, Galović, Popović, Nešić, Markushev (bib43) 2022; 54
Bijarchi, Eghtesad, Afshin, Shafii (bib24) 2019; 150
Goodro, Park, Ligrani, Fox, Moon (bib17) 2008; 51
Baz, Elshenawy, El-Agouz, El-Samadony, Marzouk (bib28) 2024; 196
Sola, Sevilla (bib42) 1997; 44
Streufert, Yan, Baygloo (bib47) 2012; vol. 7
Brakmann, Chen, Weigand, Crawford (bib41) 2016; 138
Mahmoudabadbozchelou, Eghtesad, Jamali, Afshin (bib35) 2020; 119
Forster, Weigand (bib1) 2021; 164
Lee, Ren, Haegele, Potts, Sik Jin, Ligrani, Fox, Moon (bib18) 2014; 136
Khan, Hamdan, Al-Omari, Elnajjar (bib2) 2023; 208
Byon (bib23) 2015; 84
Menter, Lechner, Matyushenko (bib39) 2021
Sharkey, Menter (bib40) 2019
Youn, Choi, Kim (bib19) 2021; 197
Yildizeli, Cadirci (bib21) 2020; 158
Choo, Kim (bib20) 2010; 53
Wang, Deng, Xu, He, Zhao, Zou, Liu, Yue (bib7) 2016; 59
Rao, Li, Liu, Yang (bib13) 2023; 101
Klinkhamer, Abishek, Iyer, Balachandar, Barron (bib3) 2022; 34
Nobari, Prodanovic, Militzer (bib5) 2016; 101
Forouzanmehr, Shariatmadar, Kowsary, Ashjaee (bib26) 2015; 137
Xi, Gao, Xu, Zhao, Ruan, Li (bib22) 2022; 9
Srinivasan, Shocker (bib45) 1973; 38
Luan, Rao, Yan (bib11) 2023; 201
Cui, Shi, Yu, Zhang, Liu, Liu (bib36) 2023; 227
San, Lai (bib31) 2001; 44
Hwang, Yoon (bib46) 1981
Yu, Zhu, Sun, Yuan, Ding (bib6) 2017; 115
Ricklick, Claretti, Kapat (bib27) 2010
Dai, fa Diao (bib8) 2022; 212
Altay, Selçuk, Abacı, Erdem, Dirim, Şentürk, Kaymak‐Ertekin (bib9) 2023; 22
Chang, Lee (bib12) 2023; 217
Husain, Kim, Kim (bib33) 2013; 49
Goodro (10.1016/j.ijthermalsci.2024.109035_bib17) 2008; 51
Forouzanmehr (10.1016/j.ijthermalsci.2024.109035_bib26) 2015; 137
Hwang (10.1016/j.ijthermalsci.2024.109035_bib46) 1981
Chang (10.1016/j.ijthermalsci.2024.109035_bib12) 2023; 217
Dai (10.1016/j.ijthermalsci.2024.109035_bib8) 2022; 212
Yildizeli (10.1016/j.ijthermalsci.2024.109035_bib21) 2020; 158
San (10.1016/j.ijthermalsci.2024.109035_bib31) 2001; 44
Klinkhamer (10.1016/j.ijthermalsci.2024.109035_bib4) 2023; 13
Naphon (10.1016/j.ijthermalsci.2024.109035_bib34) 2019; 131
Youn (10.1016/j.ijthermalsci.2024.109035_bib19) 2021; 197
Yang (10.1016/j.ijthermalsci.2024.109035_bib30) 2023; 187
Cui (10.1016/j.ijthermalsci.2024.109035_bib36) 2023; 227
Klinkhamer (10.1016/j.ijthermalsci.2024.109035_bib3) 2022; 34
Husain (10.1016/j.ijthermalsci.2024.109035_bib33) 2013; 49
Nobari (10.1016/j.ijthermalsci.2024.109035_bib5) 2016; 101
Menter (10.1016/j.ijthermalsci.2024.109035_bib39) 2021
Luan (10.1016/j.ijthermalsci.2024.109035_bib11) 2023; 201
Choo (10.1016/j.ijthermalsci.2024.109035_bib20) 2010; 53
Bijarchi (10.1016/j.ijthermalsci.2024.109035_bib24) 2019; 150
Sola (10.1016/j.ijthermalsci.2024.109035_bib42) 1997; 44
Zhou (10.1016/j.ijthermalsci.2024.109035_bib10) 2023; 184
Bijarchi (10.1016/j.ijthermalsci.2024.109035_bib25) 2018; 132
Hossain (10.1016/j.ijthermalsci.2024.109035_bib38) 2021; 143
Djordjević (10.1016/j.ijthermalsci.2024.109035_bib43) 2022; 54
Byon (10.1016/j.ijthermalsci.2024.109035_bib23) 2015; 84
Srinivasan (10.1016/j.ijthermalsci.2024.109035_bib45) 1973; 38
Barewar (10.1016/j.ijthermalsci.2024.109035_bib14) 2023; 39
Brakmann (10.1016/j.ijthermalsci.2024.109035_bib41) 2016; 138
Xi (10.1016/j.ijthermalsci.2024.109035_bib22) 2022; 9
Forster (10.1016/j.ijthermalsci.2024.109035_bib1) 2021; 164
Rao (10.1016/j.ijthermalsci.2024.109035_bib13) 2023; 101
Ekkad (10.1016/j.ijthermalsci.2024.109035_bib16) 2021; 143
Mahmoudabadbozchelou (10.1016/j.ijthermalsci.2024.109035_bib35) 2020; 119
Kim (10.1016/j.ijthermalsci.2024.109035_bib37) 2024; 239
Khan (10.1016/j.ijthermalsci.2024.109035_bib2) 2023; 208
Ricklick (10.1016/j.ijthermalsci.2024.109035_bib27) 2010
Lee (10.1016/j.ijthermalsci.2024.109035_bib18) 2014; 136
Lam (10.1016/j.ijthermalsci.2024.109035_bib32) 2017; 108
Wang (10.1016/j.ijthermalsci.2024.109035_bib7) 2016; 59
Altay (10.1016/j.ijthermalsci.2024.109035_bib9) 2023; 22
Baz (10.1016/j.ijthermalsci.2024.109035_bib28) 2024; 196
Sharkey (10.1016/j.ijthermalsci.2024.109035_bib40) 2019
Saltelli (10.1016/j.ijthermalsci.2024.109035_bib44) 2010; 181
Prevost (10.1016/j.ijthermalsci.2024.109035_bib15) 2022; 16
Streufert (10.1016/j.ijthermalsci.2024.109035_bib47) 2012; vol. 7
Yu (10.1016/j.ijthermalsci.2024.109035_bib6) 2017; 115
Zhou (10.1016/j.ijthermalsci.2024.109035_bib29) 2022; 179
References_xml – volume: 227
  year: 2023
  ident: bib36
  article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm
  publication-title: Appl. Therm. Eng.
– volume: 115
  start-page: 368
  year: 2017
  end-page: 378
  ident: bib6
  article-title: Heat transfer rate and uniformity of mist flow jet impingement for glass tempering
  publication-title: Int. J. Heat Mass Transf.
– start-page: 675
  year: 2010
  end-page: 684
  ident: bib27
  article-title: Channel height and jet spacing effect on heat transfer and uniformity coefficient on an inline row impingement Channel
  publication-title: Proc. ASME Turbo Expo 2010 Power Land, Sea Air
– volume: 16
  year: 2022
  ident: bib15
  article-title: Enhancing jet array heat transfer: review of geometric features of nozzle and target plates
  publication-title: Int. J. Thermofluids
– volume: 132
  start-page: 128
  year: 2018
  end-page: 139
  ident: bib25
  article-title: Inverse optimization design of an impinging co-axial jet in order to achieve heat flux uniformity over the target object
  publication-title: Appl. Therm. Eng.
– volume: 212
  year: 2022
  ident: bib8
  article-title: Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet
  publication-title: Appl. Therm. Eng.
– year: 1981
  ident: bib46
  article-title: Multiple Attribute Decision Making: Methods and Applications A State-Of-The-Art Survey
– volume: 187
  year: 2023
  ident: bib30
  article-title: Temperature uniformity characteristics of array jet impingement cooling with the maximum cross-flow scheme
  publication-title: Int. J. Therm. Sci.
– volume: 51
  start-page: 6243
  year: 2008
  end-page: 6253
  ident: bib17
  article-title: Effects of hole spacing on spatially-resolved jet array impingement heat transfer
  publication-title: Int. J. Heat Mass Transf.
– volume: 84
  start-page: 1056
  year: 2015
  end-page: 1060
  ident: bib23
  article-title: Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power
  publication-title: Int. J. Heat Mass Transf.
– volume: 138
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib41
  article-title: Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin Fins1
  publication-title: J. Turbomach.
– volume: 44
  start-page: 3997
  year: 2001
  end-page: 4007
  ident: bib31
  article-title: Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets
  publication-title: Int. J. Heat Mass Transf.
– volume: 217
  year: 2023
  ident: bib12
  article-title: Effect of grooved nozzle plate on aerothermal performance of rotating impingement-jet and pin-fin channel in axial-flow mode
  publication-title: Int. J. Heat Mass Transf.
– volume: 119
  year: 2020
  ident: bib35
  article-title: Entropy analysis and thermal optimization of nanofluid impinging jet using artificial neural network and genetic algorithm
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 38
  start-page: 337
  year: 1973
  end-page: 369
  ident: bib45
  article-title: Linear programming techniques for multidimensional analysis of preferences
  publication-title: Psychometrika
– volume: 108
  start-page: 880
  year: 2017
  end-page: 900
  ident: bib32
  article-title: A numerical investigation and design optimization of impingement cooling system with an array of air jets
  publication-title: Int. J. Heat Mass Transf.
– volume: 131
  start-page: 329
  year: 2019
  end-page: 340
  ident: bib34
  article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 181
  start-page: 259
  year: 2010
  end-page: 270
  ident: bib44
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput. Phys. Commun.
– volume: vol. 7
  start-page: 2201
  year: 2012
  end-page: 2209
  ident: bib47
  article-title: Jet-to-Plate distance effect on heat transfer from a flat plate to an impinging jet at various Reynolds numbers
  publication-title: Fluids Heat Transf. Parts A, B, C, D
– volume: 39
  year: 2023
  ident: bib14
  article-title: Optimization of jet impingement heat transfer: a review on advanced techniques and parameters
  publication-title: Therm. Sci. Eng. Prog.
– volume: 184
  year: 2023
  ident: bib10
  article-title: Numerical investigation on conjugate cooling performance of double swirl cooling at vane leading edge
  publication-title: Int. J. Therm. Sci.
– volume: 208
  year: 2023
  ident: bib2
  article-title: A comparison of oscillating sweeping jet and steady normal jet in cooling gas turbine leading edge: numerical analysis
  publication-title: Int. J. Heat Mass Transf.
– volume: 137
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib26
  article-title: Achieving heat flux uniformity using an optimal arrangement of impinging jet arrays
  publication-title: J. Heat Tran.
– volume: 197
  year: 2021
  ident: bib19
  article-title: Numerical investigation of jet array impingement cooling with effusion holes
  publication-title: Appl. Therm. Eng.
– volume: 101
  start-page: 1138
  year: 2016
  end-page: 1150
  ident: bib5
  article-title: Heat transfer of a stationary steel plate during water jet impingement cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 22
  start-page: 3084
  year: 2023
  end-page: 3104
  ident: bib9
  article-title: Recent progress in food processing applications of air impingement technology: a review
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 34
  year: 2022
  ident: bib3
  article-title: Characterization of a jet impingement heat sink for power electronics cooling
  publication-title: Therm. Sci. Eng. Prog.
– volume: 179
  year: 2022
  ident: bib29
  article-title: Numerical investigation on flow and heat transfer characteristics of single row jet impingement cooling with varying jet diameter
  publication-title: Int. J. Therm. Sci.
– volume: 239
  year: 2024
  ident: bib37
  article-title: Optimizing Energy-Efficient jet impingement cooling using an artificial neural network (ANN) surrogate model for high heat flux Semiconductors
  publication-title: Appl. Therm. Eng.
– volume: 164
  year: 2021
  ident: bib1
  article-title: Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade
  publication-title: Int. J. Therm. Sci.
– volume: 13
  start-page: 765
  year: 2023
  end-page: 787
  ident: bib4
  article-title: Jet impingement heat sinks with application toward power electronics cooling : a review
  publication-title: IEEE Trans. Components, Packag. Manuf. Technol.
– start-page: 1
  year: 2019
  end-page: 13
  ident: bib40
  article-title: A numerical investigation of the turbulent flow around a scale model JBC hull using the generalized k-ω (GEKO) turbulence model
  publication-title: 11th Int. Work. Sh. Mar. Hydrodyn.
– volume: 44
  start-page: 1464
  year: 1997
  end-page: 1468
  ident: bib42
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 54
  start-page: 501
  year: 2022
  ident: bib43
  article-title: Influence of data scaling and normalization on overall neural network performances in photoacoustics
  publication-title: Opt. Quant. Electron.
– volume: 101
  year: 2023
  ident: bib13
  article-title: Experimental and numerical studies on enhanced effusion cooling with shallowly dimpled film holes on double-wall structure surface
  publication-title: Int. J. Heat Fluid Flow
– volume: 143
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib16
  article-title: A modern review on jet impingement heat transfer methods
  publication-title: J. Heat Tran.
– volume: 143
  year: 2021
  ident: bib38
  article-title: Experimental investigation of innovative cooling schemes on an additively manufactured engine scale turbine nozzle guide vane
  publication-title: J. Turbomach.
– volume: 49
  start-page: 1613
  year: 2013
  end-page: 1624
  ident: bib33
  article-title: Performance analysis and design optimization of micro-jet impingement heat sink
  publication-title: Heat Mass Tran.
– volume: 53
  start-page: 320
  year: 2010
  end-page: 326
  ident: bib20
  article-title: Heat transfer characteristics of impinging air jets under a fixed pumping power condition
  publication-title: Int. J. Heat Mass Transf.
– volume: 196
  year: 2024
  ident: bib28
  article-title: Experimental study on air impinging jet for effective cooling of multiple protruding heat sources
  publication-title: Int. J. Therm. Sci.
– year: 2021
  ident: bib39
  article-title: Best Practice: Generalized K-ω (GEKO) Two-Equation Turbulence Modeling in Ansys CFD
– volume: 59
  start-page: 743
  year: 2016
  end-page: 749
  ident: bib7
  article-title: Optimization of air jet impingement drying of okara using response surface methodology
  publication-title: Food Control
– volume: 136
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib18
  article-title: Effects of jet-to-target plate distance and Reynolds number on jet array impingement heat transfer
  publication-title: J. Turbomach.
– volume: 150
  start-page: 781
  year: 2019
  end-page: 790
  ident: bib24
  article-title: Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet
  publication-title: Appl. Therm. Eng.
– volume: 201
  year: 2023
  ident: bib11
  article-title: Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes
  publication-title: Int. J. Heat Mass Transf.
– volume: 9
  start-page: 87
  year: 2022
  ident: bib22
  article-title: Numerical investigation and parameter sensitivity analysis on flow and heat transfer performance of jet array impingement cooling in a quasi-leading-edge channel
  publication-title: Aerospace
– volume: 158
  year: 2020
  ident: bib21
  article-title: Multi-objective optimization of multiple impinging jet system through genetic algorithm
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  start-page: 1464
  year: 1997
  ident: 10.1016/j.ijthermalsci.2024.109035_bib42
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.589532
– volume: 22
  start-page: 3084
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib9
  article-title: Recent progress in food processing applications of air impingement technology: a review
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.13175
– volume: 53
  start-page: 320
  year: 2010
  ident: 10.1016/j.ijthermalsci.2024.109035_bib20
  article-title: Heat transfer characteristics of impinging air jets under a fixed pumping power condition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.09.027
– volume: 187
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib30
  article-title: Temperature uniformity characteristics of array jet impingement cooling with the maximum cross-flow scheme
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108161
– year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109035_bib39
– volume: 197
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109035_bib19
  article-title: Numerical investigation of jet array impingement cooling with effusion holes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117347
– volume: 227
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib36
  article-title: Optimal parameter design of a slot jet impingement/microchannel heat sink base on multi-objective optimization algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120452
– volume: 239
  year: 2024
  ident: 10.1016/j.ijthermalsci.2024.109035_bib37
  article-title: Optimizing Energy-Efficient jet impingement cooling using an artificial neural network (ANN) surrogate model for high heat flux Semiconductors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.122101
– volume: 132
  start-page: 128
  year: 2018
  ident: 10.1016/j.ijthermalsci.2024.109035_bib25
  article-title: Inverse optimization design of an impinging co-axial jet in order to achieve heat flux uniformity over the target object
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.075
– volume: 119
  year: 2020
  ident: 10.1016/j.ijthermalsci.2024.109035_bib35
  article-title: Entropy analysis and thermal optimization of nanofluid impinging jet using artificial neural network and genetic algorithm
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2020.104978
– start-page: 1
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109035_bib40
  article-title: A numerical investigation of the turbulent flow around a scale model JBC hull using the generalized k-ω (GEKO) turbulence model
– volume: 51
  start-page: 6243
  year: 2008
  ident: 10.1016/j.ijthermalsci.2024.109035_bib17
  article-title: Effects of hole spacing on spatially-resolved jet array impingement heat transfer
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.05.004
– volume: 150
  start-page: 781
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109035_bib24
  article-title: Obtaining uniform cooling on a hot surface by a novel swinging slot impinging jet
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.037
– volume: 217
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib12
  article-title: Effect of grooved nozzle plate on aerothermal performance of rotating impingement-jet and pin-fin channel in axial-flow mode
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124664
– volume: 13
  start-page: 765
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib4
  article-title: Jet impingement heat sinks with application toward power electronics cooling : a review
  publication-title: IEEE Trans. Components, Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2023.3288612
– volume: 44
  start-page: 3997
  year: 2001
  ident: 10.1016/j.ijthermalsci.2024.109035_bib31
  article-title: Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00043-6
– volume: 138
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijthermalsci.2024.109035_bib41
  article-title: Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin Fins1
  publication-title: J. Turbomach.
  doi: 10.1115/1.4033670
– volume: 108
  start-page: 880
  year: 2017
  ident: 10.1016/j.ijthermalsci.2024.109035_bib32
  article-title: A numerical investigation and design optimization of impingement cooling system with an array of air jets
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.12.017
– volume: 115
  start-page: 368
  year: 2017
  ident: 10.1016/j.ijthermalsci.2024.109035_bib6
  article-title: Heat transfer rate and uniformity of mist flow jet impingement for glass tempering
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.08.065
– start-page: 675
  year: 2010
  ident: 10.1016/j.ijthermalsci.2024.109035_bib27
  article-title: Channel height and jet spacing effect on heat transfer and uniformity coefficient on an inline row impingement Channel
– volume: 101
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib13
  article-title: Experimental and numerical studies on enhanced effusion cooling with shallowly dimpled film holes on double-wall structure surface
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2023.109135
– volume: 16
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109035_bib15
  article-title: Enhancing jet array heat transfer: review of geometric features of nozzle and target plates
  publication-title: Int. J. Thermofluids
  doi: 10.1016/j.ijft.2022.100203
– volume: 184
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib10
  article-title: Numerical investigation on conjugate cooling performance of double swirl cooling at vane leading edge
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107907
– volume: 158
  year: 2020
  ident: 10.1016/j.ijthermalsci.2024.109035_bib21
  article-title: Multi-objective optimization of multiple impinging jet system through genetic algorithm
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119978
– volume: 131
  start-page: 329
  year: 2019
  ident: 10.1016/j.ijthermalsci.2024.109035_bib34
  article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.073
– volume: 59
  start-page: 743
  year: 2016
  ident: 10.1016/j.ijthermalsci.2024.109035_bib7
  article-title: Optimization of air jet impingement drying of okara using response surface methodology
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.06.047
– volume: 136
  start-page: 1
  year: 2014
  ident: 10.1016/j.ijthermalsci.2024.109035_bib18
  article-title: Effects of jet-to-target plate distance and Reynolds number on jet array impingement heat transfer
  publication-title: J. Turbomach.
  doi: 10.1115/1.4025228
– volume: 101
  start-page: 1138
  year: 2016
  ident: 10.1016/j.ijthermalsci.2024.109035_bib5
  article-title: Heat transfer of a stationary steel plate during water jet impingement cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.108
– volume: 212
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109035_bib8
  article-title: Numerical analysis of transient coupled heat and moisture transfer in textile drying with porous relative impact jet
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118613
– volume: 179
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109035_bib29
  article-title: Numerical investigation on flow and heat transfer characteristics of single row jet impingement cooling with varying jet diameter
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2022.107710
– volume: 49
  start-page: 1613
  year: 2013
  ident: 10.1016/j.ijthermalsci.2024.109035_bib33
  article-title: Performance analysis and design optimization of micro-jet impingement heat sink
  publication-title: Heat Mass Tran.
  doi: 10.1007/s00231-013-1202-3
– volume: 196
  year: 2024
  ident: 10.1016/j.ijthermalsci.2024.109035_bib28
  article-title: Experimental study on air impinging jet for effective cooling of multiple protruding heat sources
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2023.108707
– volume: 201
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib11
  article-title: Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123633
– volume: 84
  start-page: 1056
  year: 2015
  ident: 10.1016/j.ijthermalsci.2024.109035_bib23
  article-title: Heat transfer characteristics of aluminum foam heat sinks subject to an impinging jet under fixed pumping power
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.01.025
– volume: 9
  start-page: 87
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109035_bib22
  article-title: Numerical investigation and parameter sensitivity analysis on flow and heat transfer performance of jet array impingement cooling in a quasi-leading-edge channel
  publication-title: Aerospace
  doi: 10.3390/aerospace9020087
– volume: 143
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109035_bib38
  article-title: Experimental investigation of innovative cooling schemes on an additively manufactured engine scale turbine nozzle guide vane
  publication-title: J. Turbomach.
  doi: 10.1115/1.4049618
– year: 1981
  ident: 10.1016/j.ijthermalsci.2024.109035_bib46
– volume: vol. 7
  start-page: 2201
  year: 2012
  ident: 10.1016/j.ijthermalsci.2024.109035_bib47
  article-title: Jet-to-Plate distance effect on heat transfer from a flat plate to an impinging jet at various Reynolds numbers
– volume: 143
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109035_bib16
  article-title: A modern review on jet impingement heat transfer methods
  publication-title: J. Heat Tran.
  doi: 10.1115/1.4049496
– volume: 137
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijthermalsci.2024.109035_bib26
  article-title: Achieving heat flux uniformity using an optimal arrangement of impinging jet arrays
  publication-title: J. Heat Tran.
  doi: 10.1115/1.4029848
– volume: 181
  start-page: 259
  year: 2010
  ident: 10.1016/j.ijthermalsci.2024.109035_bib44
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.09.018
– volume: 38
  start-page: 337
  year: 1973
  ident: 10.1016/j.ijthermalsci.2024.109035_bib45
  article-title: Linear programming techniques for multidimensional analysis of preferences
  publication-title: Psychometrika
  doi: 10.1007/BF02291658
– volume: 208
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib2
  article-title: A comparison of oscillating sweeping jet and steady normal jet in cooling gas turbine leading edge: numerical analysis
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124041
– volume: 39
  year: 2023
  ident: 10.1016/j.ijthermalsci.2024.109035_bib14
  article-title: Optimization of jet impingement heat transfer: a review on advanced techniques and parameters
  publication-title: Therm. Sci. Eng. Prog.
– volume: 54
  start-page: 501
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109035_bib43
  article-title: Influence of data scaling and normalization on overall neural network performances in photoacoustics
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-022-03799-1
– volume: 164
  year: 2021
  ident: 10.1016/j.ijthermalsci.2024.109035_bib1
  article-title: Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.106862
– volume: 34
  year: 2022
  ident: 10.1016/j.ijthermalsci.2024.109035_bib3
  article-title: Characterization of a jet impingement heat sink for power electronics cooling
  publication-title: Therm. Sci. Eng. Prog.
SSID ssj0007909
Score 2.4735596
Snippet In the present paper, a comprehensive parametric study and multi-objective optimizations on jet array impingement cooling are conducted for mid-chord sections...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109035
SubjectTerms Compression power
Computational fluid dynamics (CFD)
Heat transfer uniformity
Jet arrays impingement
Parametric study
Title A comprehensive parametric study and multi-objective optimization of turbulent jet array impingement for uniform cooling of gas turbine blades with minimized compression power
URI https://dx.doi.org/10.1016/j.ijthermalsci.2024.109035
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1290-0729
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007909
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1290-0729
  databaseCode: .~1
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007909
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1290-0729
  databaseCode: AIKHN
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007909
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1290-0729
  databaseCode: ACRLP
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007909
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1290-0729
  databaseCode: AKRWK
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007909
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvcChagtVoQXNgWvY7Nr58IHDCoG2RXABJG6RPyaQFcmult1DL_1L_MXOOAksUg9IPSbyJJbHmnm23rwR4ijTXim0PkqNTiLFPJoc0zhCxNKkuS1NqIW5vEont-rXXXK3IU77WhimVXaxv43pIVp3bwbdag7mVTW45hsU1r1mFuQwCXXkSmXcxeD4zyvNI9OB5sGDIx7dC48Gjlc1ZZRVk6NdRWfFkWJ1pTi0fvtHklpLPOefxMcOMcK4ndRnsYHNF7G9piO4I57HwNTwBT60dHRgQe-ae2U5CPqxYBoPgTsYzey0jXEwo2hRd2WYMCuBko9dcRKCKS7BLBbmN1Q111OFK0QgeAurhiu5avodN_u5Z7N78xRMaTpgH43HJ-DLXWDREvo8-m5uTLdtYM5d2XbF7fnZzekk6joxRI4A1zIaYabzNFVDV3qC5HZEZ880cQT2CB1gKU1iUWbemNwZ1DlhwNjaVPsyN3HiYpRfxWYza_CbgNJgEktHYSbOFaqhdlJ6baTKjLRDjXtC90tfuE6mnLtlPBY9H21arLutYLcVrdv2hHyxnbdiHe-yOuk9XLzZegVllXfY7_-n_XexxU8tB_iH2FwuVnhASGdpD8NWPhQfxj8vJld_AdHIBkc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCdGgzBGnTIq-2N3RVLJvUg0OHwGjgtk6WJkA2gY9TIiOSDcceuvQv5S_2jpJaF-gQIKvEkwgecfeR-O47IT5l2iuF1kep0UmkmEeTYxpHiFiaNLelCbUwF5fp5Fp9u0lutsS4r4VhWmUX-9uYHqJ192TQreZgUVWDH3yDwrrXzIIcJlxH_kIlo4xPYKe__vI8Mh14Hjw64uG98mggeVUzhlk1edpVdFgcKZZXikPvt_9kqY3Mc74ndjvICGftrF6LLWzeiJ0NIcF98XgGzA1f4l3LRwdW9K65WZaDICALpvEQyIPR3M7aIAdzChd1V4cJ8xIo-9g1ZyGY4QrMcml-QlVzQVW4QwTCt7BuuJSrpt9xt59bNrs1D8GUpgP23nh8AL7dBVYtoc-j7-bGfNsGFtyW7a24Pv9yNZ5EXSuGyBHiWkUjzHSepmroSk-Y3I7o8JkmjtAewQMspUksyswbkzuDOicQGFubal_mJk5cjPKd2G7mDR4IKA0msXQUZ-JcoRpqJ6XXRqrMSDvUeCh0v_SF63TKuV3GfdET0mbFptsKdlvRuu1QyD-2i1at40lWn3sPF__svYLSyhPsj55p_1G8nFxdTIvp18vvx-IVv2kJwSdie7Vc43uCPSv7IWzr38gyB9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+parametric+study+and+multi-objective+optimization+of+turbulent+jet+array+impingement+for+uniform+cooling+of+gas+turbine+blades+with+minimized+compression+power&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Bahman+Jahromi%2C+Hooman&rft.au=Kowsary%2C+Farshad&rft.date=2024-07-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1290-0729&rft.volume=201&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2024.109035&rft.externalDocID=S1290072924001571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon