Multi-objective Harris Hawk metaheuristic algorithms for the diagnosis of Parkinson’s disease
Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to diagnose Parkinson’s disease, and selecting the best feature set remains an ongoing and difficult challenge. In this study, we introduce a new binar...
Saved in:
| Published in | Expert systems with applications Vol. 270; p. 126503 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
25.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2025.126503 |
Cover
| Abstract | Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to diagnose Parkinson’s disease, and selecting the best feature set remains an ongoing and difficult challenge. In this study, we introduce a new binary Multi-objective Harris Hawk Optimization (MHHO) algorithm that combines an adaptive K-Nearest Neighbor (KNN) classifier with novel exploration and exploitation operators for this challenging task. In larger problem instances, where fitness evaluation is a bottleneck, this study proposes a parallel version of the technique that uses Message Passing Interfaces (MPI) to reduce computational complexity. Comprehensive comparisons with state-of-the-art algorithms, including Genetic Algorithm, Particle Swarm Optimization, Binary Bat, Cuckoo Search, and Grey Wolf Optimization, are performed. The results indicate that our proposed algorithms are consistently the most successful in the literature. Furthermore, our analysis provides new optimal solutions that have not previously been reported in the literature. For three of the four well-known datasets, our algorithm outperforms recent studies. Furthermore, the suggested approaches achieve more than 30% reduction in the total number of features across all datasets, thereby significantly lowering computational costs.
•A parallel, multi-objective Harris-Hawks Optimization algorithm is proposed.•New exploration and exploitation operators are proposed for feature selection.•Improved result accuracy is attained as well as reduction in feature counts.•An adaptive KNN classifier is used by setting the K value at run-time. |
|---|---|
| AbstractList | Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to diagnose Parkinson’s disease, and selecting the best feature set remains an ongoing and difficult challenge. In this study, we introduce a new binary Multi-objective Harris Hawk Optimization (MHHO) algorithm that combines an adaptive K-Nearest Neighbor (KNN) classifier with novel exploration and exploitation operators for this challenging task. In larger problem instances, where fitness evaluation is a bottleneck, this study proposes a parallel version of the technique that uses Message Passing Interfaces (MPI) to reduce computational complexity. Comprehensive comparisons with state-of-the-art algorithms, including Genetic Algorithm, Particle Swarm Optimization, Binary Bat, Cuckoo Search, and Grey Wolf Optimization, are performed. The results indicate that our proposed algorithms are consistently the most successful in the literature. Furthermore, our analysis provides new optimal solutions that have not previously been reported in the literature. For three of the four well-known datasets, our algorithm outperforms recent studies. Furthermore, the suggested approaches achieve more than 30% reduction in the total number of features across all datasets, thereby significantly lowering computational costs.
•A parallel, multi-objective Harris-Hawks Optimization algorithm is proposed.•New exploration and exploitation operators are proposed for feature selection.•Improved result accuracy is attained as well as reduction in feature counts.•An adaptive KNN classifier is used by setting the K value at run-time. |
| ArticleNumber | 126503 |
| Author | Dokeroglu, Tansel Kucukyilmaz, Tayfun |
| Author_xml | – sequence: 1 givenname: Tansel orcidid: 0000-0003-1665-5928 surname: Dokeroglu fullname: Dokeroglu, Tansel email: tansel.dokeroglu@tedu.edu.tr organization: TED University, Software Engineering Department, Ankara, Turkey – sequence: 2 givenname: Tayfun orcidid: 0000-0002-2551-4740 surname: Kucukyilmaz fullname: Kucukyilmaz, Tayfun email: kucukyilmaz@rsm.nl organization: Erasmus University, Rotterdam School of Management, Rotterdam, Netherlands |
| BookMark | eNqNkEFOwzAQRb0oEm3hAqxygQQ7TuJaYoMqoEhFsIC1NXEmrdM0rmy3VXdcg-txElKFNWL1NZr_Rpo3IaPOdkjIDaMJo6y4bRL0R0hSmuYJS4uc8hEZU5mLOGMiuyQT7xtKmaBUjIl62bfBxLZsUAdzwGgBzhnfx3ETbTHAGvf9HIyOoF1ZZ8J666PauiisMaoMrDrr-76tozdwG9N5231_fvl-5RE8XpGLGlqP1785JR-PD-_zRbx8fXqe3y9jzVMe4jITTFcVFKygkkFe51rnUFaCFqWUvCizGdIMap5LOtMoteZQaZEyqEFIJvmU8OHuvtvB6Qhtq3bObMGdFKPq7EU16uxFnb2owUtPpQOlnfXeYf0_6G6AsP_nYNAprw12GivjeomqsuYv_AcPooNz |
| Cites_doi | 10.1016/j.knosys.2021.107219 10.1016/j.neucom.2022.04.083 10.1007/s11227-021-03977-0 10.1016/j.asoc.2020.106620 10.1007/978-3-540-39964-3_62 10.1016/S0140-6736(09)60492-X 10.3390/su12135248 10.1016/j.eswa.2021.115499 10.1007/s13042-019-00996-5 10.1016/j.bspc.2017.06.015 10.1007/s00521-022-07522-9 10.1016/S0140-6736(14)61393-3 10.1016/j.parkreldis.2019.02.028 10.1016/j.future.2018.02.009 10.1007/s00366-020-01028-5 10.1007/s11227-022-04869-7 10.1109/ICIT.2017.43 10.1007/s11227-021-03834-0 10.1016/j.eswa.2020.113428 10.1007/s10462-015-9428-8 10.1007/s13042-015-0480-0 10.1109/4235.585893 10.1109/CEC.2016.7743941 10.1016/j.bspc.2016.08.003 10.1016/j.compbiomed.2021.104558 10.1109/ACCESS.2019.2932037 10.1016/j.bspc.2018.10.002 10.1007/s42452-020-2826-9 10.1016/j.icte.2016.10.005 10.2139/ssrn.3131662 10.1155/2017/9512741 10.6029/smartcr.2014.03.007 10.1016/j.jneumeth.2018.08.017 10.1007/s11227-022-04709-8 10.1016/j.eswa.2021.114778 10.1145/3459665 10.1109/ACCESS.2019.2906350 10.1016/j.procs.2014.07.028 10.1016/j.eswa.2023.120270 10.1007/s00521-022-07352-9 10.1109/ACCESS.2020.2980245 10.1016/j.eswa.2020.113510 10.1016/j.compeleceng.2018.04.014 10.1007/978-3-030-12767-1_5 10.1109/TEVC.2019.2921598 10.1038/scientificamerican0792-66 10.3390/electronics11121919 10.1016/j.future.2019.02.028 10.1007/s00521-022-07367-2 10.1109/ICNN.1995.488968 10.1016/j.bspc.2021.102452 10.1016/j.iot.2023.100952 10.1016/j.patrec.2019.04.005 10.1016/j.bbe.2017.09.002 10.1007/s11227-019-03127-7 10.1016/j.cogsys.2018.06.006 10.1016/j.knosys.2017.10.017 10.1201/9780429422614-13 10.1016/j.swevo.2013.06.001 10.1007/s13755-020-00104-w 10.1016/j.swevo.2012.09.002 10.1016/j.mehy.2019.109351 10.1007/s00521-013-1525-5 10.1016/j.eswa.2008.08.076 10.1016/j.eswa.2019.06.052 10.1016/S0140-6736(21)00218-X 10.1155/2018/2396952 10.1016/j.chaos.2011.06.004 10.1371/journal.pone.0056956 10.1016/j.eswa.2020.114243 10.1016/j.eswa.2018.09.015 10.1016/j.eswa.2018.06.003 10.1007/s00521-021-05720-5 10.1049/cp.2013.2636 10.1016/j.eswa.2020.114202 10.1093/bib/bbk007 10.1007/s13042-019-00931-8 10.1016/j.eswa.2022.117255 10.1007/s13042-019-01047-9 10.1016/j.cmpb.2016.07.029 10.1016/j.eswa.2021.115747 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.eswa.2025.126503 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10.1016/j.eswa.2025.126503 10_1016_j_eswa_2025_126503 S0957417425001253 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c323t-b471cdda616091a5f5cc5abd706b9936b48e04af35908ce9cc3adc721afa79193 |
| IEDL.DBID | UNPAY |
| ISSN | 0957-4174 1873-6793 |
| IngestDate | Tue Aug 19 23:40:34 EDT 2025 Wed Oct 01 08:25:05 EDT 2025 Sat Apr 26 15:42:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature selection KNN Multi-objective Harris Hawk Parkinson’s disease |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c323t-b471cdda616091a5f5cc5abd706b9936b48e04af35908ce9cc3adc721afa79193 |
| ORCID | 0000-0003-1665-5928 0000-0002-2551-4740 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.eswa.2025.126503 |
| ParticipantIDs | unpaywall_primary_10_1016_j_eswa_2025_126503 crossref_primary_10_1016_j_eswa_2025_126503 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126503 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-25 |
| PublicationDateYYYYMMDD | 2025-04-25 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Adam, Alexandropoulos, Pardalos, Vrahatis (b2) 2019 Huang, Li, Yao (b48) 2019; 24 Piri, Mohapatra (b80) 2021; 135 Long, Jiao, Xu, Tang, Wu, Cai (b67) 2022; 202 Hussain, Neggaz, Zhu, Houssein (b49) 2021; 176 de l’Aulnoit (b61) 2019; 49 Dokeroglu, Deniz, Kiziloz (b32) 2022; 494 Li, Li, Chen, Jin, Ren (b64) 2021; 185 Yang, Slowik (b96) 2020 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Zhang, Liu, Wang, Chen, Li (b98) 2021; 37 Al-Madi, Faris, Mirjalili (b5) 2019; 10 Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros (b84) 2020; 155 Alweshah, Khalaileh, Gupta, Almomani, Hammouri, Al-Betar (b13) 2020; 1 (pp. 1–11). Lee, Fong, Chu, Cheng, Chuang, Lo (b62) 2018; 2 Eesa, Brifcani, Orman (b36) 2013; 4 Narmatha, Manimegalai, Krishnadass, Valsalan, Manimurugan, Mustafa (b73) 2023; 79 Sharma (b88) 2014 (pp. 159–164). Tawhid, Ibrahim (b90) 2020; 11 Diao, Shen (b30) 2015; 44 Pasha, Latha (b77) 2020; 8 Alwajih, Abdulkadir, Al Hussian, Aziz, Al-Tashi, Mirjalili (b12) 2022; 34 Liu (b66) 2021; 77 , Holland (b47) 1992; 267 Tripathy, Reddy Maddikunta, Pham, Gadekallu, Dev, Pandya (b91) 2022; 2022 Nilashi, Ibrahim, Ahmadi, Shahmoradi, Farahmand (b75) 2018; 38 Dokeroglu, Deniz, Kiziloz (b31) 2021; 227 Ramani, Sivagami, Jacob (b83) 2012; 2 Batista, Monard (b18) 2002; 87 Mirjalili, Lewis (b70) 2013; 9 Du, Wang, Hao, Niu, Yang (b35) 2020; 96 Selim, Kamel, Alghamdi, Jurado (b87) 2020; 8 Ali, Zhu, Zhou, Liu (b9) 2019; 137 In Larranaga (b60) 2006; 7 Walton, Hassan, Morgan, Brown (b92) 2011; 44 Perumal, Sankar (b79) 2016; 2 Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In Avci, Dogantekin (b17) 2016; 4 Cavallo, Moschetti, Esposito, Maremmani, Rovini (b23) 2019; 63 Dokeroglu, Sevinc (b34) 2022; 34 Klucken (b55) 2013; 8 Malkauthekar, M. D. (2013). Analysis of Euclidean distance and Manhattan distance measure in Face recognition. In Rajammal, Mirjalili, Ekambaram, Palanisamy (b82) 2022; 246 (pp. 986–996). Fister, Fister, Yang, Brest (b37) 2013; 13 Cho, Chao, Lin, Chen (b25) 2009; 36 Chen, Song, Ma (b24) 2023; 79 Rajalaxmi, R. R., & Kaavya, S. (2017). Feature selection for identifying Parkinson’s disease using binary Grey Wolf Optimization. In Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b1) 2018; 83 Alabool, Alarabiat, Abualigah, Heidari (b6) 2021; 33 Dash, S., Thulasiram, R., & Thulasiraman, P. (2017). An enhanced chaos-based firefly model for Parkinson’s disease diagnosis and classification. In Allou, Zouache, Amroun, Got (b10) 2022; 34 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b46) 2019; 97 Ali, Nutt, Ransom (b7) 2018; 363 Gölcük, Ozsoydan (b39) 2021; 167 Das, Biswas, Dasgupta, Abraham (b28) 2009; 3 Habib, Aljarah, Faris, Mirjalili (b45) 2020 Gupta, Deep, Heidari, Moayedi, Wang (b42) 2020; 158 Nalluri, Kannan, Gao, Roy (b72) 2020; 11 Lan, Shih (b59) 2014; 34 Bloem, Okun, Klein (b20) 2021; 397 Amer, Attiya, Zeidan, Nasr (b14) 2022; 78 Li (b65) 2017 Ali, Zhu, Golilarz, Javeed, Zhou, Liu (b8) 2019; 7 Shrivastava, Shukla, Vepakomma, Bhansali, Verma (b89) 2017; 139 Camps (b22) 2018; 139 Gunduz (b40) 2021; 66 Mirjalili, Mirjalili, Yang (b71) 2014; 25 Dokeroglu, Pehlivan, Avenoglu (b33) 2020; 76 Lees, Hardy, Revesz (b63) 2009; 373 (pp. 1324–1330). Cunningham, Delany (b27) 2021; 54 Gupta, Julka, Jain, Aggarwal, Khanna, Arunkumar (b43) 2018; 52 Cigdem, Demirel (b26) 2018; 309 Gharehchopogh, Abdollahzadeh, Barshandeh, Arasteh (b38) 2023; 24 Kalia, Lang (b53) 2015; 386 Jangir, Heidari, Chen (b52) 2021; 186 Almeida, Rebouças Filho, Carneiro, Wei, Damaševičius, Maskeliūnas (b11) 2019; 125 Wang, Wang, Ai, Sun (b93) 2017; 38 (pp. 1942–1948). Kotsavasiloglou, Kostikis, Hristu-Varsakelis, Arnaoutoglou (b56) 2017; 31 Al-Fatlawi, A. H., Jabardi, M. H., & Ling, S. H. (2016). Efficient diagnosis system for Parkinson’s disease using deep belief network. In Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (b68) 2019; 117 Xing, Gao, Xing, Gao (b95) 2014 Kumar, Minz (b58) 2014; 4 Wolpert, Macready (b94) 1997; 1 Arshad, Khan, Sharif, Yasmin, Javed (b16) 2019; 10 Al-Betar, Awadallah, Heidari, Chen, Al-Khraisat, Li (b3) 2021; 168 Yüzgeç, Kusoglu (b97) 2020; 1 Cai, Gu, Wen, Zhao, Huang, Huang (b21) 2018; 2018 Bind, Tiwari (b19) 2015; 6 Gupta, Sundaram, Khanna, Hassanien, De Albuquerque (b44) 2018; 68 Hussien, Abualigah, Abu Zitar, Hashim, Amin, Saber (b50) 2022; 11 Islam, Wahab, Veerasamy, Hizam, Mailah, Guerrero (b51) 2020; 12 Parisi, RaviChandran, Manaog (b76) 2018; 110 aq (b15) 2019; 7 Ni, Liang (b74) 2009 (pp. 503–507). Kumar, Dhillon (b57) 2023; 226 Saad, Zaarour, Guerin, Bejjani, Ayache, Lefebvre (b85) 2017; 8 Persson (b78) 2019; 132 Sehgal, Agarwal, Gupta, Sundaram, Bashambu (b86) 2020; 2 Gupta (10.1016/j.eswa.2025.126503_b43) 2018; 52 Gupta (10.1016/j.eswa.2025.126503_b44) 2018; 68 Fister (10.1016/j.eswa.2025.126503_b37) 2013; 13 Islam (10.1016/j.eswa.2025.126503_b51) 2020; 12 Dokeroglu (10.1016/j.eswa.2025.126503_b33) 2020; 76 Larranaga (10.1016/j.eswa.2025.126503_b60) 2006; 7 10.1016/j.eswa.2025.126503_b54 Gupta (10.1016/j.eswa.2025.126503_b42) 2020; 158 Habib (10.1016/j.eswa.2025.126503_b45) 2020 Long (10.1016/j.eswa.2025.126503_b67) 2022; 202 Yüzgeç (10.1016/j.eswa.2025.126503_b97) 2020; 1 Shrivastava (10.1016/j.eswa.2025.126503_b89) 2017; 139 Heidari (10.1016/j.eswa.2025.126503_b46) 2019; 97 Nilashi (10.1016/j.eswa.2025.126503_b75) 2018; 38 Dokeroglu (10.1016/j.eswa.2025.126503_b32) 2022; 494 Wang (10.1016/j.eswa.2025.126503_b93) 2017; 38 Zhang (10.1016/j.eswa.2025.126503_b98) 2021; 37 Avci (10.1016/j.eswa.2025.126503_b17) 2016; 4 Nalluri (10.1016/j.eswa.2025.126503_b72) 2020; 11 Selim (10.1016/j.eswa.2025.126503_b87) 2020; 8 Camps (10.1016/j.eswa.2025.126503_b22) 2018; 139 Adam (10.1016/j.eswa.2025.126503_b2) 2019 Gharehchopogh (10.1016/j.eswa.2025.126503_b38) 2023; 24 Hussien (10.1016/j.eswa.2025.126503_b50) 2022; 11 Ali (10.1016/j.eswa.2025.126503_b9) 2019; 137 Walton (10.1016/j.eswa.2025.126503_b92) 2011; 44 Rajammal (10.1016/j.eswa.2025.126503_b82) 2022; 246 Arshad (10.1016/j.eswa.2025.126503_b16) 2019; 10 de l’Aulnoit (10.1016/j.eswa.2025.126503_b61) 2019; 49 Xing (10.1016/j.eswa.2025.126503_b95) 2014 Parisi (10.1016/j.eswa.2025.126503_b76) 2018; 110 10.1016/j.eswa.2025.126503_b69 Amer (10.1016/j.eswa.2025.126503_b14) 2022; 78 Mirjalili (10.1016/j.eswa.2025.126503_b71) 2014; 25 Wolpert (10.1016/j.eswa.2025.126503_b94) 1997; 1 Huang (10.1016/j.eswa.2025.126503_b48) 2019; 24 Rodríguez-Esparza (10.1016/j.eswa.2025.126503_b84) 2020; 155 10.1016/j.eswa.2025.126503_b4 Kumar (10.1016/j.eswa.2025.126503_b58) 2014; 4 Liu (10.1016/j.eswa.2025.126503_b66) 2021; 77 Saad (10.1016/j.eswa.2025.126503_b85) 2017; 8 Dokeroglu (10.1016/j.eswa.2025.126503_b31) 2021; 227 Chen (10.1016/j.eswa.2025.126503_b24) 2023; 79 Cho (10.1016/j.eswa.2025.126503_b25) 2009; 36 Sharma (10.1016/j.eswa.2025.126503_b88) 2014 Diao (10.1016/j.eswa.2025.126503_b30) 2015; 44 Du (10.1016/j.eswa.2025.126503_b35) 2020; 96 10.1016/j.eswa.2025.126503_b81 Allou (10.1016/j.eswa.2025.126503_b10) 2022; 34 Gunduz (10.1016/j.eswa.2025.126503_b40) 2021; 66 Cavallo (10.1016/j.eswa.2025.126503_b23) 2019; 63 Alwajih (10.1016/j.eswa.2025.126503_b12) 2022; 34 Almeida (10.1016/j.eswa.2025.126503_b11) 2019; 125 Li (10.1016/j.eswa.2025.126503_b65) 2017 Ni (10.1016/j.eswa.2025.126503_b74) 2009 Lee (10.1016/j.eswa.2025.126503_b62) 2018; 2 Das (10.1016/j.eswa.2025.126503_b28) 2009; 3 Mirjalili (10.1016/j.eswa.2025.126503_b70) 2013; 9 Kotsavasiloglou (10.1016/j.eswa.2025.126503_b56) 2017; 31 Yang (10.1016/j.eswa.2025.126503_b96) 2020 Tawhid (10.1016/j.eswa.2025.126503_b90) 2020; 11 Lees (10.1016/j.eswa.2025.126503_b63) 2009; 373 Al-Betar (10.1016/j.eswa.2025.126503_b3) 2021; 168 Li (10.1016/j.eswa.2025.126503_b64) 2021; 185 Gölcük (10.1016/j.eswa.2025.126503_b39) 2021; 167 Ramani (10.1016/j.eswa.2025.126503_b83) 2012; 2 Cunningham (10.1016/j.eswa.2025.126503_b27) 2021; 54 Mafarja (10.1016/j.eswa.2025.126503_b68) 2019; 117 Abdulhay (10.1016/j.eswa.2025.126503_b1) 2018; 83 Pasha (10.1016/j.eswa.2025.126503_b77) 2020; 8 aq (10.1016/j.eswa.2025.126503_b15) 2019; 7 Piri (10.1016/j.eswa.2025.126503_b80) 2021; 135 Kalia (10.1016/j.eswa.2025.126503_b53) 2015; 386 Sehgal (10.1016/j.eswa.2025.126503_b86) 2020; 2 Klucken (10.1016/j.eswa.2025.126503_b55) 2013; 8 Bloem (10.1016/j.eswa.2025.126503_b20) 2021; 397 Hussain (10.1016/j.eswa.2025.126503_b49) 2021; 176 Alweshah (10.1016/j.eswa.2025.126503_b13) 2020; 1 Dokeroglu (10.1016/j.eswa.2025.126503_b34) 2022; 34 Cai (10.1016/j.eswa.2025.126503_b21) 2018; 2018 Tripathy (10.1016/j.eswa.2025.126503_b91) 2022; 2022 10.1016/j.eswa.2025.126503_b29 Persson (10.1016/j.eswa.2025.126503_b78) 2019; 132 Ali (10.1016/j.eswa.2025.126503_b8) 2019; 7 Batista (10.1016/j.eswa.2025.126503_b18) 2002; 87 Ali (10.1016/j.eswa.2025.126503_b7) 2018; 363 Alabool (10.1016/j.eswa.2025.126503_b6) 2021; 33 Narmatha (10.1016/j.eswa.2025.126503_b73) 2023; 79 Bind (10.1016/j.eswa.2025.126503_b19) 2015; 6 Al-Madi (10.1016/j.eswa.2025.126503_b5) 2019; 10 Lan (10.1016/j.eswa.2025.126503_b59) 2014; 34 10.1016/j.eswa.2025.126503_b41 Kumar (10.1016/j.eswa.2025.126503_b57) 2023; 226 Cigdem (10.1016/j.eswa.2025.126503_b26) 2018; 309 Jangir (10.1016/j.eswa.2025.126503_b52) 2021; 186 Perumal (10.1016/j.eswa.2025.126503_b79) 2016; 2 Holland (10.1016/j.eswa.2025.126503_b47) 1992; 267 Eesa (10.1016/j.eswa.2025.126503_b36) 2013; 4 |
| References_xml | – volume: 24 start-page: 201 year: 2019 end-page: 216 ident: b48 article-title: A survey of automatic parameter tuning methods for metaheuristics publication-title: IEEE Transactions on Evolutionary Computation – volume: 78 start-page: 2793 year: 2022 end-page: 2818 ident: b14 article-title: Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud computing publication-title: Journal of Supercomputing – volume: 11 start-page: 573 year: 2020 end-page: 602 ident: b90 article-title: Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm publication-title: International Journal of Machine Learning and Cybernetics – reference: (pp. 1–11). – volume: 8 start-page: 941 year: 2017 end-page: 954 ident: b85 article-title: Detection of freezing of gait for parkinson’s disease patients with multi-sensor device and Gaussian neural networks publication-title: International Journal of Machine Learning and Cybernetics – volume: 4 start-page: 1 year: 2016 end-page: 9 ident: b17 article-title: An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine publication-title: Parkinson’s Disease – volume: 54 start-page: 1 year: 2021 end-page: 25 ident: b27 article-title: K-Nearest neighbour classifiers-A tutorial publication-title: ACM Computing Surveys (CSUR) – volume: 7 start-page: 86 year: 2006 end-page: 112 ident: b60 article-title: Machine learning in bioinformatics publication-title: Briefings in Bioinformatics – start-page: 163 year: 2020 end-page: 174 ident: b96 article-title: Firefly algorithm publication-title: Swarm Intelligence Algorithms – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: b37 article-title: A comprehensive review of firefly algorithms publication-title: Swarm and Evolutionary Computation – start-page: 167 year: 2014 end-page: 170 ident: b95 article-title: Fruit fly optimization algorithm publication-title: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms – volume: 76 start-page: 7026 year: 2020 end-page: 7046 ident: b33 article-title: Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization publication-title: Journal of Supercomputing – volume: 373 start-page: 2055 year: 2009 end-page: 2066 ident: b63 article-title: Parkinson’s disease publication-title: The Lancet – start-page: 57 year: 2019 end-page: 82 ident: b2 article-title: No free lunch theorem: A review publication-title: Approximation and Optimization: Algorithms, Complexity and Applications – volume: 137 start-page: 22 year: 2019 end-page: 28 ident: b9 article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection publication-title: Expert Systems with Applications – volume: 2022 year: 2022 ident: b91 article-title: Harris hawk optimization: a survey on variants and applications publication-title: Computational Intelligence and Neuroscience – volume: 44 start-page: 311 year: 2015 end-page: 340 ident: b30 article-title: Nature inspired feature selection meta-heuristics publication-title: Artificial Intelligence Review – volume: 2 start-page: 2277 year: 2012 ident: b83 article-title: Feature relevance analysis and classification of parkinson disease tele-monitoring data through data mining techniques publication-title: Journal of Advanced Research in Computer Science and Software Engineering – volume: 4 start-page: 1978 year: 2013 end-page: 1986 ident: b36 article-title: Cuttlefish algorithm-a novel bio-inspired optimization algorithm publication-title: International Journal of Scientific & Engineering Research – volume: 44 start-page: 710 year: 2011 end-page: 718 ident: b92 article-title: Modified cuckoo search: a new gradient free optimisation algorithm publication-title: Chaos, Solitons & Fractals – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b94 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 10 year: 2019 ident: b16 article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution publication-title: Journal of Machine Learning and Cybernetics – volume: 49 start-page: 113 year: 2019 end-page: 123 ident: b61 article-title: Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: A comparison of 11 methods versus expert consensus publication-title: Biomedical Signal Processing and Control – reference: , – volume: 167 year: 2021 ident: b39 article-title: Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems publication-title: Expert Systems with Applications – volume: 87 start-page: 251 year: 2002 end-page: 260 ident: b18 article-title: A study of K-nearest neighbour as an imputation method publication-title: Soft Computing Systems - Design, Management and Applications – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: b68 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications – volume: 132 year: 2019 ident: b78 article-title: Airborne contamination and surgical site infection: could a thirty-year-old idea help solve the problem? publication-title: Medical Hypotheses – volume: 68 start-page: 412 year: 2018 end-page: 424 ident: b44 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Computers & Electrical Engineering – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b46 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – volume: 8 start-page: 1 year: 2020 end-page: 22 ident: b77 article-title: Io-inspired dimensionality reduction for Parkinson’s disease (PD) classification publication-title: Health Information Science and Systems – volume: 139 start-page: 171 year: 2017 end-page: 179 ident: b89 article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease publication-title: Computer Methods and Programs in Biomedicine – volume: 77 start-page: 14090 year: 2021 end-page: 14129 ident: b66 article-title: An improved Harris hawks optimizer for job-shop scheduling problem publication-title: Journal of Supercomputing – volume: 25 start-page: 663 year: 2014 end-page: 681 ident: b71 article-title: Binary bat algorithm publication-title: Neural Computing and Applications – volume: 246 year: 2022 ident: b82 article-title: Binary grey wolf optimizer with mutation and adaptive K-nearest neighbour for feature selection in Parkinson’s disease diagnosis publication-title: Knowledge-Based Systems – start-page: 175 year: 2020 end-page: 201 ident: b45 article-title: Multi-objective particle swarm optimization: theory, literature review, and application in feature selection for medical diagnosis publication-title: Evolutionary Machine Learning Techniques: Algorithms and Applications – volume: 34 start-page: 17007 year: 2022 end-page: 17036 ident: b10 article-title: A novel epsilon-dominance Harris Hawks optimizer for multi-objective optimization in engineering design problems publication-title: Neural Computing and Applications – reference: (pp. 503–507). – volume: 139 start-page: 119 year: 2018 end-page: 131 ident: b22 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowledge-Based Systems – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. – volume: 202 year: 2022 ident: b67 article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection publication-title: Expert Systems with Applications – reference: Al-Fatlawi, A. H., Jabardi, M. H., & Ling, S. H. (2016). Efficient diagnosis system for Parkinson’s disease using deep belief network. In – volume: 6 start-page: 1648 year: 2015 end-page: 1655 ident: b19 article-title: A survey of machine learning-based approaches for Parkinson disease prediction publication-title: International Journal of Computer Science and Information Technology – volume: 186 year: 2021 ident: b52 article-title: Elitist non-dominated sorting harris hawks optimization: Framework and developments for multi-objective problems publication-title: Expert Systems with Applications – volume: 309 start-page: 81 year: 2018 end-page: 90 ident: b26 article-title: Performance analysis of different classification algorithms using different feature selection methods on Parkinson’s disease detection publication-title: Journal of Neuroscience Methods – volume: 1 start-page: 1 year: 2020 end-page: 15 ident: b13 article-title: The monarch butterfly optimization algorithm for solving feature selection problems publication-title: Neural Computing and Applications – volume: 185 year: 2021 ident: b64 article-title: Enhanced Harris hawks optimization with multi-strategy for global optimization tasks publication-title: Expert Systems with Applications – start-page: 1 year: 2014 end-page: 5 ident: b88 article-title: Early detection of Parkinson’s disease through voice publication-title: 2014 IEEE International Conference on Advances in Engineering and Technology – volume: 79 start-page: 5576 year: 2023 end-page: 5614 ident: b24 article-title: Harris hawks optimization based on global cross-variation and tent mapping publication-title: Journal of Supercomputing – volume: 36 start-page: 7033 year: 2009 end-page: 7039 ident: b25 article-title: A vision-based analysis system for gait recognition in patients with Parkinson’s disease publication-title: Expert Systems with Applications – volume: 31 start-page: 174 year: 2017 end-page: 180 ident: b56 article-title: Machine learning-based classification of simple drawing movements in Parkinson’s disease publication-title: Biomedical Signal Processing and Control – volume: 125 start-page: 55 year: 2019 end-page: 62 ident: b11 article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques publication-title: Pattern Recognition Letters – volume: 63 start-page: 111 year: 2019 end-page: 116 ident: b23 article-title: Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning publication-title: Parkinsonism & Related Disorders – volume: 168 year: 2021 ident: b3 article-title: Survival exploration strategies for Harris hawks optimizer publication-title: Expert Systems with Applications – volume: 38 start-page: 400 year: 2017 end-page: 410 ident: b93 article-title: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease publication-title: Biomedical Signal Processing and Control – volume: 1 start-page: 31 year: 2020 end-page: 41 ident: b97 article-title: Multi-objective harris hawks optimizer for multiobjective optimization problems publication-title: BSEU Journal of Engineering Research and Technology – volume: 176 year: 2021 ident: b49 article-title: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Systems with Applications – volume: 135 year: 2021 ident: b80 article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection publication-title: Computers in Biology and Medicine – reference: (pp. 1942–1948). – volume: 2 start-page: 168 year: 2016 end-page: 174 ident: b79 article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors publication-title: Ict Express – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b70 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm and Evolutionary Computation – volume: 79 start-page: 1374 year: 2023 end-page: –1397 ident: b73 article-title: Ovarian cysts classification using novel deep reinforcement learning with Harris Hawks optimization method publication-title: Journal of Supercomputing – reference: Rajalaxmi, R. R., & Kaavya, S. (2017). Feature selection for identifying Parkinson’s disease using binary Grey Wolf Optimization. In – volume: 11 start-page: 1423 year: 2020 end-page: 1451 ident: b72 article-title: Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem publication-title: International Journal of Machine Learning and Cybernetics – volume: 10 start-page: 3445 year: 2019 end-page: 3465 ident: b5 article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems publication-title: International Journal of Machine Learning and Cybernetics – volume: 3 start-page: 23 year: 2009 end-page: 55 ident: b28 article-title: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications publication-title: Foundations of Computational Intelligence – volume: 38 start-page: 1 year: 2018 end-page: 15 ident: b75 article-title: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques publication-title: Biocybernetics and Biomedical Engineering – volume: 52 start-page: 36 year: 2018 end-page: 48 ident: b43 article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease publication-title: Cognitive Systems Research – volume: 397 start-page: 2284 year: 2021 end-page: 2303 ident: b20 article-title: Parkinson’s disease publication-title: The Lancet – volume: 155 year: 2020 ident: b84 article-title: An efficient Harris hawks-inspired image segmentation method publication-title: Expert Systems with Applications – volume: 158 year: 2020 ident: b42 article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis publication-title: Expert Systems with Applications – volume: 227 year: 2021 ident: b31 article-title: A robust multiobjective Harris’ Hawks Optimization algorithm for the binary classification problem publication-title: Knowledge-Based Systems – volume: 2018 year: 2018 ident: b21 article-title: An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach publication-title: Computational and Mathematical Methods in Medicine – reference: Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In – volume: 34 start-page: 305 year: 2014 end-page: 312 ident: b59 article-title: Early diagnosis of parkinson’s disease using a smartphone publication-title: Procedia Computer Science – volume: 4 start-page: 211 year: 2014 end-page: 229 ident: b58 article-title: Feature selection: a literature review publication-title: SmartCR – reference: (pp. 986–996). – volume: 34 start-page: 18341 year: 2022 end-page: 18368 ident: b34 article-title: An island parallel Harris hawks optimization algorithm publication-title: Neural Computing and Applications – volume: 7 start-page: 37718 year: 2019 end-page: 37734 ident: b15 article-title: Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings publication-title: IEEE Access – reference: Dash, S., Thulasiram, R., & Thulasiraman, P. (2017). An enhanced chaos-based firefly model for Parkinson’s disease diagnosis and classification. In – start-page: 1 year: 2009 end-page: 4 ident: b74 article-title: A gait recognition method based on KFDA and SVM publication-title: 2009 IEEE international workshop on intelligent systems and applications – volume: 8 year: 2013 ident: b55 article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease publication-title: PLoS One – volume: 8 start-page: 52815 year: 2020 end-page: 52829 ident: b87 article-title: Optimal placement of DGs in distribution system using an improved harris hawks optimizer based on single-and multi-objective approaches publication-title: IEEE Access – volume: 363 start-page: 1783 year: 2018 end-page: 1793 ident: b7 article-title: Parkinson’s disease publication-title: The Lancet – volume: 386 start-page: 896 year: 2015 end-page: 912 ident: b53 article-title: Parkinson’s disease publication-title: The Lancet – volume: 2 start-page: 462 year: 2018 end-page: 466 ident: b62 article-title: A wearable device of gait tracking for Parkinson’s disease patients publication-title: 2018 IEEE international conference on machine learning and cybernetics – volume: 66 year: 2021 ident: b40 article-title: An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification publication-title: Biomedical Signal Processing and Control – volume: 226 year: 2023 ident: b57 article-title: Enhanced Harris hawk optimizer for hydrothermal generation scheduling with cascaded reservoirs publication-title: Expert Systems with Applications – volume: 37 start-page: 3741 year: 2021 end-page: 3770 ident: b98 article-title: Boosted binary harris hawks optimizer and feature selection publication-title: Engineering with Computers – volume: 33 start-page: 8939 year: 2021 end-page: 8980 ident: b6 article-title: Harris hawks optimization: a comprehensive review of recent variants and applications publication-title: Neural Computing and Applications – reference: (pp. 159–164). – reference: Malkauthekar, M. D. (2013). Analysis of Euclidean distance and Manhattan distance measure in Face recognition. In – volume: 494 start-page: 269 year: 2022 end-page: 296 ident: b32 article-title: A comprehensive survey on recent metaheuristics for feature selection publication-title: Neurocomputing – year: 2017 ident: b65 article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Computational and Mathematical Methods in Medicine – volume: 24 year: 2023 ident: b38 article-title: A multi-objective mutation-based dynamic Harris Hawks optimization for botnet detection in IoT publication-title: Internet of Things – reference: , In – volume: 96 year: 2020 ident: b35 article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting publication-title: Applied Soft Computing – volume: 11 start-page: 1919 year: 2022 ident: b50 article-title: Recent advances in harris hawks optimization: A comparative study and applications publication-title: Electronics – reference: (pp. 1324–1330). – volume: 34 start-page: 19377 year: 2022 end-page: 19395 ident: b12 article-title: Hybrid binary whale with harris hawks for feature selection publication-title: Neural Computing and Applications – volume: 7 start-page: 116480 year: 2019 end-page: 116489 ident: b8 article-title: Eliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model publication-title: IEEE Access – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b47 article-title: Genetic algorithms publication-title: Scientific American – volume: 2 start-page: 1 year: 2020 end-page: 18 ident: b86 article-title: Optimized grasshopper algorithm for diagnosis of Parkinson’s disease publication-title: SN Applied Sciences – volume: 83 start-page: 366 year: 2018 end-page: 373 ident: b1 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Generation Computer Systems – volume: 110 start-page: 182 year: 2018 end-page: 190 ident: b76 article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease publication-title: Expert Systems with Applications – volume: 12 start-page: 5248 year: 2020 ident: b51 article-title: A Harris Hawks optimization based single-and multi-objective optimal power flow considering environmental emission publication-title: Sustainability – volume: 3 start-page: 23 year: 2009 ident: 10.1016/j.eswa.2025.126503_b28 article-title: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications publication-title: Foundations of Computational Intelligence – volume: 227 year: 2021 ident: 10.1016/j.eswa.2025.126503_b31 article-title: A robust multiobjective Harris’ Hawks Optimization algorithm for the binary classification problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107219 – volume: 494 start-page: 269 year: 2022 ident: 10.1016/j.eswa.2025.126503_b32 article-title: A comprehensive survey on recent metaheuristics for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.083 – volume: 78 start-page: 2793 issue: 2 year: 2022 ident: 10.1016/j.eswa.2025.126503_b14 article-title: Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud computing publication-title: Journal of Supercomputing doi: 10.1007/s11227-021-03977-0 – volume: 96 year: 2020 ident: 10.1016/j.eswa.2025.126503_b35 article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106620 – ident: 10.1016/j.eswa.2025.126503_b41 doi: 10.1007/978-3-540-39964-3_62 – volume: 373 start-page: 2055 issue: 9680 year: 2009 ident: 10.1016/j.eswa.2025.126503_b63 article-title: Parkinson’s disease publication-title: The Lancet doi: 10.1016/S0140-6736(09)60492-X – volume: 12 start-page: 5248 issue: 13 year: 2020 ident: 10.1016/j.eswa.2025.126503_b51 article-title: A Harris Hawks optimization based single-and multi-objective optimal power flow considering environmental emission publication-title: Sustainability doi: 10.3390/su12135248 – volume: 185 year: 2021 ident: 10.1016/j.eswa.2025.126503_b64 article-title: Enhanced Harris hawks optimization with multi-strategy for global optimization tasks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115499 – volume: 11 start-page: 573 year: 2020 ident: 10.1016/j.eswa.2025.126503_b90 article-title: Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-019-00996-5 – volume: 38 start-page: 400 year: 2017 ident: 10.1016/j.eswa.2025.126503_b93 article-title: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.06.015 – volume: 34 start-page: 19377 issue: 21 year: 2022 ident: 10.1016/j.eswa.2025.126503_b12 article-title: Hybrid binary whale with harris hawks for feature selection publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07522-9 – volume: 386 start-page: 896 issue: 9996 year: 2015 ident: 10.1016/j.eswa.2025.126503_b53 article-title: Parkinson’s disease publication-title: The Lancet doi: 10.1016/S0140-6736(14)61393-3 – volume: 63 start-page: 111 year: 2019 ident: 10.1016/j.eswa.2025.126503_b23 article-title: Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning publication-title: Parkinsonism & Related Disorders doi: 10.1016/j.parkreldis.2019.02.028 – volume: 83 start-page: 366 year: 2018 ident: 10.1016/j.eswa.2025.126503_b1 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.02.009 – volume: 2022 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.126503_b91 article-title: Harris hawk optimization: a survey on variants and applications publication-title: Computational Intelligence and Neuroscience – volume: 37 start-page: 3741 year: 2021 ident: 10.1016/j.eswa.2025.126503_b98 article-title: Boosted binary harris hawks optimizer and feature selection publication-title: Engineering with Computers doi: 10.1007/s00366-020-01028-5 – volume: 79 start-page: 5576 year: 2023 ident: 10.1016/j.eswa.2025.126503_b24 article-title: Harris hawks optimization based on global cross-variation and tent mapping publication-title: Journal of Supercomputing doi: 10.1007/s11227-022-04869-7 – ident: 10.1016/j.eswa.2025.126503_b29 doi: 10.1109/ICIT.2017.43 – volume: 77 start-page: 14090 issue: 12 year: 2021 ident: 10.1016/j.eswa.2025.126503_b66 article-title: An improved Harris hawks optimizer for job-shop scheduling problem publication-title: Journal of Supercomputing doi: 10.1007/s11227-021-03834-0 – volume: 155 year: 2020 ident: 10.1016/j.eswa.2025.126503_b84 article-title: An efficient Harris hawks-inspired image segmentation method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113428 – volume: 44 start-page: 311 year: 2015 ident: 10.1016/j.eswa.2025.126503_b30 article-title: Nature inspired feature selection meta-heuristics publication-title: Artificial Intelligence Review doi: 10.1007/s10462-015-9428-8 – volume: 8 start-page: 941 year: 2017 ident: 10.1016/j.eswa.2025.126503_b85 article-title: Detection of freezing of gait for parkinson’s disease patients with multi-sensor device and Gaussian neural networks publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-015-0480-0 – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2025.126503_b13 article-title: The monarch butterfly optimization algorithm for solving feature selection problems publication-title: Neural Computing and Applications – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2025.126503_b94 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 10 year: 2019 ident: 10.1016/j.eswa.2025.126503_b16 article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution publication-title: Journal of Machine Learning and Cybernetics – ident: 10.1016/j.eswa.2025.126503_b4 doi: 10.1109/CEC.2016.7743941 – volume: 31 start-page: 174 year: 2017 ident: 10.1016/j.eswa.2025.126503_b56 article-title: Machine learning-based classification of simple drawing movements in Parkinson’s disease publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.08.003 – volume: 135 year: 2021 ident: 10.1016/j.eswa.2025.126503_b80 article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104558 – volume: 7 start-page: 116480 year: 2019 ident: 10.1016/j.eswa.2025.126503_b8 article-title: Eliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932037 – volume: 49 start-page: 113 year: 2019 ident: 10.1016/j.eswa.2025.126503_b61 article-title: Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: A comparison of 11 methods versus expert consensus publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2018.10.002 – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2025.126503_b86 article-title: Optimized grasshopper algorithm for diagnosis of Parkinson’s disease publication-title: SN Applied Sciences doi: 10.1007/s42452-020-2826-9 – volume: 2 start-page: 462 year: 2018 ident: 10.1016/j.eswa.2025.126503_b62 article-title: A wearable device of gait tracking for Parkinson’s disease patients – volume: 2 start-page: 168 issue: 4 year: 2016 ident: 10.1016/j.eswa.2025.126503_b79 article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors publication-title: Ict Express doi: 10.1016/j.icte.2016.10.005 – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2025.126503_b88 article-title: Early detection of Parkinson’s disease through voice – ident: 10.1016/j.eswa.2025.126503_b81 doi: 10.2139/ssrn.3131662 – year: 2017 ident: 10.1016/j.eswa.2025.126503_b65 article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2017/9512741 – volume: 4 start-page: 211 issue: 3 year: 2014 ident: 10.1016/j.eswa.2025.126503_b58 article-title: Feature selection: a literature review publication-title: SmartCR doi: 10.6029/smartcr.2014.03.007 – volume: 309 start-page: 81 year: 2018 ident: 10.1016/j.eswa.2025.126503_b26 article-title: Performance analysis of different classification algorithms using different feature selection methods on Parkinson’s disease detection publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2018.08.017 – volume: 79 start-page: 1374 year: 2023 ident: 10.1016/j.eswa.2025.126503_b73 article-title: Ovarian cysts classification using novel deep reinforcement learning with Harris Hawks optimization method publication-title: Journal of Supercomputing doi: 10.1007/s11227-022-04709-8 – volume: 176 year: 2021 ident: 10.1016/j.eswa.2025.126503_b49 article-title: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114778 – volume: 54 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.eswa.2025.126503_b27 article-title: K-Nearest neighbour classifiers-A tutorial publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3459665 – volume: 7 start-page: 37718 year: 2019 ident: 10.1016/j.eswa.2025.126503_b15 article-title: Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906350 – volume: 34 start-page: 305 year: 2014 ident: 10.1016/j.eswa.2025.126503_b59 article-title: Early diagnosis of parkinson’s disease using a smartphone publication-title: Procedia Computer Science doi: 10.1016/j.procs.2014.07.028 – volume: 226 year: 2023 ident: 10.1016/j.eswa.2025.126503_b57 article-title: Enhanced Harris hawk optimizer for hydrothermal generation scheduling with cascaded reservoirs publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120270 – volume: 34 start-page: 17007 issue: 19 year: 2022 ident: 10.1016/j.eswa.2025.126503_b10 article-title: A novel epsilon-dominance Harris Hawks optimizer for multi-objective optimization in engineering design problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07352-9 – volume: 8 start-page: 52815 year: 2020 ident: 10.1016/j.eswa.2025.126503_b87 article-title: Optimal placement of DGs in distribution system using an improved harris hawks optimizer based on single-and multi-objective approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980245 – volume: 158 year: 2020 ident: 10.1016/j.eswa.2025.126503_b42 article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113510 – volume: 68 start-page: 412 year: 2018 ident: 10.1016/j.eswa.2025.126503_b44 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2018.04.014 – start-page: 57 year: 2019 ident: 10.1016/j.eswa.2025.126503_b2 article-title: No free lunch theorem: A review publication-title: Approximation and Optimization: Algorithms, Complexity and Applications doi: 10.1007/978-3-030-12767-1_5 – volume: 2 start-page: 2277 issue: 3 year: 2012 ident: 10.1016/j.eswa.2025.126503_b83 article-title: Feature relevance analysis and classification of parkinson disease tele-monitoring data through data mining techniques publication-title: Journal of Advanced Research in Computer Science and Software Engineering – volume: 24 start-page: 201 issue: 2 year: 2019 ident: 10.1016/j.eswa.2025.126503_b48 article-title: A survey of automatic parameter tuning methods for metaheuristics publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2921598 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2025.126503_b47 article-title: Genetic algorithms publication-title: Scientific American doi: 10.1038/scientificamerican0792-66 – volume: 11 start-page: 1919 issue: 12 year: 2022 ident: 10.1016/j.eswa.2025.126503_b50 article-title: Recent advances in harris hawks optimization: A comparative study and applications publication-title: Electronics doi: 10.3390/electronics11121919 – volume: 246 year: 2022 ident: 10.1016/j.eswa.2025.126503_b82 article-title: Binary grey wolf optimizer with mutation and adaptive K-nearest neighbour for feature selection in Parkinson’s disease diagnosis publication-title: Knowledge-Based Systems – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2025.126503_b46 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 34 start-page: 18341 issue: 21 year: 2022 ident: 10.1016/j.eswa.2025.126503_b34 article-title: An island parallel Harris hawks optimization algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07367-2 – ident: 10.1016/j.eswa.2025.126503_b54 doi: 10.1109/ICNN.1995.488968 – volume: 6 start-page: 1648 issue: 2 year: 2015 ident: 10.1016/j.eswa.2025.126503_b19 article-title: A survey of machine learning-based approaches for Parkinson disease prediction publication-title: International Journal of Computer Science and Information Technology – volume: 66 year: 2021 ident: 10.1016/j.eswa.2025.126503_b40 article-title: An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102452 – volume: 24 year: 2023 ident: 10.1016/j.eswa.2025.126503_b38 article-title: A multi-objective mutation-based dynamic Harris Hawks optimization for botnet detection in IoT publication-title: Internet of Things doi: 10.1016/j.iot.2023.100952 – volume: 125 start-page: 55 year: 2019 ident: 10.1016/j.eswa.2025.126503_b11 article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.04.005 – volume: 38 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eswa.2025.126503_b75 article-title: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2017.09.002 – volume: 1 start-page: 31 issue: 1 year: 2020 ident: 10.1016/j.eswa.2025.126503_b97 article-title: Multi-objective harris hawks optimizer for multiobjective optimization problems publication-title: BSEU Journal of Engineering Research and Technology – volume: 4 start-page: 1978 issue: 9 year: 2013 ident: 10.1016/j.eswa.2025.126503_b36 article-title: Cuttlefish algorithm-a novel bio-inspired optimization algorithm publication-title: International Journal of Scientific & Engineering Research – volume: 363 start-page: 1783 issue: 9423 year: 2018 ident: 10.1016/j.eswa.2025.126503_b7 article-title: Parkinson’s disease publication-title: The Lancet – volume: 76 start-page: 7026 year: 2020 ident: 10.1016/j.eswa.2025.126503_b33 article-title: Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization publication-title: Journal of Supercomputing doi: 10.1007/s11227-019-03127-7 – volume: 52 start-page: 36 year: 2018 ident: 10.1016/j.eswa.2025.126503_b43 article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.06.006 – volume: 139 start-page: 119 year: 2018 ident: 10.1016/j.eswa.2025.126503_b22 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.10.017 – start-page: 163 year: 2020 ident: 10.1016/j.eswa.2025.126503_b96 article-title: Firefly algorithm publication-title: Swarm Intelligence Algorithms doi: 10.1201/9780429422614-13 – volume: 13 start-page: 34 year: 2013 ident: 10.1016/j.eswa.2025.126503_b37 article-title: A comprehensive review of firefly algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.06.001 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2025.126503_b77 article-title: Io-inspired dimensionality reduction for Parkinson’s disease (PD) classification publication-title: Health Information Science and Systems doi: 10.1007/s13755-020-00104-w – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.eswa.2025.126503_b70 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2012.09.002 – volume: 132 year: 2019 ident: 10.1016/j.eswa.2025.126503_b78 article-title: Airborne contamination and surgical site infection: could a thirty-year-old idea help solve the problem? publication-title: Medical Hypotheses doi: 10.1016/j.mehy.2019.109351 – start-page: 167 year: 2014 ident: 10.1016/j.eswa.2025.126503_b95 article-title: Fruit fly optimization algorithm publication-title: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms – volume: 25 start-page: 663 year: 2014 ident: 10.1016/j.eswa.2025.126503_b71 article-title: Binary bat algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1525-5 – volume: 36 start-page: 7033 issue: 3 year: 2009 ident: 10.1016/j.eswa.2025.126503_b25 article-title: A vision-based analysis system for gait recognition in patients with Parkinson’s disease publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.08.076 – volume: 137 start-page: 22 year: 2019 ident: 10.1016/j.eswa.2025.126503_b9 article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.06.052 – volume: 397 start-page: 2284 issue: 10291 year: 2021 ident: 10.1016/j.eswa.2025.126503_b20 article-title: Parkinson’s disease publication-title: The Lancet doi: 10.1016/S0140-6736(21)00218-X – volume: 2018 year: 2018 ident: 10.1016/j.eswa.2025.126503_b21 article-title: An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2018/2396952 – start-page: 175 year: 2020 ident: 10.1016/j.eswa.2025.126503_b45 article-title: Multi-objective particle swarm optimization: theory, literature review, and application in feature selection for medical diagnosis publication-title: Evolutionary Machine Learning Techniques: Algorithms and Applications – volume: 44 start-page: 710 issue: 9 year: 2011 ident: 10.1016/j.eswa.2025.126503_b92 article-title: Modified cuckoo search: a new gradient free optimisation algorithm publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2011.06.004 – volume: 87 start-page: 251 year: 2002 ident: 10.1016/j.eswa.2025.126503_b18 article-title: A study of K-nearest neighbour as an imputation method publication-title: Soft Computing Systems - Design, Management and Applications – volume: 8 issue: 2 year: 2013 ident: 10.1016/j.eswa.2025.126503_b55 article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0056956 – volume: 168 year: 2021 ident: 10.1016/j.eswa.2025.126503_b3 article-title: Survival exploration strategies for Harris hawks optimizer publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114243 – volume: 117 start-page: 267 year: 2019 ident: 10.1016/j.eswa.2025.126503_b68 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.015 – volume: 110 start-page: 182 year: 2018 ident: 10.1016/j.eswa.2025.126503_b76 article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.003 – volume: 33 start-page: 8939 year: 2021 ident: 10.1016/j.eswa.2025.126503_b6 article-title: Harris hawks optimization: a comprehensive review of recent variants and applications publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-05720-5 – ident: 10.1016/j.eswa.2025.126503_b69 doi: 10.1049/cp.2013.2636 – volume: 167 year: 2021 ident: 10.1016/j.eswa.2025.126503_b39 article-title: Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114202 – volume: 4 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2025.126503_b17 article-title: An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine publication-title: Parkinson’s Disease – volume: 7 start-page: 86 issue: 1 year: 2006 ident: 10.1016/j.eswa.2025.126503_b60 article-title: Machine learning in bioinformatics publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbk007 – volume: 10 start-page: 3445 year: 2019 ident: 10.1016/j.eswa.2025.126503_b5 article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-019-00931-8 – volume: 202 year: 2022 ident: 10.1016/j.eswa.2025.126503_b67 article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117255 – volume: 11 start-page: 1423 year: 2020 ident: 10.1016/j.eswa.2025.126503_b72 article-title: Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-019-01047-9 – volume: 139 start-page: 171 year: 2017 ident: 10.1016/j.eswa.2025.126503_b89 article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2016.07.029 – volume: 186 year: 2021 ident: 10.1016/j.eswa.2025.126503_b52 article-title: Elitist non-dominated sorting harris hawks optimization: Framework and developments for multi-objective problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115747 – start-page: 1 year: 2009 ident: 10.1016/j.eswa.2025.126503_b74 article-title: A gait recognition method based on KFDA and SVM |
| SSID | ssj0017007 |
| Score | 2.4846487 |
| Snippet | Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 126503 |
| SubjectTerms | Feature selection Harris Hawk KNN Multi-objective Parkinson’s disease |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IF734NuIrPXjTArvb7sLREAkx0YuScNv0sRUQWAJLiBfj3_Dv-UucobtEDxrjadOmTTfT7cw325lvCLnwGuBxKRuySAqfcaPqTEEX85H5xQ-bKpD4a-DuPux0-W1P9EqkVeTCYFhlrvudTl9p67ynlkuzNh0Mag8ADsAcgmsn0GYLZPzkPMIqBtXXdZgH0s9Fjm8vYjg6T5xxMV7JfIncQ76oej5AleAn47SxmEzly1KORl-MT3uHbOWokV67F9slpWSyR7aLigw0P6D7JF7l07JUDZ0eox05g1MMj-UzHSeZ7CcLR81M5egpnQ2y_nhOAbdSwIHUuLA7GJ9aiunQq8ywj7f3Oc3vcQ5It33z2OqwvIQC04EfZEyB7dHGyNALARhIYYXWQioT1UMFyCRUvJHUubQBlj7XSVPrQBoNXqG0MmoCuDsk5Uk6SY4I1cpq9PYaShnOrW14yAXIlWfqRghhK-SykF08dUwZcRFCNoxR0jFKOnaSrhBRiDf-tt8xqPJf512t9-IPyxz_c5kTsoktvDbyxSkpZ7NFcgboI1Pnq8_rE3mi2Og priority: 102 providerName: Elsevier |
| Title | Multi-objective Harris Hawk metaheuristic algorithms for the diagnosis of Parkinson’s disease |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.126503 https://doi.org/10.1016/j.eswa.2025.126503 |
| UnpaywallVersion | publishedVersion |
| Volume | 270 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8CF8RTPKQdukGl9JO2OE2IaICYOTIJTlUcDjLGhrdMEB8Tf4O_xS3CWDgECBKeqVdqqdlJ_ju3PALtejB6XNJxGgvk01LJKJV6ivmV-8XlNBsJuDZy2eLMdHl-wi5wmx9bCfIrfT_Kw0uHY8gP5rOL5CCeCWShyhri7AMV266x-6cj0Iho6ymUvjgLKcdblFTLfP-QnKzQ36t2Lh7Hodj9YmUbJtSsaTsgJbXLJbWWUyYp6_ELd-LcPWISFHGySupsdSzCT9pahNG3kQPJ1vQLJpAyX9mXH_f5IUwxw8eNhfEvu0kxcpyPH6ExE96o_uMmu74YE4S5B-Ei0y9bD8X1DbBX1pKDs9fllSPLwzyq0G4fnB02ad16gKvCDjEo0WUprwT2OeEIww5RiQuqoyiUCGi7DOK2GwgS2Y7pKa0oFQit0JoURUQ0x4RoUev1eug5ESaOskxhLqcPQmNizFIKh9HRVM8bMBuxNNZHcO4KNZJp51kms7BIru8TJbgPYVFlJDhGc6U9Q7r_et_-u2T-8ZvN_w7dg3p7ZIJPPtqGQDUbpDmKVTJZhtvLklaFYPzpptsr5lH0Dpx3mgg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFG0UF7jxbcRnF-60wDw6A0tDJKjARkjYNX1MBeQVGELcGH_D3_NLvKUzRBca42qSTiednE7vPXd67ylCl04JIi6hAxJy6hJfiSIR0ERco_ziBmXhcfNroNEMam3_vkM7a6iS1sKYtMrE9lubvrTWSUshQbMw6fUKj0AOwB1CaEeNz6beOtrwqRuaCCz_usrzMPpzoRXcC4npnlTO2CSvaLYw4kMuzTsucBXvJ--UnY8m_GXBB4Mv3qe6g7YS2ohv7JvtorVotIe20yMZcLJC9xFbFtSSsehbQ4ZrfArLGC6LZzyMYt6N5labGfPB03jai7vDGQbiioEIYmXz7qD_WGNTD70sDft4e5_hZCPnALWrt61KjSRnKBDpuV5MBDgfqRQPnACYAaeaSkm5UGExEEBNAuGXoqLPtWfOPpdRWUqPKwlhIdc8LAO7O0SZ0XgUHSEshZYm3CsJoXxf65JjxAB94aiiopTqHLpKsWMTK5XB0hyyPjNIM4M0s0jnEE3hZd8mnIEt__W569Vc_GGY438Oc4GytVajzup3zYcTtGnumD0kl56iTDydR2dARWJxvvzUPgF0V9wL |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHPQiPiO-sgdvuqSv3ZYjMRJiIvEgCZ6afXRFBEqghOjJv-Hf85c4y7ZGjRo8NW22bTqz2_lmZ-YbhE7dCDwuoRkJOfVIoIRDBFwinmF-8Vhd-NxsDVy3WasTXHVpN6fJMbUwX-L3izysZDo3_EAerbkewAl_FZUZBdxdQuVO-6ZxZ8n0QhJYymU3Cn3CYNblFTI_P-Q3K7Q2G43505wPBp-sTLNi2xVNF-SEJrnksTbLRE0-f6NuXO4DNtFGDjZxw86OLbSSjLZRpWjkgPN1vYPiRRkuSUXf_v5wi09g8cNh_oiHScZ7ycwyOmM-uE8nD1lvOMUAdzHAR6xsth6MTzU2VdSLgrK3l9cpzsM_u6jTvLy9aJG88wKRvudnRIDJkkpx5jLAE5xqKiXlQoUOEwBomAiixAm49k3HdJnUpfS5kuBMcs3DOmDCPVQapaNkH2EptDROYiSECgKtI9dQCAbCVY6ilOoqOis0EY8twUZcZJ71YyO72MgutrKrIlooK84hgjX9Mcj9z_vOPzS7xGsO_jf8EK2bMxNk8ugRKmWTWXIMWCUTJ_kkfQcimOP2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Harris+Hawk+metaheuristic+algorithms+for+the+diagnosis+of+Parkinson%E2%80%99s+disease&rft.jtitle=Expert+systems+with+applications&rft.au=Dokeroglu%2C+Tansel&rft.au=Kucukyilmaz%2C+Tayfun&rft.date=2025-04-25&rft.issn=0957-4174&rft.volume=270&rft.spage=126503&rft_id=info:doi/10.1016%2Fj.eswa.2025.126503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |