The Clinicians’ Guide to Large Language Models: A General Perspective With a Focus on Hallucinations
Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, i...
Saved in:
Published in | Interactive journal of medical research Vol. 14; p. e59823 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
28.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1929-073X 1929-073X |
DOI | 10.2196/59823 |
Cover
Abstract | Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, it is therefore essential that clinicians be aware of the basic risks associated with the use of these models. Namely, a significant risk associated with the use of LLMs is their potential to create hallucinations. Hallucinations (false information) generated by LLMs arise from a multitude of causes, including both factors related to the training dataset as well as their auto-regressive nature. The implications for clinical practice range from the generation of inaccurate diagnostic and therapeutic information to the reinforcement of flawed diagnostic reasoning pathways, as well as a lack of reliability if not used properly. To reduce this risk, we developed a general technical framework for approaching LLMs in general clinical practice, as well as for implementation on a larger institutional scale. |
---|---|
AbstractList | Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, it is therefore essential that clinicians be aware of the basic risks associated with the use of these models. Namely, a significant risk associated with the use of LLMs is their potential to create hallucinations. Hallucinations (false information) generated by LLMs arise from a multitude of causes, including both factors related to the training dataset as well as their auto-regressive nature. The implications for clinical practice range from the generation of inaccurate diagnostic and therapeutic information to the reinforcement of flawed diagnostic reasoning pathways, as well as a lack of reliability if not used properly. To reduce this risk, we developed a general technical framework for approaching LLMs in general clinical practice, as well as for implementation on a larger institutional scale. Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, it is therefore essential that clinicians be aware of the basic risks associated with the use of these models. Namely, a significant risk associated with the use of LLMs is their potential to create hallucinations. Hallucinations (false information) generated by LLMs arise from a multitude of causes, including both factors related to the training dataset as well as their auto-regressive nature. The implications for clinical practice range from the generation of inaccurate diagnostic and therapeutic information to the reinforcement of flawed diagnostic reasoning pathways, as well as a lack of reliability if not used properly. To reduce this risk, we developed a general technical framework for approaching LLMs in general clinical practice, as well as for implementation on a larger institutional scale.Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine. Considering the incredible potential of LLMs in medicine and the interest of many health care stakeholders for implementation into routine practice, it is therefore essential that clinicians be aware of the basic risks associated with the use of these models. Namely, a significant risk associated with the use of LLMs is their potential to create hallucinations. Hallucinations (false information) generated by LLMs arise from a multitude of causes, including both factors related to the training dataset as well as their auto-regressive nature. The implications for clinical practice range from the generation of inaccurate diagnostic and therapeutic information to the reinforcement of flawed diagnostic reasoning pathways, as well as a lack of reliability if not used properly. To reduce this risk, we developed a general technical framework for approaching LLMs in general clinical practice, as well as for implementation on a larger institutional scale. |
Author | Roustan, Dimitri Bastardot, François |
AuthorAffiliation | 2 Medical Directorate Lausanne University Hospital Lausanne Switzerland 1 Emergency Medicine Department Cliniques Universitaires Saint-Luc Brussels Belgium |
AuthorAffiliation_xml | – name: 2 Medical Directorate Lausanne University Hospital Lausanne Switzerland – name: 1 Emergency Medicine Department Cliniques Universitaires Saint-Luc Brussels Belgium |
Author_xml | – sequence: 1 givenname: Dimitri orcidid: 0009-0008-2650-4035 surname: Roustan fullname: Roustan, Dimitri – sequence: 2 givenname: François orcidid: 0000-0003-4060-0353 surname: Bastardot fullname: Bastardot, François |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39874574$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkstuUzEQhi3UipaSV0DeILEJ-HJuZoOqqE0rpYJFUbuz5tjjxNWJHexzKrHjNXg9ngTTlKr1Yjzy_Pr-sWbekIMQAxIy4-yj4Kr5VKtOyFfkmCuh5qyVtwfP8iMyy_mOldPxppP8NTmSqmuruq2OibveIF0MPnjjIeQ_v37T5eQt0jHSFaQ1lhjWE5TkKloc8md6SpcYMMFAv2HKOzSjv0d648cNBXoezZRpDPQChmEyPsDoY8hvyaGDIePs8T4h38_PrhcX89XX5eXidDU3UlTjnPcosbEtw46ZXoCQshOmFtJVxjnD6h6NZTVrnDECXeNUr7C3WFfQcN4ZeUIu91wb4U7vkt9C-qkjeP3wENNaQxq9GVBXTnFhrQQQrDKqAeCt6FuJvGecARbWlz1rN_VbtAbDWD79AvqyEvxGr-O9Lp3wWqiqED48ElL8MWEe9dZng8MAAeOUteQNU7IugyrSd8_Nnlz-T6oI3u8FJsWcE7onCWf63xLohyWQfwFePqRq |
Cites_doi | 10.1038/s41586-024-07421-0 10.48550/ARXIV.2305.18153 10.1148/radiol.230582 10.48550/arXiv.1706.03762 10.1056/NEJMsr2214184 10.1016/S2589-7500(23)00083-3 10.1093/nsr/nwae403 10.1080/08820538.2023.2209166 10.1001/jamanetworkopen.2023.25000 10.48550/arXiv.2005.11401 10.1016/j.psychres.2023.115334 10.18653/v1/2024.emnlp-main.418 10.1001/jamainternmed.2023.1838 10.18653/v1/2022.naacl-main.387 10.48550/ARXIV.2306.06085 10.1016/S2589-7500(23)00048-1 10.1016/S2589-7500(23)00021-3 10.1145/3571730 10.1371/journal.pdig.0000198 10.1016/j.wneu.2023.08.088 10.1016/j.amjoto.2023.103980 10.48550/arXiv.2310.00754 10.18653/v1/2023.findings-emnlp.68 |
ContentType | Journal Article |
Copyright | Dimitri Roustan, François Bastardot. Originally published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 28.01.2025. Dimitri Roustan, François Bastardot. Originally published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 28.01.2025. 2025 |
Copyright_xml | – notice: Dimitri Roustan, François Bastardot. Originally published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 28.01.2025. – notice: Dimitri Roustan, François Bastardot. Originally published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 28.01.2025. 2025 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.2196/59823 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1929-073X |
ExternalDocumentID | oai_doaj_org_article_4f912dd3aa204c96aa172b73e1b010ae PMC11815294 39874574 10_2196_59823 |
Genre | Journal Article |
GroupedDBID | AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c324t-1be3e6d70e80cb2a23382c523f4cffc05becd0506fcc2ef6f9b9ebde54a6118c3 |
IEDL.DBID | M48 |
ISSN | 1929-073X |
IngestDate | Wed Aug 27 01:29:58 EDT 2025 Thu Aug 21 18:29:22 EDT 2025 Fri Jul 11 00:14:21 EDT 2025 Sat Feb 15 01:21:26 EST 2025 Tue Jul 01 01:37:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | clinical informatics decision electronic data system AI decision support LLM large language model false information artificial intelligence medical informatics decision support techniques artificial intelligence tool decision-making computer assisted technical framework hallucinations |
Language | English |
License | Dimitri Roustan, François Bastardot. Originally published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 28.01.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Interactive Journal of Medical Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.i-jmr.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-1be3e6d70e80cb2a23382c523f4cffc05becd0506fcc2ef6f9b9ebde54a6118c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4060-0353 0009-0008-2650-4035 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/59823 |
PMID | 39874574 |
PQID | 3160935929 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4f912dd3aa204c96aa172b73e1b010ae pubmedcentral_primary_oai_pubmedcentral_nih_gov_11815294 proquest_miscellaneous_3160935929 pubmed_primary_39874574 crossref_primary_10_2196_59823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250128 |
PublicationDateYYYYMMDD | 2025-01-28 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250128 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto, Canada |
PublicationTitle | Interactive journal of medical research |
PublicationTitleAlternate | Interact J Med Res |
PublicationYear | 2025 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref13 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref22 doi: 10.1038/s41586-024-07421-0 – ident: ref10 doi: 10.48550/ARXIV.2305.18153 – ident: ref3 doi: 10.1148/radiol.230582 – ident: ref1 doi: 10.48550/arXiv.1706.03762 – ident: ref14 doi: 10.1056/NEJMsr2214184 – ident: ref2 doi: 10.1016/S2589-7500(23)00083-3 – ident: ref21 doi: 10.1093/nsr/nwae403 – ident: ref13 doi: 10.1080/08820538.2023.2209166 – ident: ref15 doi: 10.1001/jamanetworkopen.2023.25000 – ident: ref24 doi: 10.48550/arXiv.2005.11401 – ident: ref17 doi: 10.1016/j.psychres.2023.115334 – ident: ref20 doi: 10.18653/v1/2024.emnlp-main.418 – ident: ref5 doi: 10.1001/jamainternmed.2023.1838 – ident: ref7 doi: 10.18653/v1/2022.naacl-main.387 – ident: ref11 doi: 10.48550/ARXIV.2306.06085 – ident: ref4 doi: 10.1016/S2589-7500(23)00048-1 – ident: ref12 doi: 10.1016/S2589-7500(23)00021-3 – ident: ref19 – ident: ref8 doi: 10.1145/3571730 – ident: ref6 doi: 10.1371/journal.pdig.0000198 – ident: ref16 doi: 10.1016/j.wneu.2023.08.088 – ident: ref18 doi: 10.1016/j.amjoto.2023.103980 – ident: ref23 doi: 10.48550/arXiv.2310.00754 – ident: ref9 doi: 10.18653/v1/2023.findings-emnlp.68 |
SSID | ssj0000816831 |
Score | 2.341434 |
Snippet | Large language models (LLMs) are artificial intelligence tools that have the prospect of profoundly changing how we practice all aspects of medicine.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e59823 |
SubjectTerms | Viewpoint |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hDqgSQpTyCLTIlbhGJLbjONyWqttV1SIOrOAW-SlWWiWom9z7N_h7_BLGSVh2K6ReuOQQH2zNN_I8_Q3AmZFKWpebmGWGxdxLH6vU2tibkNjXVkjddfleicmU_7zL7lZGfYWesJ4euBfcOfdFSq1lStGEm0IohSZX58ylGkMJ5cLti2ZsJZjq7uAwToKlW7Adep1Ry84DUR1bMz4dR_9bjuW__ZErBme8CzuDp0hG_Qk_woar9mDr91AL_wQeESY9rSdCvHj6-0h-tDPrSFOTX6G_G799LpKEgWfzxQUZkYFlmly_vrEkt7Pmnigyrk27IHVFJmo-b3GPPpe3D9Px95tvk3iYmhAbdI6aONWOOWHzxMnEaKooBqHUYLzpufEIQYao2SRLhDeGOi98oQunrcu4EhhtGHYAm1VduSMgeeY01xyvQ865TVVhLBUqcUZKXmhqIjh9EWf50JNjlBhUBHmXnbwjuAxCXi4GLuvuByJcDgiX_0M4gq8vEJWo-6GgoSpXt4uSpSLUcdHDi-Cwh2y5FSsCkX_OI5BrYK6dZX2lmt13_NrhLW5GC378Hqc_gQ80jAxO0pjKz7DZ_GndF_RjGn3aqewzHKP0xQ priority: 102 providerName: Directory of Open Access Journals |
Title | The Clinicians’ Guide to Large Language Models: A General Perspective With a Focus on Hallucinations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39874574 https://www.proquest.com/docview/3160935929 https://pubmed.ncbi.nlm.nih.gov/PMC11815294 https://doaj.org/article/4f912dd3aa204c96aa172b73e1b010ae |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1929-073X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816831 issn: 1929-073X databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1929-073X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816831 issn: 1929-073X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1929-073X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816831 issn: 1929-073X databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1929-073X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816831 issn: 1929-073X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1929-073X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816831 issn: 1929-073X databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1929-073X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000816831 issn: 1929-073X databaseCode: M48 dateStart: 20120401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qhSKI-G20PVYQfYomu5svoUgrnodY8cHDewv7FXtwJO0lAf3vndnkqpE--JKHLGTDzOzuzM7M7wfwwuQqty4zoUiMCGWVV6GKrQ0rQxf72qa59lW-X9LFUn5aJas92LUrjgJsrw3tiE9qud28_nn56x0u-GMqY0YDekMYdOLlxWVIXFKUcx2JNW7ATTyfONn62ej0-_2ZqCY8USF6N9TBI1YHcHvysckh5bH8r3NA_62j_Otgmt-FO6NHyU4GE7gHe66-DwdnY878AVi0BDbAf6IptK_Yx35tHesa9pmqwPE53FgyokXbtG_ZCRuxqNnXP52Y7Pu6O2eKzRvTt6yp2UJtNj3OMNz4PYTl_MO394tw5FYIDbpQXRhrJ1xqs8jlkdFccQxVucGotJKmQkUlqFsbJVFaGcNdlVaFLpy2LpEqxZjEiEewXze1ewIsS5yWWuKmKaW0sSqM5amKnMlzWWhuApjthFleDBAaJYYeJO3SSzuAUxLx1SAhXvsXzfZHOS6gUlZFzK0VSvFImiJVCl0vnQkXawwplQvg-U5BJa4QSnuo2jV9W4o4pWwv6jqAx4PCrqYSBcH9ZzKAfKLKyb9MR-r1uUfhpo7dhBfy6X9M_AxuceINjuKQ54ew3217d4TOTKdn_hJg5i30N47N9y4 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Clinicians%27+Guide+to+Large+Language+Models%3A+A+General+Perspective+With+a+Focus+on+Hallucinations&rft.jtitle=Interactive+journal+of+medical+research&rft.au=Roustan%2C+Dimitri&rft.au=Bastardot%2C+Fran%C3%A7ois&rft.date=2025-01-28&rft.issn=1929-073X&rft.eissn=1929-073X&rft.volume=14&rft.spage=e59823&rft_id=info:doi/10.2196%2F59823&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1929-073X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1929-073X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1929-073X&client=summon |