Pair Then Relation: Pair-Net for Panoptic Scene Graph Generation

Panoptic Scene Graph (PSG) is a challenging task in Scene Graph Generation (SGG) that aims to create a more comprehensive scene graph representation using panoptic segmentation instead of boxes. Compared to SGG, PSG has several challenging problems: pixel-level segment outputs and full relationship...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 12; pp. 10452 - 10465
Main Authors Wang, Jinghao, Wen, Zhengyu, Li, Xiangtai, Guo, Zujin, Yang, Jingkang, Liu, Ziwei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2024.3442301

Cover

More Information
Summary:Panoptic Scene Graph (PSG) is a challenging task in Scene Graph Generation (SGG) that aims to create a more comprehensive scene graph representation using panoptic segmentation instead of boxes. Compared to SGG, PSG has several challenging problems: pixel-level segment outputs and full relationship exploration (It also considers thing and stuff relation). Thus, current PSG methods have limited performance, which hinders downstream tasks or applications. This work aims to design a novel and strong baseline for PSG. To achieve that, we first conduct an in-depth analysis to identify the bottleneck of the current PSG models, finding that inter-object pair-wise recall is a crucial factor that was ignored by previous PSG methods. Based on this and the recent query-based frameworks, we present a novel framework: Pair then Relation (Pair-Net) , which uses a Pair Proposal Network (PPN) to learn and filter sparse pair-wise relationships between subjects and objects. Moreover, we also observed the sparse nature of object pairs for both. Motivated by this, we design a lightweight Matrix Learner within the PPN, which directly learns pair-wised relationships for pair proposal generation. Through extensive ablation and analysis, our approach significantly improves upon leveraging the segmenter solid baseline. Notably, our method achieves over 10% absolute gains compared to our baseline, PSGFormer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2024.3442301