Diastereoselective synthesis of cyclic tetrapeptide pseudoxylallemycin A illuminates the impact of base during macrolactamization

Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven ch...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 21; no. 5; pp. 156 - 169
Main Authors Fumo, Vincent M, Roberts, R. Charlie, Zhang, Jieyu, O'Reilly, Matthew C
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.02.2023
Subjects
Online AccessGet full text
ISSN1477-0520
1477-0539
1477-0539
DOI10.1039/d2ob02126a

Cover

Abstract Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays. Amine bases go beyond their typical proton shuttle role in the macrolactamization of pseudoxylallemycin, as we diastereoselectively synthesize the natural product and analogues thereof to explore their characterization and biological activity.
AbstractList Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays. Amine bases go beyond their typical proton shuttle role in the macrolactamization of pseudoxylallemycin, as we diastereoselectively synthesize the natural product and analogues thereof to explore their characterization and biological activity.
Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays.
Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays.Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria. Pseudoxylallemycins, cyclic tetrapeptide (CTP) natural products, have exhibited modest antibiotic activity, but their synthesis has proven challenging. Inherent ring strain in CTPs decreases the rate of cyclization in lieu of polymerization and racemization pathways, which has resulted in previous syntheses describing mixtures of diastereomers containing predominantly an undesired epimer. We have optimized the cyclization step of pseudoxylallemycin A to favor production of the natural diastereomer; notably, variation of the base, temperature, and solvent with peptide coupling reagent propylphosphonic anhydride (T3P) afforded exquisite selectivity for the natural product in as high as 97 : 3 DR, and our conditions can provide the natural product in up to 32% overall yield through 8 steps. Employing weaker bases than those typically used in peptide coupling reactions led to the greatest improvement in diastereoselectivity, and these studies demonstrated that the identity of the amine base has enormous impact on the rate of C-terminal epimerization when T3P is used, a variable usually considered of lesser consequence when combined with typical amide coupling reagents. Toward fully characterizing pseudoxylallemycin stereoisomers, variable temperature NMR was described as a tool to more clearly analyze CTPs that exhibit multiple conformational states. These synthetic and spectroscopic insights were applied toward synthesizing several natural product analogues, and their antibacterial activity was examined using microdilution assays.
Author Zhang, Jieyu
Fumo, Vincent M
O'Reilly, Matthew C
Roberts, R. Charlie
AuthorAffiliation Department of Chemistry
Villanova University
AuthorAffiliation_xml – sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Villanova University
Author_xml – sequence: 1
  givenname: Vincent M
  surname: Fumo
  fullname: Fumo, Vincent M
– sequence: 2
  givenname: R. Charlie
  surname: Roberts
  fullname: Roberts, R. Charlie
– sequence: 3
  givenname: Jieyu
  surname: Zhang
  fullname: Zhang, Jieyu
– sequence: 4
  givenname: Matthew C
  surname: O'Reilly
  fullname: O'Reilly, Matthew C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36628602$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1TAQhS1URB-wYQ-yxAYh3eLYjpMsLy2USpW6gXXk2BNw5djB41SEHf8ct7cPqWI1I_k7x54zPiR7IQYg5HXFjismuo-Wx4Hxiiv9jBxUsmk2rBbd3kPP2T45RLxirOoaJV-QfaEUbxXjB-TvqdOYIUFE8GCyuwaKa8g_AR3SOFKzGu8MzZCTnmHOzgKdERYbf69eew_TalygW-q8XyYXdAakRU7dNGuTbywGjUDtklz4QSdtUvTlQE_uj84uhpfk-ag9wqu7ekS-f_n87eTr5uLy7Pxke7ExgstqA2poamalGVTdKV16wYfa6rFpoe6kNVbXDBhXI-ej4ba1sgXRlsq1lHIQR-T9zndO8dcCmPvJoQHvdYC4YM9LNFKKplMFffcEvYpLCuV1hWoq3vBye6He3lHLMIHt5-Qmndb-PtwCsB1QRkZMMPbG5duZS5bO9xXrb_bXn_LLT7f72xbJhyeSe9f_wm92cELzwD1-BvEP2KWm4Q
CitedBy_id crossref_primary_10_1002_cmdc_202300128
Cites_doi 10.1111/j.1399-3011.1997.tb01122.x
10.1021/jm9904598
10.1002/anie.201304773
10.1038/s41598-018-37186-2
10.1021/jacs.1c05922
10.1016/j.jhin.2010.09.021
10.1002/anie.200805900
10.4155/fmc.12.75
10.3389/fpubh.2019.00151
10.1128/AAC.21.2.310
10.1021/acs.orglett.6b01437
10.1021/acs.orglett.5b03553
10.1021/acs.chemrev.8b00657
10.1021/np3000987
10.1021/acs.jnatprod.7b00341
10.1021/ja809508f
10.1128/AAC.21.2.299
10.1039/C9OB00227H
10.1002/9780470588888
10.2165/11317030-000000000-00000
10.1002/1099-1387(200011)6:11<560::AID-PSC275>3.0.CO;2-I
10.1021/jo016088w
10.1074/jbc.274.1.29
10.1073/pnas.1812779115
10.1093/toxsci/kfp097
10.1016/0040-4039(94)85198-0
10.1016/j.ddtec.2011.07.005
10.1021/ol053095o
10.1021/cr100048w
10.1021/acsomega.2c05071
10.1002/chem.201705919
10.1002/cbic.201800503
10.1002/chem.200900615
10.1021/ja00805a012
10.1002/med.21639
10.1021/bi992408i
10.1021/acsmedchemlett.1c00251
10.1073/pnas.1525143113
10.1021/ja00722a071
10.1021/acs.chemrev.8b00737
10.1021/cr950005s
10.1529/biophysj.108.137471
10.1039/C9MD00050J
10.1016/0040-4020(67)80037-1
10.1021/ol034907o
10.1111/j.1574-6968.1987.tb02533.x
10.1128/AAC.43.6.1340
10.1021/cr040669e
10.1016/j.tetlet.2018.06.028
10.1055/s-0037-1611691
10.1002/ejoc.201601016
10.1007/s00706-008-0052-z
10.1111/j.1574-6968.2007.00640.x
10.1038/nrd2201
10.1021/np0501536
10.1021/ja00063a082
10.2165/00003495-200464020-00004
10.1038/nrd2590
10.1021/ol101018w
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
DOI 10.1039/d2ob02126a
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 169
ExternalDocumentID 36628602
10_1039_D2OB02126A
d2ob02126a
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  grantid: CHE-1827930
– fundername: NIGMS NIH HHS
  grantid: 1R15GM140412-01
– fundername: NIGMS NIH HHS
  grantid: R15 GM140412
– fundername: National Science Foundation
  grantid: CHE-2018399
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
VH6
VQA
WH7
XSW
YNT
YZZ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3241-e6b750d4cb6596a75032b5daf78e594dcda50e026f22fc2d8d48e38d8d2a444b3
ISSN 1477-0520
1477-0539
IngestDate Fri Jul 11 10:30:53 EDT 2025
Mon Jun 30 12:02:51 EDT 2025
Mon Jul 21 06:01:12 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Tue Jul 01 01:52:25 EDT 2025
Tue Dec 17 20:58:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3241-e6b750d4cb6596a75032b5daf78e594dcda50e026f22fc2d8d48e38d8d2a444b3
Notes https://doi.org/10.1039/d2ob02126a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9175-4179
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11311250
PMID 36628602
PQID 2771272503
PQPubID 2047497
PageCount 14
ParticipantIDs pubmed_primary_36628602
proquest_miscellaneous_2764443796
proquest_journals_2771272503
crossref_citationtrail_10_1039_D2OB02126A
crossref_primary_10_1039_D2OB02126A
rsc_primary_d2ob02126a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References El-Faham (D2OB02126A/cit32/1) 2009; 15
Karaiskos (D2OB02126A/cit14/1) 2019; 7
Engler (D2OB02126A/cit11/1) 1973; 95
Tyndall (D2OB02126A/cit6/1) 2005; 105
Schmidt (D2OB02126A/cit24/1) 1997; 49
Renau (D2OB02126A/cit59/1) 1999; 42
Huber (D2OB02126A/cit10/1) 2018; 24
Carpino (D2OB02126A/cit42/1) 1993; 115
Ellison (D2OB02126A/cit58/1) 2007; 269
Guo (D2OB02126A/cit19/1) 2018; 19
Goodman (D2OB02126A/cit39/1) 1967; 23
Shinde (D2OB02126A/cit37/1) 2015; 7
Wu (D2OB02126A/cit52/1) 1999; 274
Humphrey (D2OB02126A/cit7/1) 1997; 97
Singh (D2OB02126A/cit46/1) 2002; 67
Chow (D2OB02126A/cit1/1) 2019; 119
Boyer (D2OB02126A/cit48/1) 2022; 7
Wang (D2OB02126A/cit44/1) 2021; 143
Cameron (D2OB02126A/cit30/1) 2019; 17
Oren (D2OB02126A/cit8/1) 2000; 39
Carpino (D2OB02126A/cit43/1) 1994; 35
Fairweather (D2OB02126A/cit27/1) 2010; 12
Pérez-Victoria (D2OB02126A/cit38/1) 2012; 75
Thorstholm (D2OB02126A/cit5/1) 2012; 9
Wong (D2OB02126A/cit25/1) 2013; 52
Silvestri (D2OB02126A/cit50/1) 2021; 12
Driggers (D2OB02126A/cit9/1) 2008; 7
Payne (D2OB02126A/cit13/1) 2007; 6
Li (D2OB02126A/cit34/1) 2017; 80
Liu (D2OB02126A/cit20/1) 2019; 30
Almeida (D2OB02126A/cit33/1) 2016; 18
Kropinski (D2OB02126A/cit55/1) 1982; 21
Gunjal (D2OB02126A/cit29/1) 2018; 59
Riehl (D2OB02126A/cit49/1) 2010
Bock (D2OB02126A/cit28/1) 2006; 8
Davison (D2OB02126A/cit21/1) 2019; 10
El-Faham (D2OB02126A/cit41/1) 2011; 111
Heesterbeek (D2OB02126A/cit15/1) 2019; 9
El Haddadi (D2OB02126A/cit23/1) 2000; 6
May (D2OB02126A/cit16/1) 2018; 115
Montero (D2OB02126A/cit45/1) 2009; 131
Li (D2OB02126A/cit17/1) 2004; 64
Zhang (D2OB02126A/cit22/1) 2017; 2017
Lang (D2OB02126A/cit36/1) 2005; 68
Sarojini (D2OB02126A/cit3/1) 2019; 119
Meutermans (D2OB02126A/cit26/1) 2003; 5
Smith (D2OB02126A/cit51/1) 2009; 110
Roxin (D2OB02126A/cit4/1) 2012; 4
Brimble (D2OB02126A/cit31/1) 2020; 31
Jelokhani-Niaraki (D2OB02126A/cit53/1) 2008; 95
Guo (D2OB02126A/cit12/1) 2016; 18
Jing (D2OB02126A/cit2/1) 2020; 40
Li (D2OB02126A/cit18/1) 2009; 69
Dahiya (D2OB02126A/cit35/1) 2009; 140
Lomovskaya (D2OB02126A/cit60/1) 1999; 43
Angus (D2OB02126A/cit54/1) 1982; 21
Kinana (D2OB02126A/cit61/1) 2016; 113
Angus (D2OB02126A/cit56/1) 1987; 48
Kemp (D2OB02126A/cit40/1) 1970; 92
Horne (D2OB02126A/cit47/1) 2009; 48
Clayborn (D2OB02126A/cit57/1) 2011; 77
References_xml – issn: 2010
  publication-title: Mirror-Image Asymmetry
  doi: Riehl
– volume: 49
  start-page: 67
  year: 1997
  ident: D2OB02126A/cit24/1
  publication-title: J. Pept. Res.
  doi: 10.1111/j.1399-3011.1997.tb01122.x
– volume: 42
  start-page: 4928
  year: 1999
  ident: D2OB02126A/cit59/1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm9904598
– volume: 52
  start-page: 10212
  year: 2013
  ident: D2OB02126A/cit25/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201304773
– volume: 9
  start-page: 1
  year: 2019
  ident: D2OB02126A/cit15/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 143
  start-page: 12784
  year: 2021
  ident: D2OB02126A/cit44/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05922
– volume: 77
  start-page: 129
  year: 2011
  ident: D2OB02126A/cit57/1
  publication-title: J. Hosp. Infect.
  doi: 10.1016/j.jhin.2010.09.021
– volume: 48
  start-page: 4718
  year: 2009
  ident: D2OB02126A/cit47/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200805900
– volume: 4
  start-page: 1601
  year: 2012
  ident: D2OB02126A/cit4/1
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.12.75
– volume: 7
  start-page: 1
  year: 2019
  ident: D2OB02126A/cit14/1
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2019.00151
– volume: 21
  start-page: 310
  year: 1982
  ident: D2OB02126A/cit55/1
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.21.2.310
– volume: 18
  start-page: 3338
  year: 2016
  ident: D2OB02126A/cit12/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b01437
– volume: 18
  start-page: 528
  year: 2016
  ident: D2OB02126A/cit33/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b03553
– volume: 119
  start-page: 9971
  year: 2019
  ident: D2OB02126A/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00657
– volume: 75
  start-page: 1210
  year: 2012
  ident: D2OB02126A/cit38/1
  publication-title: J. Nat. Prod.
  doi: 10.1021/np3000987
– volume: 80
  start-page: 2101
  year: 2017
  ident: D2OB02126A/cit34/1
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.7b00341
– volume: 131
  start-page: 3033
  year: 2009
  ident: D2OB02126A/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809508f
– volume: 31
  start-page: 6
  year: 2020
  ident: D2OB02126A/cit31/1
  publication-title: Synlett
– volume: 21
  start-page: 299
  year: 1982
  ident: D2OB02126A/cit54/1
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.21.2.299
– volume: 17
  start-page: 3902
  year: 2019
  ident: D2OB02126A/cit30/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00227H
– volume-title: Mirror-Image Asymmetry
  year: 2010
  ident: D2OB02126A/cit49/1
  doi: 10.1002/9780470588888
– volume: 69
  start-page: 1555
  year: 2009
  ident: D2OB02126A/cit18/1
  publication-title: Drugs
  doi: 10.2165/11317030-000000000-00000
– volume: 6
  start-page: 560
  year: 2000
  ident: D2OB02126A/cit23/1
  publication-title: J. Pept. Sci.
  doi: 10.1002/1099-1387(200011)6:11<560::AID-PSC275>3.0.CO;2-I
– volume: 67
  start-page: 815
  year: 2002
  ident: D2OB02126A/cit46/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo016088w
– volume: 274
  start-page: 29
  year: 1999
  ident: D2OB02126A/cit52/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.1.29
– volume: 115
  start-page: 8852
  year: 2018
  ident: D2OB02126A/cit16/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1812779115
– volume: 110
  start-page: 4
  year: 2009
  ident: D2OB02126A/cit51/1
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfp097
– volume: 35
  start-page: 2279
  year: 1994
  ident: D2OB02126A/cit43/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/0040-4039(94)85198-0
– volume: 9
  start-page: e13
  year: 2012
  ident: D2OB02126A/cit5/1
  publication-title: Drug Discovery Today: Technol.
  doi: 10.1016/j.ddtec.2011.07.005
– volume: 8
  start-page: 919
  year: 2006
  ident: D2OB02126A/cit28/1
  publication-title: Org. Lett.
  doi: 10.1021/ol053095o
– volume: 111
  start-page: 6557
  year: 2011
  ident: D2OB02126A/cit41/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100048w
– volume: 7
  start-page: 37907
  year: 2022
  ident: D2OB02126A/cit48/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05071
– volume: 24
  start-page: 12107
  year: 2018
  ident: D2OB02126A/cit10/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201705919
– volume: 19
  start-page: 2307
  year: 2018
  ident: D2OB02126A/cit19/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201800503
– volume: 15
  start-page: 9404
  year: 2009
  ident: D2OB02126A/cit32/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200900615
– volume: 95
  start-page: 8005
  year: 1973
  ident: D2OB02126A/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00805a012
– volume: 40
  start-page: 753
  year: 2020
  ident: D2OB02126A/cit2/1
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21639
– volume: 39
  start-page: 6103
  year: 2000
  ident: D2OB02126A/cit8/1
  publication-title: Biochemistry
  doi: 10.1021/bi992408i
– volume: 12
  start-page: 1220
  year: 2021
  ident: D2OB02126A/cit50/1
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/acsmedchemlett.1c00251
– volume: 113
  start-page: 1405
  year: 2016
  ident: D2OB02126A/cit61/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1525143113
– volume: 92
  start-page: 5792
  year: 1970
  ident: D2OB02126A/cit40/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00722a071
– volume: 7
  start-page: 251
  year: 2015
  ident: D2OB02126A/cit37/1
  publication-title: Der Pharma Chem.
– volume: 119
  start-page: 10318
  year: 2019
  ident: D2OB02126A/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00737
– volume: 97
  start-page: 2243
  year: 1997
  ident: D2OB02126A/cit7/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr950005s
– volume: 95
  start-page: 3306
  year: 2008
  ident: D2OB02126A/cit53/1
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.137471
– volume: 10
  start-page: 693
  year: 2019
  ident: D2OB02126A/cit21/1
  publication-title: MedChemComm
  doi: 10.1039/C9MD00050J
– volume: 23
  start-page: 2031
  year: 1967
  ident: D2OB02126A/cit39/1
  publication-title: Tetrahedron
  doi: 10.1016/0040-4020(67)80037-1
– volume: 5
  start-page: 2711
  year: 2003
  ident: D2OB02126A/cit26/1
  publication-title: Org. Lett.
  doi: 10.1021/ol034907o
– volume: 48
  start-page: 153
  year: 1987
  ident: D2OB02126A/cit56/1
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1987.tb02533.x
– volume: 43
  start-page: 1340
  year: 1999
  ident: D2OB02126A/cit60/1
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.43.6.1340
– volume: 105
  start-page: 973
  year: 2005
  ident: D2OB02126A/cit6/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr040669e
– volume: 59
  start-page: 2900
  year: 2018
  ident: D2OB02126A/cit29/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2018.06.028
– volume: 30
  start-page: 2279
  year: 2019
  ident: D2OB02126A/cit20/1
  publication-title: Synlett
  doi: 10.1055/s-0037-1611691
– volume: 2017
  start-page: 149
  year: 2017
  ident: D2OB02126A/cit22/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201601016
– volume: 140
  start-page: 121
  year: 2009
  ident: D2OB02126A/cit35/1
  publication-title: Monatsh. Chem.
  doi: 10.1007/s00706-008-0052-z
– volume: 269
  start-page: 295
  year: 2007
  ident: D2OB02126A/cit58/1
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.00640.x
– volume: 6
  start-page: 29
  year: 2007
  ident: D2OB02126A/cit13/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2201
– volume: 68
  start-page: 1303
  year: 2005
  ident: D2OB02126A/cit36/1
  publication-title: J. Nat. Prod.
  doi: 10.1021/np0501536
– volume: 115
  start-page: 4397
  year: 1993
  ident: D2OB02126A/cit42/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00063a082
– volume: 64
  start-page: 159
  year: 2004
  ident: D2OB02126A/cit17/1
  publication-title: Drugs
  doi: 10.2165/00003495-200464020-00004
– volume: 7
  start-page: 608
  year: 2008
  ident: D2OB02126A/cit9/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2590
– volume: 12
  start-page: 3136
  year: 2010
  ident: D2OB02126A/cit27/1
  publication-title: Org. Lett.
  doi: 10.1021/ol101018w
SSID ssj0019764
Score 2.3984804
Snippet Therapeutic agents with unique molecular structures and new mechanisms of action are needed to confront the phenomenon of multidrug resistance among bacteria....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 156
SubjectTerms Antibacterial activity
Antibiotics
Biological Products
Chemical compounds
Chemical reactions
Chemical synthesis
Diastereoisomers
Molecular Conformation
Molecular Structure
Multidrug resistance
Natural products
NMR
Nuclear magnetic resonance
Peptides
Peptides, Cyclic - chemistry
Pharmacology
Racemization
Reagents
Selectivity
Stereoisomerism
Stereoisomers
Stereoselectivity
Title Diastereoselective synthesis of cyclic tetrapeptide pseudoxylallemycin A illuminates the impact of base during macrolactamization
URI https://www.ncbi.nlm.nih.gov/pubmed/36628602
https://www.proquest.com/docview/2771272503
https://www.proquest.com/docview/2764443796
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK9wAXxNeyhQUZwQVVKanjOMmxdBctKxYk1EV7qxzbkSK1yWqbSJQbv4y_xkw-nEB7WLikleMkbed1_GzPvCHkjdIhN8pLHCGTxOEqcJ0oZIETw9joJ0YGQVVs4uKzOLvk51f-1WDwqxe1VBbxRP3Ym1fyP1aFNrArZsn-g2XtTaEB3oN94QgWhuOtbHySStQ5MPmmqmaDQUCbbQaUrlEZUVuFGtaFKTDHCpyDNuPrjSl1_n27wiIq663C9Y5xivWO0wx5Z8VEu9xJHOXaXMa1BK-9ghNy3WRv9qltndWpKixhUn9bd3es2ppyFivlulqg_ZZmGBs6vph02z4Y510v_kzqUIDUIs-ubZ-nZlv2o3W-mrSpmN2ULx_PJ_3lDOa1EdDWA_MgcDA4px6g-m216lHrttm0B0-_54OBMYreeA5z3mjvWOF6KLV6wr68R5l7YdVWO0HuvwZKG75Ybdx70bK79g45YAGQtyE5mJ0uPn6yG1nA9qrAhvZbtQq5XvSuu_pPTrQz0QHac9OWo6loz-IBud_MV-isBt9DMjDZI3J33pr0Mfm5C0JqQUjzhNYgpH0Q0l0Q0hntgZDC5bQGId4CQUhrENJdED4hlx9OF_Mzp6nr4Sig71PHiBh4quYqFn4kJO6ks9jXMglC40dcKy1917hMJIwliulQ89B4IbwyyTmPvUMyzPLMHBE6DZQIpUhiN1bcT3TMuQRSLX0MopRTf0Tetr_sUjWi91h7ZbXcteGIvLZ9r2upl729jlsDLRtXsFkycGksgNmENyKv7GkwBO6-yczkJfaBqQeqf4oReVob1j7GE5gh7rIROQRL22bN8rh6qnx2q8_2nNzr_lLHZFjclOYFcOYiftng8jc5Z8cd
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diastereoselective+synthesis+of+cyclic+tetrapeptide+pseudoxylallemycin+A+illuminates+the+impact+of+base+during+macrolactamization&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Fumo%2C+Vincent+M.&rft.au=Roberts%2C+R.+Charlie&rft.au=Zhang%2C+Jieyu&rft.au=O%27Reilly%2C+Matthew+C.&rft.date=2023-02-01&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=21&rft.issue=5&rft.spage=1056&rft.epage=1069&rft_id=info:doi/10.1039%2FD2OB02126A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2OB02126A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon