Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography
Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing...
        Saved in:
      
    
          | Published in | Kompʹûternaâ optika Vol. 43; no. 6; pp. 1008 - 1020 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Samara National Research University
    
        01.12.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0134-2452 2412-6179 2412-6179  | 
| DOI | 10.18287/2412-6179-2019-43-6-1008-1020 | 
Cover
| Abstract | Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing theory, and combine image reconstruction and segmentation procedures. Using a numerical experiment, it is shown that either algorithm can exactly reconstruct the Shepp-Logan phantom from as small as 7 views with noise characteristic of the medical applications of X-ray tomography. However, if an object has a complicated high-frequency structure (QR-code), the minimal number of views required for its exact reconstruction increases to 17–21 for ART-TVS and to 32–34 for IPMA. The ART-TVS algorithm developed by the authors is shown to outperform IPMA in reconstruction accuracy and speed and in resistance to abnormally high noise as well. ART-TVS holds good potential for further improvement. | 
    
|---|---|
| AbstractList | Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing theory, and combine image reconstruction and segmentation procedures. Using a numerical experiment, it is shown that either algorithm can exactly reconstruct the Shepp-Logan phantom from as small as 7 views with noise characteristic of the medical applications of X-ray tomography. However, if an object has a complicated high-frequency structure (QR-code), the minimal number of views required for its exact reconstruction increases to 17–21 for ART-TVS and to 32–34 for IPMA. The ART-TVS algorithm developed by the authors is shown to outperform IPMA in reconstruction accuracy and speed and in resistance to abnormally high noise as well. ART-TVS holds good potential for further improvement. | 
    
| Author | Kolchugin, S.V. Konovalov, A.B. Vlasov, V.V.  | 
    
| Author_xml | – sequence: 1 givenname: V.V. surname: Vlasov fullname: Vlasov, V.V. – sequence: 2 givenname: A.B. surname: Konovalov fullname: Konovalov, A.B. – sequence: 3 givenname: S.V. surname: Kolchugin fullname: Kolchugin, S.V.  | 
    
| BookMark | eNqV0U1v1DAQBmALFYml9D_4xM3gr9gxBxBaChRV4gJny7HHqaskXtkuq_33JF3UAye4zEgz0iPNvC_RxZIXQOg1o29Yz3v9lkvGiWLaEE6ZIVIQRRil_Vo4fYZ2T_sLtKNMSMJlx1-gq1rvKaWroJhkO-S-5bQ0nGY3Ai7g81JbefAt5QW7JeAK4wxLc9vgHd7n-eBKqusyR9yOGbtpzCW1u7nimAuOcCS_Ehxxy3MeizvcnV6h59FNFa7-9Ev08_P1j_1Xcvv9y83-4y3xgotGBogBQILph8BAD8zwOIQuaqa6AGHoDAWlQTkTBQ2BBd2z9d7IBt6rjntxiW7Obsju3h7KelI52eySfRzkMlpXWvIT2GGFhO6FVGaQrONG9ho0A98J5U1Qq_XhbD0sB3c6uml6Ahm1jwHY7cF2e7DdArBSWGW3AOwWwCq8Pwu-5FoLxP8HPv0F-HSOoRWXpn9lfgPtOqQz | 
    
| CitedBy_id | crossref_primary_10_1134_S1061830922060067 crossref_primary_10_1088_1742_6596_1745_1_012047 crossref_primary_10_1002_cnm_3408 crossref_primary_10_1016_j_ejmp_2024_104491 crossref_primary_10_1515_mcma_2022_2120  | 
    
| Cites_doi | 10.1109/tip.2010.2058811 10.1016/0022-5193(70)90109-8 10.1088/0031-9155/44/11/311 10.1109/isccsp.2012.6217778 10.15761/rdi.1000103 10.1134/s1061830908010026 10.1007/978-3-319-23192-1_56 10.3233/xst-130370 10.5772/5003 10.1088/0031-9155/40/7/006 10.1016/0022-5193(72)90180-4 10.1007/s10967-015-4542-2 10.1088/0031-9155/49/8/006 10.1155/2013/356291 10.1134/s105466180602012x 10.1109/78.193196 10.1137/080716542 10.1002/cpa.3160420503 10.1088/0031-9155/43/4/003 10.1177/016173468400600107 10.1088/0031-9155/46/7/307 10.1088/0031-9155/54/9/014 10.3844/jcssp.2007.310.317 10.1070/qe2006v036n11abeh013302 10.1016/j.cam.2005.09.027 10.1109/83.491321 10.1002/cpa.20124 10.1088/0266-5611/31/2/025003 10.1063/1.1381914 10.1016/0146-664x(79)90034-0 10.1016/j.ultramic.2009.01.009 10.1016/s0167-8655(97)00131-1 10.1118/1.2789499 10.1088/0266-5611/23/3/008 10.1117/1.jei.27.4.043006 10.1109/tit.2006.871582 10.1097/00004424-197611000-00002 10.1070/qe2008v038n06abeh013834 10.1098/rspa.2014.0638  | 
    
| ContentType | Journal Article | 
    
| CorporateAuthor | Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics | 
    
| CorporateAuthor_xml | – name: Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.18287/2412-6179-2019-43-6-1008-1020 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 2412-6179 | 
    
| EndPage | 1020 | 
    
| ExternalDocumentID | oai_doaj_org_article_b67e3783469b41529487e71ec536c9d6 10.18287/2412-6179-2019-43-6-1008-1020 10_18287_2412_6179_2019_43_6_1008_1020  | 
    
| GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c323t-befdee4e98bd1e7b192fbd5f7165dedb590e67e6a9f30dd1d781100f1b28652c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0134-2452 2412-6179  | 
    
| IngestDate | Fri Oct 03 12:38:16 EDT 2025 Mon Sep 15 10:16:58 EDT 2025 Tue Jul 01 03:11:54 EDT 2025 Thu Apr 24 23:11:50 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c323t-befdee4e98bd1e7b192fbd5f7165dedb590e67e6a9f30dd1d781100f1b28652c3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.18287/2412-6179-2019-43-6-1008-1020 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b67e3783469b41529487e71ec536c9d6 unpaywall_primary_10_18287_2412_6179_2019_43_6_1008_1020 crossref_primary_10_18287_2412_6179_2019_43_6_1008_1020 crossref_citationtrail_10_18287_2412_6179_2019_43_6_1008_1020  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-12-01 | 
    
| PublicationDateYYYYMMDD | 2019-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Kompʹûternaâ optika | 
    
| PublicationYear | 2019 | 
    
| Publisher | Samara National Research University | 
    
| Publisher_xml | – name: Samara National Research University | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref0 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref1 – ident: ref15 doi: 10.1109/tip.2010.2058811 – ident: ref2 doi: 10.1016/0022-5193(70)90109-8 – ident: ref11 doi: 10.1088/0031-9155/44/11/311 – ident: ref34 doi: 10.1109/isccsp.2012.6217778 – ident: ref44 doi: 10.15761/rdi.1000103 – ident: ref41 – ident: ref28 doi: 10.1134/s1061830908010026 – ident: ref24 – ident: ref36 doi: 10.1007/978-3-319-23192-1_56 – ident: ref19 doi: 10.3233/xst-130370 – ident: ref32 doi: 10.5772/5003 – ident: ref8 doi: 10.1088/0031-9155/40/7/006 – ident: ref3 doi: 10.1016/0022-5193(72)90180-4 – ident: ref25 doi: 10.1007/s10967-015-4542-2 – ident: ref13 doi: 10.1088/0031-9155/49/8/006 – ident: ref35 doi: 10.1155/2013/356291 – ident: ref29 doi: 10.1134/s105466180602012x – ident: ref7 doi: 10.1109/78.193196 – ident: ref20 doi: 10.1137/080716542 – ident: ref40 doi: 10.1002/cpa.3160420503 – ident: ref10 doi: 10.1088/0031-9155/43/4/003 – ident: ref5 doi: 10.1177/016173468400600107 – ident: ref12 doi: 10.1088/0031-9155/46/7/307 – ident: ref22 doi: 10.1088/0031-9155/54/9/014 – ident: ref43 doi: 10.3844/jcssp.2007.310.317 – ident: ref30 doi: 10.1070/qe2006v036n11abeh013302 – ident: ref45 doi: 10.1016/j.cam.2005.09.027 – ident: ref6 – ident: ref9 doi: 10.1109/83.491321 – ident: ref17 doi: 10.1002/cpa.20124 – ident: ref38 doi: 10.1088/0266-5611/31/2/025003 – ident: ref21 – ident: ref27 doi: 10.1063/1.1381914 – ident: ref4 doi: 10.1016/0146-664x(79)90034-0 – ident: ref23 – ident: ref26 doi: 10.1016/j.ultramic.2009.01.009 – ident: ref42 doi: 10.1016/s0167-8655(97)00131-1 – ident: ref14 doi: 10.1118/1.2789499 – ident: ref18 doi: 10.1088/0266-5611/23/3/008 – ident: ref37 doi: 10.1117/1.jei.27.4.043006 – ident: ref16 doi: 10.1109/tit.2006.871582 – ident: ref0 doi: 10.1097/00004424-197611000-00002 – ident: ref33 doi: 10.1070/qe2008v038n06abeh013834 – ident: ref39 doi: 10.1098/rspa.2014.0638 – ident: ref31  | 
    
| SSID | ssj0002876141 | 
    
| Score | 2.1718326 | 
    
| Snippet | Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 1008 | 
    
| SubjectTerms | compressed sensing correlation coefficient deviation factor few-view tomography image reconstruction and segmentation potts functional qr-code shepp-logan phantom total variation  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqDqUcKFBQl4_KB8TN2iR2nBiJQ1kVIQ49FWlvlh2Pt4t2kxWbatV_j8cJ0d4KUq-RLEfPL56Z2PMeIZeuEF5W1rMst5IJYwQzpsRDXiFNIqxyEC_I_pT3j-Jhmk-3rL7wTlgnD9wBN7ayAI5uEFJZDDYqZNhQpFDlXFbKRbHtpFRbxdRT_GUUynPRmRFywfB48SO5wh0CBd7HIWxl2BynAklSxQRnkqWd0Ckaf29FqCjkv0d2_9Qr83djFout6HN3QPb7tJF-7173kHyA-oh87lNI2n-g6y_EPDTzuqXzZdgmaCx2B4FYampH1zBb9t1G9TWdDCaEtPG03TTULGbN87z9vVzTkM1SDxuGZwe0bZa9tvUxebz78Wtyz3oXBVbxjLfMgncAAlRpXQqFDSmdty73oVDKHTibqwQCxtIozxPnUoe9p0niU4tNq1nFT8hO3dTwlVBUrsmsg1DBlgFRY7Kico6byrqs9BkfkZtX5HTVS4yj08VCY6mByGtEXiPyGpHXgmuJssmlRuRHpBjGrzqxjTePvMWFGkahaHZ8EKikeyrpf1FpRMphmd85_-n_mP-MfIp0jJdlzslO4AdchJSntd8iu18AFSPz5A priority: 102 providerName: Directory of Open Access Journals  | 
    
| Title | Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography | 
    
| URI | https://doi.org/10.18287/2412-6179-2019-43-6-1008-1020 https://doaj.org/article/b67e3783469b41529487e71ec536c9d6  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 43 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2412-6179 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002876141 issn: 2412-6179 databaseCode: DOA dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VW4nHgfIUy6PyAXFzSWzHiZE4lIqq6qHiwIpysvwsK3aTik21gl-PJ-uNCqeWa6RJ4plx_E1m5huAN74WUTobKauspMIYQY1pMMkrpCmEVT4MBbJn8mQmTs-r8x2Q216Y6_l75GJ_l04Yhn1sKtmzVFRwKmm54SRlKVTflVXC4BPYnZ19Pvw21CtyQTGdiFPltrJ34O3NbvjX6TSQ-N-Hu1ftpfm1NovFtZPneA--bt95U3Dy4-Cqtwfu9z90jrdf1EN4kMEoOdx4zyPYCe1j2MvAlORtv3oC5rSbtz2ZL9PHhwwh9Eg7S0zrySpcLHMPU_ueHI2jDUkXSb_uiFlcdD_n_ffliiSMTGJYU8xIkL5bZsbspzA7_vTl6ITm2QzUccZ7akP0IYigGuvLUNsEFKP1VUzhV-WDt5UqgqyDNCrywvvSY0drUcTSYissc_wZTNquDc-BIB8Osz6kuLhJdjOG1c57bpz1rImMT-HD1ibaZeJynJ-x0BjAoD416lOjPjXqUwuuJZIxNxr1OYV6lL_cUHjcWPIjusAohVTcw4VkTJ13trZpmRzHlUhlEQ2pFAKGugyu4tIpL6fQjA50y-e_-H_Rl3BvcK2h8OYVTJJXhNcJPvV2f_jtsJ93zB8IQgU1 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VW4nHgfIUy0s-IG4uie04MRKHUlFVPVQcWFFOlp_tit2kYlOt4NfjyXqjwqnlGmnieGYcf6OZ-Qbgra9FlM5GyiorqTBGUGMaTPIKaQphlQ9DgeypPJ6Jk7PqbAfkthfmev4eudjfpxuGYR-bSvYsFRWcSlpuOElZCtV3ZZUw-AR2Z6dfDr4P9YpcUEwn4lS5rewdeHezF_51Ow0k_vfh7lV7aX6tzWJx7eY52oNv22_eFJz82L_q7b77_Q-d4-039RAeZDBKDjbe8wh2QvsY9jIwJfnYr56AOenmbU_my_TzIUMIPdLOEtN6sgrny9zD1H4gh-NoQ9JF0q87Yhbn3c95f7FckYSRSQxrihkJ0nfLzJj9FGZHn78eHtM8m4E6znhPbYg-BBFUY30ZapuAYrS-iin8qnzwtlJFkHWQRkVeeF967GgtilhabIVljj-DSdu14TkQ5MNh1ocUFzfJbsaw2nnPjbOeNZHxKXzc2kS7TFyO8zMWGgMY1KdGfWrUp0Z9asG1RDLmRqM-p1CP8pcbCo8bS35CFxilkIp7eJCMqfPJ1jZtk-O4EqksoiGVQsBQl8FVXDrl5RSa0YFuuf6L_xd9CfcG1xoKb17BJHlFeJ3gU2_f5LPyB-7ABEA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+image+reconstruction+and+segmentation%3A+Comparison+of+two+algorithms+for+few-view+tomography&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Vitaly+Vlasov&rft.au=Alexander+Konovalov&rft.au=Sergey+Kolchugin&rft.date=2019-12-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=43&rft.issue=6&rft.spage=1008&rft.epage=1020&rft_id=info:doi/10.18287%2F2412-6179-2019-43-6-1008-1020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b67e3783469b41529487e71ec536c9d6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |