Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography

Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing...

Full description

Saved in:
Bibliographic Details
Published inKompʹûternaâ optika Vol. 43; no. 6; pp. 1008 - 1020
Main Authors Vlasov, V.V., Konovalov, A.B., Kolchugin, S.V.
Format Journal Article
LanguageEnglish
Published Samara National Research University 01.12.2019
Subjects
Online AccessGet full text
ISSN0134-2452
2412-6179
2412-6179
DOI10.18287/2412-6179-2019-43-6-1008-1020

Cover

Abstract Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing theory, and combine image reconstruction and segmentation procedures. Using a numerical experiment, it is shown that either algorithm can exactly reconstruct the Shepp-Logan phantom from as small as 7 views with noise characteristic of the medical applications of X-ray tomography. However, if an object has a complicated high-frequency structure (QR-code), the minimal number of views required for its exact reconstruction increases to 17–21 for ART-TVS and to 32–34 for IPMA. The ART-TVS algorithm developed by the authors is shown to outperform IPMA in reconstruction accuracy and speed and in resistance to abnormally high noise as well. ART-TVS holds good potential for further improvement.
AbstractList Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique with TV-regularization and adaptive segmentation (ART-TVS). Both aim to reconstruct piecewise-constant structures, use the compressed sensing theory, and combine image reconstruction and segmentation procedures. Using a numerical experiment, it is shown that either algorithm can exactly reconstruct the Shepp-Logan phantom from as small as 7 views with noise characteristic of the medical applications of X-ray tomography. However, if an object has a complicated high-frequency structure (QR-code), the minimal number of views required for its exact reconstruction increases to 17–21 for ART-TVS and to 32–34 for IPMA. The ART-TVS algorithm developed by the authors is shown to outperform IPMA in reconstruction accuracy and speed and in resistance to abnormally high noise as well. ART-TVS holds good potential for further improvement.
Author Kolchugin, S.V.
Konovalov, A.B.
Vlasov, V.V.
Author_xml – sequence: 1
  givenname: V.V.
  surname: Vlasov
  fullname: Vlasov, V.V.
– sequence: 2
  givenname: A.B.
  surname: Konovalov
  fullname: Konovalov, A.B.
– sequence: 3
  givenname: S.V.
  surname: Kolchugin
  fullname: Kolchugin, S.V.
BookMark eNqV0U1v1DAQBmALFYml9D_4xM3gr9gxBxBaChRV4gJny7HHqaskXtkuq_33JF3UAye4zEgz0iPNvC_RxZIXQOg1o29Yz3v9lkvGiWLaEE6ZIVIQRRil_Vo4fYZ2T_sLtKNMSMJlx1-gq1rvKaWroJhkO-S-5bQ0nGY3Ai7g81JbefAt5QW7JeAK4wxLc9vgHd7n-eBKqusyR9yOGbtpzCW1u7nimAuOcCS_Ehxxy3MeizvcnV6h59FNFa7-9Ev08_P1j_1Xcvv9y83-4y3xgotGBogBQILph8BAD8zwOIQuaqa6AGHoDAWlQTkTBQ2BBd2z9d7IBt6rjntxiW7Obsju3h7KelI52eySfRzkMlpXWvIT2GGFhO6FVGaQrONG9ho0A98J5U1Qq_XhbD0sB3c6uml6Ahm1jwHY7cF2e7DdArBSWGW3AOwWwCq8Pwu-5FoLxP8HPv0F-HSOoRWXpn9lfgPtOqQz
CitedBy_id crossref_primary_10_1134_S1061830922060067
crossref_primary_10_1088_1742_6596_1745_1_012047
crossref_primary_10_1002_cnm_3408
crossref_primary_10_1016_j_ejmp_2024_104491
crossref_primary_10_1515_mcma_2022_2120
Cites_doi 10.1109/tip.2010.2058811
10.1016/0022-5193(70)90109-8
10.1088/0031-9155/44/11/311
10.1109/isccsp.2012.6217778
10.15761/rdi.1000103
10.1134/s1061830908010026
10.1007/978-3-319-23192-1_56
10.3233/xst-130370
10.5772/5003
10.1088/0031-9155/40/7/006
10.1016/0022-5193(72)90180-4
10.1007/s10967-015-4542-2
10.1088/0031-9155/49/8/006
10.1155/2013/356291
10.1134/s105466180602012x
10.1109/78.193196
10.1137/080716542
10.1002/cpa.3160420503
10.1088/0031-9155/43/4/003
10.1177/016173468400600107
10.1088/0031-9155/46/7/307
10.1088/0031-9155/54/9/014
10.3844/jcssp.2007.310.317
10.1070/qe2006v036n11abeh013302
10.1016/j.cam.2005.09.027
10.1109/83.491321
10.1002/cpa.20124
10.1088/0266-5611/31/2/025003
10.1063/1.1381914
10.1016/0146-664x(79)90034-0
10.1016/j.ultramic.2009.01.009
10.1016/s0167-8655(97)00131-1
10.1118/1.2789499
10.1088/0266-5611/23/3/008
10.1117/1.jei.27.4.043006
10.1109/tit.2006.871582
10.1097/00004424-197611000-00002
10.1070/qe2008v038n06abeh013834
10.1098/rspa.2014.0638
ContentType Journal Article
CorporateAuthor Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics
CorporateAuthor_xml – name: Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.18287/2412-6179-2019-43-6-1008-1020
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 1020
ExternalDocumentID oai_doaj_org_article_b67e3783469b41529487e71ec536c9d6
10.18287/2412-6179-2019-43-6-1008-1020
10_18287_2412_6179_2019_43_6_1008_1020
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c323t-befdee4e98bd1e7b192fbd5f7165dedb590e67e6a9f30dd1d781100f1b28652c3
IEDL.DBID UNPAY
ISSN 0134-2452
2412-6179
IngestDate Fri Oct 03 12:38:16 EDT 2025
Mon Sep 15 10:16:58 EDT 2025
Tue Jul 01 03:11:54 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-befdee4e98bd1e7b192fbd5f7165dedb590e67e6a9f30dd1d781100f1b28652c3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.18287/2412-6179-2019-43-6-1008-1020
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b67e3783469b41529487e71ec536c9d6
unpaywall_primary_10_18287_2412_6179_2019_43_6_1008_1020
crossref_primary_10_18287_2412_6179_2019_43_6_1008_1020
crossref_citationtrail_10_18287_2412_6179_2019_43_6_1008_1020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Kompʹûternaâ optika
PublicationYear 2019
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref0
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref1
– ident: ref15
  doi: 10.1109/tip.2010.2058811
– ident: ref2
  doi: 10.1016/0022-5193(70)90109-8
– ident: ref11
  doi: 10.1088/0031-9155/44/11/311
– ident: ref34
  doi: 10.1109/isccsp.2012.6217778
– ident: ref44
  doi: 10.15761/rdi.1000103
– ident: ref41
– ident: ref28
  doi: 10.1134/s1061830908010026
– ident: ref24
– ident: ref36
  doi: 10.1007/978-3-319-23192-1_56
– ident: ref19
  doi: 10.3233/xst-130370
– ident: ref32
  doi: 10.5772/5003
– ident: ref8
  doi: 10.1088/0031-9155/40/7/006
– ident: ref3
  doi: 10.1016/0022-5193(72)90180-4
– ident: ref25
  doi: 10.1007/s10967-015-4542-2
– ident: ref13
  doi: 10.1088/0031-9155/49/8/006
– ident: ref35
  doi: 10.1155/2013/356291
– ident: ref29
  doi: 10.1134/s105466180602012x
– ident: ref7
  doi: 10.1109/78.193196
– ident: ref20
  doi: 10.1137/080716542
– ident: ref40
  doi: 10.1002/cpa.3160420503
– ident: ref10
  doi: 10.1088/0031-9155/43/4/003
– ident: ref5
  doi: 10.1177/016173468400600107
– ident: ref12
  doi: 10.1088/0031-9155/46/7/307
– ident: ref22
  doi: 10.1088/0031-9155/54/9/014
– ident: ref43
  doi: 10.3844/jcssp.2007.310.317
– ident: ref30
  doi: 10.1070/qe2006v036n11abeh013302
– ident: ref45
  doi: 10.1016/j.cam.2005.09.027
– ident: ref6
– ident: ref9
  doi: 10.1109/83.491321
– ident: ref17
  doi: 10.1002/cpa.20124
– ident: ref38
  doi: 10.1088/0266-5611/31/2/025003
– ident: ref21
– ident: ref27
  doi: 10.1063/1.1381914
– ident: ref4
  doi: 10.1016/0146-664x(79)90034-0
– ident: ref23
– ident: ref26
  doi: 10.1016/j.ultramic.2009.01.009
– ident: ref42
  doi: 10.1016/s0167-8655(97)00131-1
– ident: ref14
  doi: 10.1118/1.2789499
– ident: ref18
  doi: 10.1088/0266-5611/23/3/008
– ident: ref37
  doi: 10.1117/1.jei.27.4.043006
– ident: ref16
  doi: 10.1109/tit.2006.871582
– ident: ref0
  doi: 10.1097/00004424-197611000-00002
– ident: ref33
  doi: 10.1070/qe2008v038n06abeh013834
– ident: ref39
  doi: 10.1098/rspa.2014.0638
– ident: ref31
SSID ssj0002876141
Score 2.1718326
Snippet Two algorithms of few-view tomography are compared, specifically, the iterative Potts minimization algorithm (IPMA) and the algebraic reconstruction technique...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 1008
SubjectTerms compressed sensing
correlation coefficient
deviation factor
few-view tomography
image reconstruction and segmentation
potts functional
qr-code
shepp-logan phantom
total variation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqDqUcKFBQl4_KB8TN2iR2nBiJQ1kVIQ49FWlvlh2Pt4t2kxWbatV_j8cJ0d4KUq-RLEfPL56Z2PMeIZeuEF5W1rMst5IJYwQzpsRDXiFNIqxyEC_I_pT3j-Jhmk-3rL7wTlgnD9wBN7ayAI5uEFJZDDYqZNhQpFDlXFbKRbHtpFRbxdRT_GUUynPRmRFywfB48SO5wh0CBd7HIWxl2BynAklSxQRnkqWd0Ckaf29FqCjkv0d2_9Qr83djFout6HN3QPb7tJF-7173kHyA-oh87lNI2n-g6y_EPDTzuqXzZdgmaCx2B4FYampH1zBb9t1G9TWdDCaEtPG03TTULGbN87z9vVzTkM1SDxuGZwe0bZa9tvUxebz78Wtyz3oXBVbxjLfMgncAAlRpXQqFDSmdty73oVDKHTibqwQCxtIozxPnUoe9p0niU4tNq1nFT8hO3dTwlVBUrsmsg1DBlgFRY7Kico6byrqs9BkfkZtX5HTVS4yj08VCY6mByGtEXiPyGpHXgmuJssmlRuRHpBjGrzqxjTePvMWFGkahaHZ8EKikeyrpf1FpRMphmd85_-n_mP-MfIp0jJdlzslO4AdchJSntd8iu18AFSPz5A
  priority: 102
  providerName: Directory of Open Access Journals
Title Joint image reconstruction and segmentation: Comparison of two algorithms for few-view tomography
URI https://doi.org/10.18287/2412-6179-2019-43-6-1008-1020
https://doaj.org/article/b67e3783469b41529487e71ec536c9d6
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2412-6179
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002876141
  issn: 2412-6179
  databaseCode: DOA
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VW4nHgfIUy6PyAXFzSWzHiZE4lIqq6qHiwIpysvwsK3aTik21gl-PJ-uNCqeWa6RJ4plx_E1m5huAN74WUTobKauspMIYQY1pMMkrpCmEVT4MBbJn8mQmTs-r8x2Q216Y6_l75GJ_l04Yhn1sKtmzVFRwKmm54SRlKVTflVXC4BPYnZ19Pvw21CtyQTGdiFPltrJ34O3NbvjX6TSQ-N-Hu1ftpfm1NovFtZPneA--bt95U3Dy4-Cqtwfu9z90jrdf1EN4kMEoOdx4zyPYCe1j2MvAlORtv3oC5rSbtz2ZL9PHhwwh9Eg7S0zrySpcLHMPU_ueHI2jDUkXSb_uiFlcdD_n_ffliiSMTGJYU8xIkL5bZsbspzA7_vTl6ITm2QzUccZ7akP0IYigGuvLUNsEFKP1VUzhV-WDt5UqgqyDNCrywvvSY0drUcTSYissc_wZTNquDc-BIB8Osz6kuLhJdjOG1c57bpz1rImMT-HD1ibaZeJynJ-x0BjAoD416lOjPjXqUwuuJZIxNxr1OYV6lL_cUHjcWPIjusAohVTcw4VkTJ13trZpmRzHlUhlEQ2pFAKGugyu4tIpL6fQjA50y-e_-H_Rl3BvcK2h8OYVTJJXhNcJPvV2f_jtsJ93zB8IQgU1
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VW4nHgfIUy0s-IG4uie04MRKHUlFVPVQcWFFOlp_tit2kYlOt4NfjyXqjwqnlGmnieGYcf6OZ-Qbgra9FlM5GyiorqTBGUGMaTPIKaQphlQ9DgeypPJ6Jk7PqbAfkthfmev4eudjfpxuGYR-bSvYsFRWcSlpuOElZCtV3ZZUw-AR2Z6dfDr4P9YpcUEwn4lS5rewdeHezF_51Ow0k_vfh7lV7aX6tzWJx7eY52oNv22_eFJz82L_q7b77_Q-d4-039RAeZDBKDjbe8wh2QvsY9jIwJfnYr56AOenmbU_my_TzIUMIPdLOEtN6sgrny9zD1H4gh-NoQ9JF0q87Yhbn3c95f7FckYSRSQxrihkJ0nfLzJj9FGZHn78eHtM8m4E6znhPbYg-BBFUY30ZapuAYrS-iin8qnzwtlJFkHWQRkVeeF967GgtilhabIVljj-DSdu14TkQ5MNh1ocUFzfJbsaw2nnPjbOeNZHxKXzc2kS7TFyO8zMWGgMY1KdGfWrUp0Z9asG1RDLmRqM-p1CP8pcbCo8bS35CFxilkIp7eJCMqfPJ1jZtk-O4EqksoiGVQsBQl8FVXDrl5RSa0YFuuf6L_xd9CfcG1xoKb17BJHlFeJ3gU2_f5LPyB-7ABEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+image+reconstruction+and+segmentation%3A+Comparison+of+two+algorithms+for+few-view+tomography&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Vitaly+Vlasov&rft.au=Alexander+Konovalov&rft.au=Sergey+Kolchugin&rft.date=2019-12-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=43&rft.issue=6&rft.spage=1008&rft.epage=1020&rft_id=info:doi/10.18287%2F2412-6179-2019-43-6-1008-1020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b67e3783469b41529487e71ec536c9d6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon