Arbitrary Body Segmentation With a Novel Graph Cuts-Based Algorithm

This letter presents a novel superpixel based graph cuts algorithm for human body segmentation from images. The standard graph cuts algorithm constructs the t-links and n-links separately. While in this letter, we argue that the construction of these two links can be build simultaneously. The propos...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 18; no. 12; pp. 753 - 756
Main Authors Li, Shifeng, Lu, Huchuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2011.2173332

Cover

Abstract This letter presents a novel superpixel based graph cuts algorithm for human body segmentation from images. The standard graph cuts algorithm constructs the t-links and n-links separately. While in this letter, we argue that the construction of these two links can be build simultaneously. The proposed algorithm starts from the construction of a complete similarity graph based on superpixels where the t-links and n-links have been embedded and hence the t-links and n-links can be easily obtained using the max pooling function and distance matrix respectively. This strategy not only makes the segmentation more accurate but also makes the method more robust to the selection of parameters. The experiments on two challenging public datasets validate that our method can segment the object more accurately than the standard graph cuts, Grabcut and geodesic star convexity graph cuts with a few user provided seeds and is very robust to the parameters changes.
AbstractList This letter presents a novel superpixel based graph cuts algorithm for human body segmentation from images. The standard graph cuts algorithm constructs the t -links and n -links separately. While in this letter, we argue that the construction of these two links can be build simultaneously. The proposed algorithm starts from the construction of a complete similarity graph based on superpixels where the t -links and n -links have been embedded and hence the t -links and n -links can be easily obtained using the max pooling function and distance matrix respectively. This strategy not only makes the segmentation more accurate but also makes the method more robust to the selection of parameters. The experiments on two challenging public datasets validate that our method can segment the object more accurately than the standard graph cuts, Grabcut and geodesic star convexity graph cuts with a few user provided seeds and is very robust to the parameters changes.
This letter presents a novel superpixel based graph cuts algorithm for human body segmentation from images. The standard graph cuts algorithm constructs the [Formula Omitted]-links and [Formula Omitted]-links separately. While in this letter, we argue that the construction of these two links can be build simultaneously. The proposed algorithm starts from the construction of a complete similarity graph based on superpixels where the [Formula Omitted]-links and [Formula Omitted]-links have been embedded and hence the [Formula Omitted]-links and [Formula Omitted]-links can be easily obtained using the max pooling function and distance matrix respectively. This strategy not only makes the segmentation more accurate but also makes the method more robust to the selection of parameters. The experiments on two challenging public datasets validate that our method can segment the object more accurately than the standard graph cuts, Grabcut and geodesic star convexity graph cuts with a few user provided seeds and is very robust to the parameters changes.
Author Huchuan Lu
Shifeng Li
Author_xml – sequence: 1
  givenname: Shifeng
  surname: Li
  fullname: Li, Shifeng
– sequence: 2
  givenname: Huchuan
  surname: Lu
  fullname: Lu, Huchuan
BookMark eNp9kM9LwzAYhoNMcJveBS_Fk5fO70uaNjluQ6cwVJjisbRdsnW0zUxaYf-9GR0ePHjKD573_T6eERk0plGEXCNMEEHeL1dvEwqIE4oJY4yekSFyLkLKYhz4OyQQSgnigoyc2wGAQMGHZD61ednazB6CmVkfgpXa1Kpps7Y0TfBZttsgC17Mt6qChc3222DetS6cZU6tg2m1MdYT9SU511nl1NXpHJOPx4f3-VO4fF08z6fLsGCUtaHSGQMpEXNZCKkZLSINcSRFpKOE-0ekc6oLKmJEzZiUueJQgOCK8tx_sDG563v31nx1yrVpXbpCVVXWKNO5FAFBJEziEb39g-5MZxu_XSqBUowAuIeghwprnLNKp3tb1l6Fb0qPUlMvNT1KTU9SfST-EynKXpZ3WFb_BW_6YKmU-p0TA5eRiNgPcnaDnw
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_TGRS_2017_2662010
crossref_primary_10_1080_00207217_2013_828265
crossref_primary_10_1109_LGRS_2013_2259214
crossref_primary_10_1007_s13721_022_00363_5
crossref_primary_10_1016_j_neucom_2017_10_026
crossref_primary_10_1186_s13634_018_0585_1
Cites_doi 10.1109/CVPR.2010.5540073
10.1109/ICCV.2009.5459262
10.1145/1015706.1015719
10.1109/ICCV.2009.5459254
10.1145/1015706.1015720
10.1016/j.imavis.2008.02.006
10.1145/1531326.1531390
10.1016/j.patcog.2011.03.024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/LSP.2011.2173332
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 756
ExternalDocumentID 2503218301
10_1109_LSP_2011_2173332
6059484
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c323t-efa309911b9c89f32c4f064984f475c4f4fb2fc28611f3399be50c085e25bf333
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Sun Sep 28 06:39:31 EDT 2025
Mon Jun 30 10:26:19 EDT 2025
Wed Oct 01 01:11:06 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Aug 26 17:18:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-efa309911b9c89f32c4f064984f475c4f4fb2fc28611f3399be50c085e25bf333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 902214005
PQPubID 75747
PageCount 4
ParticipantIDs ieee_primary_6059484
crossref_primary_10_1109_LSP_2011_2173332
crossref_citationtrail_10_1109_LSP_2011_2173332
proquest_miscellaneous_1010873913
proquest_journals_902214005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
achanta (ref15) 2010
ref11
ref10
mori (ref1) 2004
veksler (ref5) 2008
srinivasan (ref2) 2007
boykov (ref4) 2001
ref8
ref7
yang (ref14) 2009
ramanan (ref3) 2006
ref9
ref6
References_xml – ident: ref7
  doi: 10.1109/CVPR.2010.5540073
– ident: ref9
  doi: 10.1109/ICCV.2009.5459262
– start-page: 326
  year: 2004
  ident: ref1
  article-title: Recovering human body configurations: Combining segmentation and recognition
  publication-title: CVPR (2)
– ident: ref11
  doi: 10.1145/1015706.1015719
– start-page: 105
  year: 2001
  ident: ref4
  article-title: Interactive graph cuts for optimal boundary and region segmentation of objects in <formula formulatype="inline"> <tex Notation="TeX">${\rm n}$</tex></formula>-<formula formulatype="inline"> <tex Notation="TeX">${\rm d}$</tex></formula> images
  publication-title: ICCV
– ident: ref10
  doi: 10.1109/ICCV.2009.5459254
– year: 2010
  ident: ref15
  publication-title: SLIC Superpixels
– start-page: 1129
  year: 2006
  ident: ref3
  article-title: Learning to parse images of articulated bodies
  publication-title: NIPS
– ident: ref8
  doi: 10.1145/1015706.1015720
– ident: ref6
  doi: 10.1016/j.imavis.2008.02.006
– start-page: 1794
  year: 2009
  ident: ref14
  article-title: Linear spatial pyramid matching using sparse coding for image classification
  publication-title: CVPR
– ident: ref12
  doi: 10.1145/1531326.1531390
– start-page: 454
  year: 2008
  ident: ref5
  article-title: Star shape prior for graph-cut image segmentation
  publication-title: ECCV (3)
– year: 2007
  ident: ref2
  article-title: Bottom-up recognition and parsing of the human body
  publication-title: CVPR
– ident: ref13
  doi: 10.1016/j.patcog.2011.03.024
SSID ssj0008185
Score 2.0157287
Snippet This letter presents a novel superpixel based graph cuts algorithm for human body segmentation from images. The standard graph cuts algorithm constructs the...
This letter presents a novel superpixel based graph cuts algorithm for human body segmentation from images. The standard graph cuts algorithm constructs the t...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Algorithms
Body segmentation
complete similarity graph
Computational efficiency
Construction
graph cuts
Graphs
Histograms
Image segmentation
max pooling
Robustness
Segmentation
Shape
Signal processing algorithms
Similarity
Strategy
Title Arbitrary Body Segmentation With a Novel Graph Cuts-Based Algorithm
URI https://ieeexplore.ieee.org/document/6059484
https://www.proquest.com/docview/902214005
https://www.proquest.com/docview/1010873913
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsBWQkLkh4N7GdrH3crigVggqpVPQW-Vkqtkm1m1SCX8_YyUa8hLglsWNZHnvmsz3zDcBLkYUQtAvUoT2hQltPFdMlFYVnXui5kzY5yJ6Ux2fi3XlxvgOvx1gY731yPvPT-Jju8l1ju3hUNisTuYjYhd25LPtYrVHrRsPT-xdmFDWs3F5JZmr2_vRjz9WJ8Jtzzn4xQSmnyh-KOFmXo7vwYduv3qnk67RrzdR-_42y8X87fg_uDDCTLPp5cR92fP0Abv9EPrgPy8XaXKage3LYuG_k1F9cDYFINfl82X4hmpw0N35F3kZSa7Ls2g09RKPnyGJ10ayxxtVDODt682l5TIeUCtRyxlvqg-aICfPcKCtV4MyKgKBESRHEvMAXEQwLlskyzwNH8GJ8kVmEZZ4VBj_wR7BXN7V_DAQ3Kly5QnLnAzZQKK2Y1FYYJ6QzQk1gth3lyg584zHtxapK-45MVSiXKsqlGuQygVfjH9c918Y_6u7HYR7rDSM8gYOtIKthMW4qhTgF95FZMYEXYymuong1omvfdJvo6JbJOVc5f_L3hg_gVjpNTo4sT2GvXXf-GcKR1jxP8_AHNbTaaA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a4wF44DYmyrgYiRck3Ca-tPZjVzEKdBXSNrG3yNcx0SWoTZDg12M7acRNiLckdizLxz7ns33OdwBesMx7r6zHNtgTzJRxWBI1xow74piaWGGSg-xyPD9j7875-Q686mNhnHPJ-cwN42O6y7eVaeJR2WicyEXYNbjOGWO8jdbq9W40Pa2HYYaDjhXbS8lMjhYnH1q2zgDAKaXkFyOUsqr8oYqTfTm6A8fbnrVuJZ-HTa2H5vtvpI3_2_W7cLsDmmjazox7sOPK-3DrJ_rBPZhN1_oyhd2jw8p-Qyfu4qoLRSrRx8v6E1JoWX11K_Qm0lqjWVNv8GEwexZNVxfVOtS4egBnR69PZ3PcJVXAhhJaY-cVDagwz7U0QnpKDPMBlkjBPJvw8MK8Jt4QMc5zTwN80Y5nJgAzR7gOH-g-7JZV6R4CClsVKi0X1DofGuBSSSKUYdoyYTWTAxhtR7kwHeN4THyxKtLOI5NFkEsR5VJ0chnAy_6PLy3bxj_q7sVh7ut1IzyAg60gi245bgoZkErYSWZ8AM_70rCO4uWIKl3VbKKrWyYmVOb00d8bfgY35qfHi2Lxdvn-AG6ms-Xk1vIYdut1454EcFLrp2lO_gDRTN21
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbitrary+Body+Segmentation+With+a+Novel+Graph+Cuts-Based+Algorithm&rft.jtitle=IEEE+signal+processing+letters&rft.au=Li%2C+Shifeng&rft.au=Lu%2C+Huchuan&rft.date=2011-12-01&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=18&rft.issue=12&rft.spage=753&rft.epage=756&rft_id=info:doi/10.1109%2FLSP.2011.2173332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2011_2173332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon