Multi-objective Harris Hawk metaheuristic algorithms for the diagnosis of Parkinson’s disease

Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to diagnose Parkinson’s disease, and selecting the best feature set remains an ongoing and difficult challenge. In this study, we introduce a new binar...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 270; p. 126503
Main Authors Dokeroglu, Tansel, Kucukyilmaz, Tayfun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.04.2025
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2025.126503

Cover

Abstract Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to diagnose Parkinson’s disease, and selecting the best feature set remains an ongoing and difficult challenge. In this study, we introduce a new binary Multi-objective Harris Hawk Optimization (MHHO) algorithm that combines an adaptive K-Nearest Neighbor (KNN) classifier with novel exploration and exploitation operators for this challenging task. In larger problem instances, where fitness evaluation is a bottleneck, this study proposes a parallel version of the technique that uses Message Passing Interfaces (MPI) to reduce computational complexity. Comprehensive comparisons with state-of-the-art algorithms, including Genetic Algorithm, Particle Swarm Optimization, Binary Bat, Cuckoo Search, and Grey Wolf Optimization, are performed. The results indicate that our proposed algorithms are consistently the most successful in the literature. Furthermore, our analysis provides new optimal solutions that have not previously been reported in the literature. For three of the four well-known datasets, our algorithm outperforms recent studies. Furthermore, the suggested approaches achieve more than 30% reduction in the total number of features across all datasets, thereby significantly lowering computational costs. •A parallel, multi-objective Harris-Hawks Optimization algorithm is proposed.•New exploration and exploitation operators are proposed for feature selection.•Improved result accuracy is attained as well as reduction in feature counts.•An adaptive KNN classifier is used by setting the K value at run-time.
AbstractList Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to diagnose Parkinson’s disease, and selecting the best feature set remains an ongoing and difficult challenge. In this study, we introduce a new binary Multi-objective Harris Hawk Optimization (MHHO) algorithm that combines an adaptive K-Nearest Neighbor (KNN) classifier with novel exploration and exploitation operators for this challenging task. In larger problem instances, where fitness evaluation is a bottleneck, this study proposes a parallel version of the technique that uses Message Passing Interfaces (MPI) to reduce computational complexity. Comprehensive comparisons with state-of-the-art algorithms, including Genetic Algorithm, Particle Swarm Optimization, Binary Bat, Cuckoo Search, and Grey Wolf Optimization, are performed. The results indicate that our proposed algorithms are consistently the most successful in the literature. Furthermore, our analysis provides new optimal solutions that have not previously been reported in the literature. For three of the four well-known datasets, our algorithm outperforms recent studies. Furthermore, the suggested approaches achieve more than 30% reduction in the total number of features across all datasets, thereby significantly lowering computational costs. •A parallel, multi-objective Harris-Hawks Optimization algorithm is proposed.•New exploration and exploitation operators are proposed for feature selection.•Improved result accuracy is attained as well as reduction in feature counts.•An adaptive KNN classifier is used by setting the K value at run-time.
ArticleNumber 126503
Author Dokeroglu, Tansel
Kucukyilmaz, Tayfun
Author_xml – sequence: 1
  givenname: Tansel
  orcidid: 0000-0003-1665-5928
  surname: Dokeroglu
  fullname: Dokeroglu, Tansel
  email: tansel.dokeroglu@tedu.edu.tr
  organization: TED University, Software Engineering Department, Ankara, Turkey
– sequence: 2
  givenname: Tayfun
  orcidid: 0000-0002-2551-4740
  surname: Kucukyilmaz
  fullname: Kucukyilmaz, Tayfun
  email: kucukyilmaz@rsm.nl
  organization: Erasmus University, Rotterdam School of Management, Rotterdam, Netherlands
BookMark eNqNkEFOwzAQRb0oEm3hAqxygQQ7TuJaYoMqoEhFsIC1NXEmrdM0rmy3VXdcg-txElKFNWL1NZr_Rpo3IaPOdkjIDaMJo6y4bRL0R0hSmuYJS4uc8hEZU5mLOGMiuyQT7xtKmaBUjIl62bfBxLZsUAdzwGgBzhnfx3ETbTHAGvf9HIyOoF1ZZ8J666PauiisMaoMrDrr-76tozdwG9N5231_fvl-5RE8XpGLGlqP1785JR-PD-_zRbx8fXqe3y9jzVMe4jITTFcVFKygkkFe51rnUFaCFqWUvCizGdIMap5LOtMoteZQaZEyqEFIJvmU8OHuvtvB6Qhtq3bObMGdFKPq7EU16uxFnb2owUtPpQOlnfXeYf0_6G6AsP_nYNAprw12GivjeomqsuYv_AcPooNz
Cites_doi 10.1016/j.knosys.2021.107219
10.1016/j.neucom.2022.04.083
10.1007/s11227-021-03977-0
10.1016/j.asoc.2020.106620
10.1007/978-3-540-39964-3_62
10.1016/S0140-6736(09)60492-X
10.3390/su12135248
10.1016/j.eswa.2021.115499
10.1007/s13042-019-00996-5
10.1016/j.bspc.2017.06.015
10.1007/s00521-022-07522-9
10.1016/S0140-6736(14)61393-3
10.1016/j.parkreldis.2019.02.028
10.1016/j.future.2018.02.009
10.1007/s00366-020-01028-5
10.1007/s11227-022-04869-7
10.1109/ICIT.2017.43
10.1007/s11227-021-03834-0
10.1016/j.eswa.2020.113428
10.1007/s10462-015-9428-8
10.1007/s13042-015-0480-0
10.1109/4235.585893
10.1109/CEC.2016.7743941
10.1016/j.bspc.2016.08.003
10.1016/j.compbiomed.2021.104558
10.1109/ACCESS.2019.2932037
10.1016/j.bspc.2018.10.002
10.1007/s42452-020-2826-9
10.1016/j.icte.2016.10.005
10.2139/ssrn.3131662
10.1155/2017/9512741
10.6029/smartcr.2014.03.007
10.1016/j.jneumeth.2018.08.017
10.1007/s11227-022-04709-8
10.1016/j.eswa.2021.114778
10.1145/3459665
10.1109/ACCESS.2019.2906350
10.1016/j.procs.2014.07.028
10.1016/j.eswa.2023.120270
10.1007/s00521-022-07352-9
10.1109/ACCESS.2020.2980245
10.1016/j.eswa.2020.113510
10.1016/j.compeleceng.2018.04.014
10.1007/978-3-030-12767-1_5
10.1109/TEVC.2019.2921598
10.1038/scientificamerican0792-66
10.3390/electronics11121919
10.1016/j.future.2019.02.028
10.1007/s00521-022-07367-2
10.1109/ICNN.1995.488968
10.1016/j.bspc.2021.102452
10.1016/j.iot.2023.100952
10.1016/j.patrec.2019.04.005
10.1016/j.bbe.2017.09.002
10.1007/s11227-019-03127-7
10.1016/j.cogsys.2018.06.006
10.1016/j.knosys.2017.10.017
10.1201/9780429422614-13
10.1016/j.swevo.2013.06.001
10.1007/s13755-020-00104-w
10.1016/j.swevo.2012.09.002
10.1016/j.mehy.2019.109351
10.1007/s00521-013-1525-5
10.1016/j.eswa.2008.08.076
10.1016/j.eswa.2019.06.052
10.1016/S0140-6736(21)00218-X
10.1155/2018/2396952
10.1016/j.chaos.2011.06.004
10.1371/journal.pone.0056956
10.1016/j.eswa.2020.114243
10.1016/j.eswa.2018.09.015
10.1016/j.eswa.2018.06.003
10.1007/s00521-021-05720-5
10.1049/cp.2013.2636
10.1016/j.eswa.2020.114202
10.1093/bib/bbk007
10.1007/s13042-019-00931-8
10.1016/j.eswa.2022.117255
10.1007/s13042-019-01047-9
10.1016/j.cmpb.2016.07.029
10.1016/j.eswa.2021.115747
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.eswa.2025.126503
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10.1016/j.eswa.2025.126503
10_1016_j_eswa_2025_126503
S0957417425001253
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c323t-b471cdda616091a5f5cc5abd706b9936b48e04af35908ce9cc3adc721afa79193
IEDL.DBID UNPAY
ISSN 0957-4174
1873-6793
IngestDate Tue Aug 19 23:40:34 EDT 2025
Wed Oct 01 08:25:05 EDT 2025
Sat Apr 26 15:42:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
KNN
Multi-objective
Harris Hawk
Parkinson’s disease
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-b471cdda616091a5f5cc5abd706b9936b48e04af35908ce9cc3adc721afa79193
ORCID 0000-0003-1665-5928
0000-0002-2551-4740
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.eswa.2025.126503
ParticipantIDs unpaywall_primary_10_1016_j_eswa_2025_126503
crossref_primary_10_1016_j_eswa_2025_126503
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Adam, Alexandropoulos, Pardalos, Vrahatis (b2) 2019
Huang, Li, Yao (b48) 2019; 24
Piri, Mohapatra (b80) 2021; 135
Long, Jiao, Xu, Tang, Wu, Cai (b67) 2022; 202
Hussain, Neggaz, Zhu, Houssein (b49) 2021; 176
de l’Aulnoit (b61) 2019; 49
Dokeroglu, Deniz, Kiziloz (b32) 2022; 494
Li, Li, Chen, Jin, Ren (b64) 2021; 185
Yang, Slowik (b96) 2020
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
Zhang, Liu, Wang, Chen, Li (b98) 2021; 37
Al-Madi, Faris, Mirjalili (b5) 2019; 10
Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros (b84) 2020; 155
Alweshah, Khalaileh, Gupta, Almomani, Hammouri, Al-Betar (b13) 2020; 1
(pp. 1–11).
Lee, Fong, Chu, Cheng, Chuang, Lo (b62) 2018; 2
Eesa, Brifcani, Orman (b36) 2013; 4
Narmatha, Manimegalai, Krishnadass, Valsalan, Manimurugan, Mustafa (b73) 2023; 79
Sharma (b88) 2014
(pp. 159–164).
Tawhid, Ibrahim (b90) 2020; 11
Diao, Shen (b30) 2015; 44
Pasha, Latha (b77) 2020; 8
Alwajih, Abdulkadir, Al Hussian, Aziz, Al-Tashi, Mirjalili (b12) 2022; 34
Liu (b66) 2021; 77
,
Holland (b47) 1992; 267
Tripathy, Reddy Maddikunta, Pham, Gadekallu, Dev, Pandya (b91) 2022; 2022
Nilashi, Ibrahim, Ahmadi, Shahmoradi, Farahmand (b75) 2018; 38
Dokeroglu, Deniz, Kiziloz (b31) 2021; 227
Ramani, Sivagami, Jacob (b83) 2012; 2
Batista, Monard (b18) 2002; 87
Mirjalili, Lewis (b70) 2013; 9
Du, Wang, Hao, Niu, Yang (b35) 2020; 96
Selim, Kamel, Alghamdi, Jurado (b87) 2020; 8
Ali, Zhu, Zhou, Liu (b9) 2019; 137
In
Larranaga (b60) 2006; 7
Walton, Hassan, Morgan, Brown (b92) 2011; 44
Perumal, Sankar (b79) 2016; 2
Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In
Avci, Dogantekin (b17) 2016; 4
Cavallo, Moschetti, Esposito, Maremmani, Rovini (b23) 2019; 63
Dokeroglu, Sevinc (b34) 2022; 34
Klucken (b55) 2013; 8
Malkauthekar, M. D. (2013). Analysis of Euclidean distance and Manhattan distance measure in Face recognition. In
Rajammal, Mirjalili, Ekambaram, Palanisamy (b82) 2022; 246
(pp. 986–996).
Fister, Fister, Yang, Brest (b37) 2013; 13
Cho, Chao, Lin, Chen (b25) 2009; 36
Chen, Song, Ma (b24) 2023; 79
Rajalaxmi, R. R., & Kaavya, S. (2017). Feature selection for identifying Parkinson’s disease using binary Grey Wolf Optimization. In
Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b1) 2018; 83
Alabool, Alarabiat, Abualigah, Heidari (b6) 2021; 33
Dash, S., Thulasiram, R., & Thulasiraman, P. (2017). An enhanced chaos-based firefly model for Parkinson’s disease diagnosis and classification. In
Allou, Zouache, Amroun, Got (b10) 2022; 34
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b46) 2019; 97
Ali, Nutt, Ransom (b7) 2018; 363
Gölcük, Ozsoydan (b39) 2021; 167
Das, Biswas, Dasgupta, Abraham (b28) 2009; 3
Habib, Aljarah, Faris, Mirjalili (b45) 2020
Gupta, Deep, Heidari, Moayedi, Wang (b42) 2020; 158
Nalluri, Kannan, Gao, Roy (b72) 2020; 11
Lan, Shih (b59) 2014; 34
Bloem, Okun, Klein (b20) 2021; 397
Amer, Attiya, Zeidan, Nasr (b14) 2022; 78
Li (b65) 2017
Ali, Zhu, Golilarz, Javeed, Zhou, Liu (b8) 2019; 7
Shrivastava, Shukla, Vepakomma, Bhansali, Verma (b89) 2017; 139
Camps (b22) 2018; 139
Gunduz (b40) 2021; 66
Mirjalili, Mirjalili, Yang (b71) 2014; 25
Dokeroglu, Pehlivan, Avenoglu (b33) 2020; 76
Lees, Hardy, Revesz (b63) 2009; 373
(pp. 1324–1330).
Cunningham, Delany (b27) 2021; 54
Gupta, Julka, Jain, Aggarwal, Khanna, Arunkumar (b43) 2018; 52
Cigdem, Demirel (b26) 2018; 309
Gharehchopogh, Abdollahzadeh, Barshandeh, Arasteh (b38) 2023; 24
Kalia, Lang (b53) 2015; 386
Jangir, Heidari, Chen (b52) 2021; 186
Almeida, Rebouças Filho, Carneiro, Wei, Damaševičius, Maskeliūnas (b11) 2019; 125
Wang, Wang, Ai, Sun (b93) 2017; 38
(pp. 1942–1948).
Kotsavasiloglou, Kostikis, Hristu-Varsakelis, Arnaoutoglou (b56) 2017; 31
Al-Fatlawi, A. H., Jabardi, M. H., & Ling, S. H. (2016). Efficient diagnosis system for Parkinson’s disease using deep belief network. In
Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (b68) 2019; 117
Xing, Gao, Xing, Gao (b95) 2014
Kumar, Minz (b58) 2014; 4
Wolpert, Macready (b94) 1997; 1
Arshad, Khan, Sharif, Yasmin, Javed (b16) 2019; 10
Al-Betar, Awadallah, Heidari, Chen, Al-Khraisat, Li (b3) 2021; 168
Yüzgeç, Kusoglu (b97) 2020; 1
Cai, Gu, Wen, Zhao, Huang, Huang (b21) 2018; 2018
Bind, Tiwari (b19) 2015; 6
Gupta, Sundaram, Khanna, Hassanien, De Albuquerque (b44) 2018; 68
Hussien, Abualigah, Abu Zitar, Hashim, Amin, Saber (b50) 2022; 11
Islam, Wahab, Veerasamy, Hizam, Mailah, Guerrero (b51) 2020; 12
Parisi, RaviChandran, Manaog (b76) 2018; 110
aq (b15) 2019; 7
Ni, Liang (b74) 2009
(pp. 503–507).
Kumar, Dhillon (b57) 2023; 226
Saad, Zaarour, Guerin, Bejjani, Ayache, Lefebvre (b85) 2017; 8
Persson (b78) 2019; 132
Sehgal, Agarwal, Gupta, Sundaram, Bashambu (b86) 2020; 2
Gupta (10.1016/j.eswa.2025.126503_b43) 2018; 52
Gupta (10.1016/j.eswa.2025.126503_b44) 2018; 68
Fister (10.1016/j.eswa.2025.126503_b37) 2013; 13
Islam (10.1016/j.eswa.2025.126503_b51) 2020; 12
Dokeroglu (10.1016/j.eswa.2025.126503_b33) 2020; 76
Larranaga (10.1016/j.eswa.2025.126503_b60) 2006; 7
10.1016/j.eswa.2025.126503_b54
Gupta (10.1016/j.eswa.2025.126503_b42) 2020; 158
Habib (10.1016/j.eswa.2025.126503_b45) 2020
Long (10.1016/j.eswa.2025.126503_b67) 2022; 202
Yüzgeç (10.1016/j.eswa.2025.126503_b97) 2020; 1
Shrivastava (10.1016/j.eswa.2025.126503_b89) 2017; 139
Heidari (10.1016/j.eswa.2025.126503_b46) 2019; 97
Nilashi (10.1016/j.eswa.2025.126503_b75) 2018; 38
Dokeroglu (10.1016/j.eswa.2025.126503_b32) 2022; 494
Wang (10.1016/j.eswa.2025.126503_b93) 2017; 38
Zhang (10.1016/j.eswa.2025.126503_b98) 2021; 37
Avci (10.1016/j.eswa.2025.126503_b17) 2016; 4
Nalluri (10.1016/j.eswa.2025.126503_b72) 2020; 11
Selim (10.1016/j.eswa.2025.126503_b87) 2020; 8
Camps (10.1016/j.eswa.2025.126503_b22) 2018; 139
Adam (10.1016/j.eswa.2025.126503_b2) 2019
Gharehchopogh (10.1016/j.eswa.2025.126503_b38) 2023; 24
Hussien (10.1016/j.eswa.2025.126503_b50) 2022; 11
Ali (10.1016/j.eswa.2025.126503_b9) 2019; 137
Walton (10.1016/j.eswa.2025.126503_b92) 2011; 44
Rajammal (10.1016/j.eswa.2025.126503_b82) 2022; 246
Arshad (10.1016/j.eswa.2025.126503_b16) 2019; 10
de l’Aulnoit (10.1016/j.eswa.2025.126503_b61) 2019; 49
Xing (10.1016/j.eswa.2025.126503_b95) 2014
Parisi (10.1016/j.eswa.2025.126503_b76) 2018; 110
10.1016/j.eswa.2025.126503_b69
Amer (10.1016/j.eswa.2025.126503_b14) 2022; 78
Mirjalili (10.1016/j.eswa.2025.126503_b71) 2014; 25
Wolpert (10.1016/j.eswa.2025.126503_b94) 1997; 1
Huang (10.1016/j.eswa.2025.126503_b48) 2019; 24
Rodríguez-Esparza (10.1016/j.eswa.2025.126503_b84) 2020; 155
10.1016/j.eswa.2025.126503_b4
Kumar (10.1016/j.eswa.2025.126503_b58) 2014; 4
Liu (10.1016/j.eswa.2025.126503_b66) 2021; 77
Saad (10.1016/j.eswa.2025.126503_b85) 2017; 8
Dokeroglu (10.1016/j.eswa.2025.126503_b31) 2021; 227
Chen (10.1016/j.eswa.2025.126503_b24) 2023; 79
Cho (10.1016/j.eswa.2025.126503_b25) 2009; 36
Sharma (10.1016/j.eswa.2025.126503_b88) 2014
Diao (10.1016/j.eswa.2025.126503_b30) 2015; 44
Du (10.1016/j.eswa.2025.126503_b35) 2020; 96
10.1016/j.eswa.2025.126503_b81
Allou (10.1016/j.eswa.2025.126503_b10) 2022; 34
Gunduz (10.1016/j.eswa.2025.126503_b40) 2021; 66
Cavallo (10.1016/j.eswa.2025.126503_b23) 2019; 63
Alwajih (10.1016/j.eswa.2025.126503_b12) 2022; 34
Almeida (10.1016/j.eswa.2025.126503_b11) 2019; 125
Li (10.1016/j.eswa.2025.126503_b65) 2017
Ni (10.1016/j.eswa.2025.126503_b74) 2009
Lee (10.1016/j.eswa.2025.126503_b62) 2018; 2
Das (10.1016/j.eswa.2025.126503_b28) 2009; 3
Mirjalili (10.1016/j.eswa.2025.126503_b70) 2013; 9
Kotsavasiloglou (10.1016/j.eswa.2025.126503_b56) 2017; 31
Yang (10.1016/j.eswa.2025.126503_b96) 2020
Tawhid (10.1016/j.eswa.2025.126503_b90) 2020; 11
Lees (10.1016/j.eswa.2025.126503_b63) 2009; 373
Al-Betar (10.1016/j.eswa.2025.126503_b3) 2021; 168
Li (10.1016/j.eswa.2025.126503_b64) 2021; 185
Gölcük (10.1016/j.eswa.2025.126503_b39) 2021; 167
Ramani (10.1016/j.eswa.2025.126503_b83) 2012; 2
Cunningham (10.1016/j.eswa.2025.126503_b27) 2021; 54
Mafarja (10.1016/j.eswa.2025.126503_b68) 2019; 117
Abdulhay (10.1016/j.eswa.2025.126503_b1) 2018; 83
Pasha (10.1016/j.eswa.2025.126503_b77) 2020; 8
aq (10.1016/j.eswa.2025.126503_b15) 2019; 7
Piri (10.1016/j.eswa.2025.126503_b80) 2021; 135
Kalia (10.1016/j.eswa.2025.126503_b53) 2015; 386
Sehgal (10.1016/j.eswa.2025.126503_b86) 2020; 2
Klucken (10.1016/j.eswa.2025.126503_b55) 2013; 8
Bloem (10.1016/j.eswa.2025.126503_b20) 2021; 397
Hussain (10.1016/j.eswa.2025.126503_b49) 2021; 176
Alweshah (10.1016/j.eswa.2025.126503_b13) 2020; 1
Dokeroglu (10.1016/j.eswa.2025.126503_b34) 2022; 34
Cai (10.1016/j.eswa.2025.126503_b21) 2018; 2018
Tripathy (10.1016/j.eswa.2025.126503_b91) 2022; 2022
10.1016/j.eswa.2025.126503_b29
Persson (10.1016/j.eswa.2025.126503_b78) 2019; 132
Ali (10.1016/j.eswa.2025.126503_b8) 2019; 7
Batista (10.1016/j.eswa.2025.126503_b18) 2002; 87
Ali (10.1016/j.eswa.2025.126503_b7) 2018; 363
Alabool (10.1016/j.eswa.2025.126503_b6) 2021; 33
Narmatha (10.1016/j.eswa.2025.126503_b73) 2023; 79
Bind (10.1016/j.eswa.2025.126503_b19) 2015; 6
Al-Madi (10.1016/j.eswa.2025.126503_b5) 2019; 10
Lan (10.1016/j.eswa.2025.126503_b59) 2014; 34
10.1016/j.eswa.2025.126503_b41
Kumar (10.1016/j.eswa.2025.126503_b57) 2023; 226
Cigdem (10.1016/j.eswa.2025.126503_b26) 2018; 309
Jangir (10.1016/j.eswa.2025.126503_b52) 2021; 186
Perumal (10.1016/j.eswa.2025.126503_b79) 2016; 2
Holland (10.1016/j.eswa.2025.126503_b47) 1992; 267
Eesa (10.1016/j.eswa.2025.126503_b36) 2013; 4
References_xml – volume: 24
  start-page: 201
  year: 2019
  end-page: 216
  ident: b48
  article-title: A survey of automatic parameter tuning methods for metaheuristics
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 78
  start-page: 2793
  year: 2022
  end-page: 2818
  ident: b14
  article-title: Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud computing
  publication-title: Journal of Supercomputing
– volume: 11
  start-page: 573
  year: 2020
  end-page: 602
  ident: b90
  article-title: Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm
  publication-title: International Journal of Machine Learning and Cybernetics
– reference: (pp. 1–11).
– volume: 8
  start-page: 941
  year: 2017
  end-page: 954
  ident: b85
  article-title: Detection of freezing of gait for parkinson’s disease patients with multi-sensor device and Gaussian neural networks
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 4
  start-page: 1
  year: 2016
  end-page: 9
  ident: b17
  article-title: An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine
  publication-title: Parkinson’s Disease
– volume: 54
  start-page: 1
  year: 2021
  end-page: 25
  ident: b27
  article-title: K-Nearest neighbour classifiers-A tutorial
  publication-title: ACM Computing Surveys (CSUR)
– volume: 7
  start-page: 86
  year: 2006
  end-page: 112
  ident: b60
  article-title: Machine learning in bioinformatics
  publication-title: Briefings in Bioinformatics
– start-page: 163
  year: 2020
  end-page: 174
  ident: b96
  article-title: Firefly algorithm
  publication-title: Swarm Intelligence Algorithms
– volume: 13
  start-page: 34
  year: 2013
  end-page: 46
  ident: b37
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm and Evolutionary Computation
– start-page: 167
  year: 2014
  end-page: 170
  ident: b95
  article-title: Fruit fly optimization algorithm
  publication-title: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms
– volume: 76
  start-page: 7026
  year: 2020
  end-page: 7046
  ident: b33
  article-title: Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization
  publication-title: Journal of Supercomputing
– volume: 373
  start-page: 2055
  year: 2009
  end-page: 2066
  ident: b63
  article-title: Parkinson’s disease
  publication-title: The Lancet
– start-page: 57
  year: 2019
  end-page: 82
  ident: b2
  article-title: No free lunch theorem: A review
  publication-title: Approximation and Optimization: Algorithms, Complexity and Applications
– volume: 137
  start-page: 22
  year: 2019
  end-page: 28
  ident: b9
  article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Systems with Applications
– volume: 2022
  year: 2022
  ident: b91
  article-title: Harris hawk optimization: a survey on variants and applications
  publication-title: Computational Intelligence and Neuroscience
– volume: 44
  start-page: 311
  year: 2015
  end-page: 340
  ident: b30
  article-title: Nature inspired feature selection meta-heuristics
  publication-title: Artificial Intelligence Review
– volume: 2
  start-page: 2277
  year: 2012
  ident: b83
  article-title: Feature relevance analysis and classification of parkinson disease tele-monitoring data through data mining techniques
  publication-title: Journal of Advanced Research in Computer Science and Software Engineering
– volume: 4
  start-page: 1978
  year: 2013
  end-page: 1986
  ident: b36
  article-title: Cuttlefish algorithm-a novel bio-inspired optimization algorithm
  publication-title: International Journal of Scientific & Engineering Research
– volume: 44
  start-page: 710
  year: 2011
  end-page: 718
  ident: b92
  article-title: Modified cuckoo search: a new gradient free optimisation algorithm
  publication-title: Chaos, Solitons & Fractals
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b94
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 10
  year: 2019
  ident: b16
  article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  publication-title: Journal of Machine Learning and Cybernetics
– volume: 49
  start-page: 113
  year: 2019
  end-page: 123
  ident: b61
  article-title: Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: A comparison of 11 methods versus expert consensus
  publication-title: Biomedical Signal Processing and Control
– reference: ,
– volume: 167
  year: 2021
  ident: b39
  article-title: Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems
  publication-title: Expert Systems with Applications
– volume: 87
  start-page: 251
  year: 2002
  end-page: 260
  ident: b18
  article-title: A study of K-nearest neighbour as an imputation method
  publication-title: Soft Computing Systems - Design, Management and Applications
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: b68
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
– volume: 132
  year: 2019
  ident: b78
  article-title: Airborne contamination and surgical site infection: could a thirty-year-old idea help solve the problem?
  publication-title: Medical Hypotheses
– volume: 68
  start-page: 412
  year: 2018
  end-page: 424
  ident: b44
  article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm
  publication-title: Computers & Electrical Engineering
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b46
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 8
  start-page: 1
  year: 2020
  end-page: 22
  ident: b77
  article-title: Io-inspired dimensionality reduction for Parkinson’s disease (PD) classification
  publication-title: Health Information Science and Systems
– volume: 139
  start-page: 171
  year: 2017
  end-page: 179
  ident: b89
  article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 77
  start-page: 14090
  year: 2021
  end-page: 14129
  ident: b66
  article-title: An improved Harris hawks optimizer for job-shop scheduling problem
  publication-title: Journal of Supercomputing
– volume: 25
  start-page: 663
  year: 2014
  end-page: 681
  ident: b71
  article-title: Binary bat algorithm
  publication-title: Neural Computing and Applications
– volume: 246
  year: 2022
  ident: b82
  article-title: Binary grey wolf optimizer with mutation and adaptive K-nearest neighbour for feature selection in Parkinson’s disease diagnosis
  publication-title: Knowledge-Based Systems
– start-page: 175
  year: 2020
  end-page: 201
  ident: b45
  article-title: Multi-objective particle swarm optimization: theory, literature review, and application in feature selection for medical diagnosis
  publication-title: Evolutionary Machine Learning Techniques: Algorithms and Applications
– volume: 34
  start-page: 17007
  year: 2022
  end-page: 17036
  ident: b10
  article-title: A novel epsilon-dominance Harris Hawks optimizer for multi-objective optimization in engineering design problems
  publication-title: Neural Computing and Applications
– reference: (pp. 503–507).
– volume: 139
  start-page: 119
  year: 2018
  end-page: 131
  ident: b22
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowledge-Based Systems
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
– volume: 202
  year: 2022
  ident: b67
  article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection
  publication-title: Expert Systems with Applications
– reference: Al-Fatlawi, A. H., Jabardi, M. H., & Ling, S. H. (2016). Efficient diagnosis system for Parkinson’s disease using deep belief network. In
– volume: 6
  start-page: 1648
  year: 2015
  end-page: 1655
  ident: b19
  article-title: A survey of machine learning-based approaches for Parkinson disease prediction
  publication-title: International Journal of Computer Science and Information Technology
– volume: 186
  year: 2021
  ident: b52
  article-title: Elitist non-dominated sorting harris hawks optimization: Framework and developments for multi-objective problems
  publication-title: Expert Systems with Applications
– volume: 309
  start-page: 81
  year: 2018
  end-page: 90
  ident: b26
  article-title: Performance analysis of different classification algorithms using different feature selection methods on Parkinson’s disease detection
  publication-title: Journal of Neuroscience Methods
– volume: 1
  start-page: 1
  year: 2020
  end-page: 15
  ident: b13
  article-title: The monarch butterfly optimization algorithm for solving feature selection problems
  publication-title: Neural Computing and Applications
– volume: 185
  year: 2021
  ident: b64
  article-title: Enhanced Harris hawks optimization with multi-strategy for global optimization tasks
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2014
  end-page: 5
  ident: b88
  article-title: Early detection of Parkinson’s disease through voice
  publication-title: 2014 IEEE International Conference on Advances in Engineering and Technology
– volume: 79
  start-page: 5576
  year: 2023
  end-page: 5614
  ident: b24
  article-title: Harris hawks optimization based on global cross-variation and tent mapping
  publication-title: Journal of Supercomputing
– volume: 36
  start-page: 7033
  year: 2009
  end-page: 7039
  ident: b25
  article-title: A vision-based analysis system for gait recognition in patients with Parkinson’s disease
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 174
  year: 2017
  end-page: 180
  ident: b56
  article-title: Machine learning-based classification of simple drawing movements in Parkinson’s disease
  publication-title: Biomedical Signal Processing and Control
– volume: 125
  start-page: 55
  year: 2019
  end-page: 62
  ident: b11
  article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques
  publication-title: Pattern Recognition Letters
– volume: 63
  start-page: 111
  year: 2019
  end-page: 116
  ident: b23
  article-title: Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning
  publication-title: Parkinsonism & Related Disorders
– volume: 168
  year: 2021
  ident: b3
  article-title: Survival exploration strategies for Harris hawks optimizer
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 400
  year: 2017
  end-page: 410
  ident: b93
  article-title: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease
  publication-title: Biomedical Signal Processing and Control
– volume: 1
  start-page: 31
  year: 2020
  end-page: 41
  ident: b97
  article-title: Multi-objective harris hawks optimizer for multiobjective optimization problems
  publication-title: BSEU Journal of Engineering Research and Technology
– volume: 176
  year: 2021
  ident: b49
  article-title: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection
  publication-title: Expert Systems with Applications
– volume: 135
  year: 2021
  ident: b80
  article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection
  publication-title: Computers in Biology and Medicine
– reference: (pp. 1942–1948).
– volume: 2
  start-page: 168
  year: 2016
  end-page: 174
  ident: b79
  article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors
  publication-title: Ict Express
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b70
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 79
  start-page: 1374
  year: 2023
  end-page: –1397
  ident: b73
  article-title: Ovarian cysts classification using novel deep reinforcement learning with Harris Hawks optimization method
  publication-title: Journal of Supercomputing
– reference: Rajalaxmi, R. R., & Kaavya, S. (2017). Feature selection for identifying Parkinson’s disease using binary Grey Wolf Optimization. In
– volume: 11
  start-page: 1423
  year: 2020
  end-page: 1451
  ident: b72
  article-title: Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 10
  start-page: 3445
  year: 2019
  end-page: 3465
  ident: b5
  article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 3
  start-page: 23
  year: 2009
  end-page: 55
  ident: b28
  article-title: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications
  publication-title: Foundations of Computational Intelligence
– volume: 38
  start-page: 1
  year: 2018
  end-page: 15
  ident: b75
  article-title: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques
  publication-title: Biocybernetics and Biomedical Engineering
– volume: 52
  start-page: 36
  year: 2018
  end-page: 48
  ident: b43
  article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease
  publication-title: Cognitive Systems Research
– volume: 397
  start-page: 2284
  year: 2021
  end-page: 2303
  ident: b20
  article-title: Parkinson’s disease
  publication-title: The Lancet
– volume: 155
  year: 2020
  ident: b84
  article-title: An efficient Harris hawks-inspired image segmentation method
  publication-title: Expert Systems with Applications
– volume: 158
  year: 2020
  ident: b42
  article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis
  publication-title: Expert Systems with Applications
– volume: 227
  year: 2021
  ident: b31
  article-title: A robust multiobjective Harris’ Hawks Optimization algorithm for the binary classification problem
  publication-title: Knowledge-Based Systems
– volume: 2018
  year: 2018
  ident: b21
  article-title: An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach
  publication-title: Computational and Mathematical Methods in Medicine
– reference: Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In
– volume: 34
  start-page: 305
  year: 2014
  end-page: 312
  ident: b59
  article-title: Early diagnosis of parkinson’s disease using a smartphone
  publication-title: Procedia Computer Science
– volume: 4
  start-page: 211
  year: 2014
  end-page: 229
  ident: b58
  article-title: Feature selection: a literature review
  publication-title: SmartCR
– reference: (pp. 986–996).
– volume: 34
  start-page: 18341
  year: 2022
  end-page: 18368
  ident: b34
  article-title: An island parallel Harris hawks optimization algorithm
  publication-title: Neural Computing and Applications
– volume: 7
  start-page: 37718
  year: 2019
  end-page: 37734
  ident: b15
  article-title: Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings
  publication-title: IEEE Access
– reference: Dash, S., Thulasiram, R., & Thulasiraman, P. (2017). An enhanced chaos-based firefly model for Parkinson’s disease diagnosis and classification. In
– start-page: 1
  year: 2009
  end-page: 4
  ident: b74
  article-title: A gait recognition method based on KFDA and SVM
  publication-title: 2009 IEEE international workshop on intelligent systems and applications
– volume: 8
  year: 2013
  ident: b55
  article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease
  publication-title: PLoS One
– volume: 8
  start-page: 52815
  year: 2020
  end-page: 52829
  ident: b87
  article-title: Optimal placement of DGs in distribution system using an improved harris hawks optimizer based on single-and multi-objective approaches
  publication-title: IEEE Access
– volume: 363
  start-page: 1783
  year: 2018
  end-page: 1793
  ident: b7
  article-title: Parkinson’s disease
  publication-title: The Lancet
– volume: 386
  start-page: 896
  year: 2015
  end-page: 912
  ident: b53
  article-title: Parkinson’s disease
  publication-title: The Lancet
– volume: 2
  start-page: 462
  year: 2018
  end-page: 466
  ident: b62
  article-title: A wearable device of gait tracking for Parkinson’s disease patients
  publication-title: 2018 IEEE international conference on machine learning and cybernetics
– volume: 66
  year: 2021
  ident: b40
  article-title: An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification
  publication-title: Biomedical Signal Processing and Control
– volume: 226
  year: 2023
  ident: b57
  article-title: Enhanced Harris hawk optimizer for hydrothermal generation scheduling with cascaded reservoirs
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 3741
  year: 2021
  end-page: 3770
  ident: b98
  article-title: Boosted binary harris hawks optimizer and feature selection
  publication-title: Engineering with Computers
– volume: 33
  start-page: 8939
  year: 2021
  end-page: 8980
  ident: b6
  article-title: Harris hawks optimization: a comprehensive review of recent variants and applications
  publication-title: Neural Computing and Applications
– reference: (pp. 159–164).
– reference: Malkauthekar, M. D. (2013). Analysis of Euclidean distance and Manhattan distance measure in Face recognition. In
– volume: 494
  start-page: 269
  year: 2022
  end-page: 296
  ident: b32
  article-title: A comprehensive survey on recent metaheuristics for feature selection
  publication-title: Neurocomputing
– year: 2017
  ident: b65
  article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 24
  year: 2023
  ident: b38
  article-title: A multi-objective mutation-based dynamic Harris Hawks optimization for botnet detection in IoT
  publication-title: Internet of Things
– reference: , In
– volume: 96
  year: 2020
  ident: b35
  article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting
  publication-title: Applied Soft Computing
– volume: 11
  start-page: 1919
  year: 2022
  ident: b50
  article-title: Recent advances in harris hawks optimization: A comparative study and applications
  publication-title: Electronics
– reference: (pp. 1324–1330).
– volume: 34
  start-page: 19377
  year: 2022
  end-page: 19395
  ident: b12
  article-title: Hybrid binary whale with harris hawks for feature selection
  publication-title: Neural Computing and Applications
– volume: 7
  start-page: 116480
  year: 2019
  end-page: 116489
  ident: b8
  article-title: Eliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model
  publication-title: IEEE Access
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b47
  article-title: Genetic algorithms
  publication-title: Scientific American
– volume: 2
  start-page: 1
  year: 2020
  end-page: 18
  ident: b86
  article-title: Optimized grasshopper algorithm for diagnosis of Parkinson’s disease
  publication-title: SN Applied Sciences
– volume: 83
  start-page: 366
  year: 2018
  end-page: 373
  ident: b1
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Future Generation Computer Systems
– volume: 110
  start-page: 182
  year: 2018
  end-page: 190
  ident: b76
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 5248
  year: 2020
  ident: b51
  article-title: A Harris Hawks optimization based single-and multi-objective optimal power flow considering environmental emission
  publication-title: Sustainability
– volume: 3
  start-page: 23
  year: 2009
  ident: 10.1016/j.eswa.2025.126503_b28
  article-title: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications
  publication-title: Foundations of Computational Intelligence
– volume: 227
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b31
  article-title: A robust multiobjective Harris’ Hawks Optimization algorithm for the binary classification problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107219
– volume: 494
  start-page: 269
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b32
  article-title: A comprehensive survey on recent metaheuristics for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 78
  start-page: 2793
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b14
  article-title: Elite learning Harris hawks optimizer for multi-objective task scheduling in cloud computing
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-021-03977-0
– volume: 96
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b35
  article-title: A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106620
– ident: 10.1016/j.eswa.2025.126503_b41
  doi: 10.1007/978-3-540-39964-3_62
– volume: 373
  start-page: 2055
  issue: 9680
  year: 2009
  ident: 10.1016/j.eswa.2025.126503_b63
  article-title: Parkinson’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(09)60492-X
– volume: 12
  start-page: 5248
  issue: 13
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b51
  article-title: A Harris Hawks optimization based single-and multi-objective optimal power flow considering environmental emission
  publication-title: Sustainability
  doi: 10.3390/su12135248
– volume: 185
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b64
  article-title: Enhanced Harris hawks optimization with multi-strategy for global optimization tasks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115499
– volume: 11
  start-page: 573
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b90
  article-title: Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-00996-5
– volume: 38
  start-page: 400
  year: 2017
  ident: 10.1016/j.eswa.2025.126503_b93
  article-title: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.06.015
– volume: 34
  start-page: 19377
  issue: 21
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b12
  article-title: Hybrid binary whale with harris hawks for feature selection
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07522-9
– volume: 386
  start-page: 896
  issue: 9996
  year: 2015
  ident: 10.1016/j.eswa.2025.126503_b53
  article-title: Parkinson’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)61393-3
– volume: 63
  start-page: 111
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b23
  article-title: Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning
  publication-title: Parkinsonism & Related Disorders
  doi: 10.1016/j.parkreldis.2019.02.028
– volume: 83
  start-page: 366
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b1
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.02.009
– volume: 2022
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b91
  article-title: Harris hawk optimization: a survey on variants and applications
  publication-title: Computational Intelligence and Neuroscience
– volume: 37
  start-page: 3741
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b98
  article-title: Boosted binary harris hawks optimizer and feature selection
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01028-5
– volume: 79
  start-page: 5576
  year: 2023
  ident: 10.1016/j.eswa.2025.126503_b24
  article-title: Harris hawks optimization based on global cross-variation and tent mapping
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-022-04869-7
– ident: 10.1016/j.eswa.2025.126503_b29
  doi: 10.1109/ICIT.2017.43
– volume: 77
  start-page: 14090
  issue: 12
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b66
  article-title: An improved Harris hawks optimizer for job-shop scheduling problem
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-021-03834-0
– volume: 155
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b84
  article-title: An efficient Harris hawks-inspired image segmentation method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113428
– volume: 44
  start-page: 311
  year: 2015
  ident: 10.1016/j.eswa.2025.126503_b30
  article-title: Nature inspired feature selection meta-heuristics
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-015-9428-8
– volume: 8
  start-page: 941
  year: 2017
  ident: 10.1016/j.eswa.2025.126503_b85
  article-title: Detection of freezing of gait for parkinson’s disease patients with multi-sensor device and Gaussian neural networks
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-015-0480-0
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b13
  article-title: The monarch butterfly optimization algorithm for solving feature selection problems
  publication-title: Neural Computing and Applications
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2025.126503_b94
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 10
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b16
  article-title: Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  publication-title: Journal of Machine Learning and Cybernetics
– ident: 10.1016/j.eswa.2025.126503_b4
  doi: 10.1109/CEC.2016.7743941
– volume: 31
  start-page: 174
  year: 2017
  ident: 10.1016/j.eswa.2025.126503_b56
  article-title: Machine learning-based classification of simple drawing movements in Parkinson’s disease
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.08.003
– volume: 135
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b80
  article-title: An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104558
– volume: 7
  start-page: 116480
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b8
  article-title: Eliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932037
– volume: 49
  start-page: 113
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b61
  article-title: Automated fetal heart rate analysis for baseline determination and acceleration/deceleration detection: A comparison of 11 methods versus expert consensus
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.10.002
– volume: 2
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b86
  article-title: Optimized grasshopper algorithm for diagnosis of Parkinson’s disease
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-2826-9
– volume: 2
  start-page: 462
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b62
  article-title: A wearable device of gait tracking for Parkinson’s disease patients
– volume: 2
  start-page: 168
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2025.126503_b79
  article-title: Gait and tremor assessment for patients with Parkinson’s disease using wearable sensors
  publication-title: Ict Express
  doi: 10.1016/j.icte.2016.10.005
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2025.126503_b88
  article-title: Early detection of Parkinson’s disease through voice
– ident: 10.1016/j.eswa.2025.126503_b81
  doi: 10.2139/ssrn.3131662
– year: 2017
  ident: 10.1016/j.eswa.2025.126503_b65
  article-title: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2017/9512741
– volume: 4
  start-page: 211
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2025.126503_b58
  article-title: Feature selection: a literature review
  publication-title: SmartCR
  doi: 10.6029/smartcr.2014.03.007
– volume: 309
  start-page: 81
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b26
  article-title: Performance analysis of different classification algorithms using different feature selection methods on Parkinson’s disease detection
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2018.08.017
– volume: 79
  start-page: 1374
  year: 2023
  ident: 10.1016/j.eswa.2025.126503_b73
  article-title: Ovarian cysts classification using novel deep reinforcement learning with Harris Hawks optimization method
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-022-04709-8
– volume: 176
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b49
  article-title: An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114778
– volume: 54
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b27
  article-title: K-Nearest neighbour classifiers-A tutorial
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3459665
– volume: 7
  start-page: 37718
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b15
  article-title: Feature selection based on L1-norm support vector machine and effective recognition system for Parkinson’s disease using voice recordings
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906350
– volume: 34
  start-page: 305
  year: 2014
  ident: 10.1016/j.eswa.2025.126503_b59
  article-title: Early diagnosis of parkinson’s disease using a smartphone
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2014.07.028
– volume: 226
  year: 2023
  ident: 10.1016/j.eswa.2025.126503_b57
  article-title: Enhanced Harris hawk optimizer for hydrothermal generation scheduling with cascaded reservoirs
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.120270
– volume: 34
  start-page: 17007
  issue: 19
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b10
  article-title: A novel epsilon-dominance Harris Hawks optimizer for multi-objective optimization in engineering design problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07352-9
– volume: 8
  start-page: 52815
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b87
  article-title: Optimal placement of DGs in distribution system using an improved harris hawks optimizer based on single-and multi-objective approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980245
– volume: 158
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b42
  article-title: Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113510
– volume: 68
  start-page: 412
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b44
  article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2018.04.014
– start-page: 57
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b2
  article-title: No free lunch theorem: A review
  publication-title: Approximation and Optimization: Algorithms, Complexity and Applications
  doi: 10.1007/978-3-030-12767-1_5
– volume: 2
  start-page: 2277
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2025.126503_b83
  article-title: Feature relevance analysis and classification of parkinson disease tele-monitoring data through data mining techniques
  publication-title: Journal of Advanced Research in Computer Science and Software Engineering
– volume: 24
  start-page: 201
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b48
  article-title: A survey of automatic parameter tuning methods for metaheuristics
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2019.2921598
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2025.126503_b47
  article-title: Genetic algorithms
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0792-66
– volume: 11
  start-page: 1919
  issue: 12
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b50
  article-title: Recent advances in harris hawks optimization: A comparative study and applications
  publication-title: Electronics
  doi: 10.3390/electronics11121919
– volume: 246
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b82
  article-title: Binary grey wolf optimizer with mutation and adaptive K-nearest neighbour for feature selection in Parkinson’s disease diagnosis
  publication-title: Knowledge-Based Systems
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b46
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 34
  start-page: 18341
  issue: 21
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b34
  article-title: An island parallel Harris hawks optimization algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07367-2
– ident: 10.1016/j.eswa.2025.126503_b54
  doi: 10.1109/ICNN.1995.488968
– volume: 6
  start-page: 1648
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2025.126503_b19
  article-title: A survey of machine learning-based approaches for Parkinson disease prediction
  publication-title: International Journal of Computer Science and Information Technology
– volume: 66
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b40
  article-title: An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on Parkinson’s disease classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102452
– volume: 24
  year: 2023
  ident: 10.1016/j.eswa.2025.126503_b38
  article-title: A multi-objective mutation-based dynamic Harris Hawks optimization for botnet detection in IoT
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2023.100952
– volume: 125
  start-page: 55
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b11
  article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.04.005
– volume: 38
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b75
  article-title: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2017.09.002
– volume: 1
  start-page: 31
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b97
  article-title: Multi-objective harris hawks optimizer for multiobjective optimization problems
  publication-title: BSEU Journal of Engineering Research and Technology
– volume: 4
  start-page: 1978
  issue: 9
  year: 2013
  ident: 10.1016/j.eswa.2025.126503_b36
  article-title: Cuttlefish algorithm-a novel bio-inspired optimization algorithm
  publication-title: International Journal of Scientific & Engineering Research
– volume: 363
  start-page: 1783
  issue: 9423
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b7
  article-title: Parkinson’s disease
  publication-title: The Lancet
– volume: 76
  start-page: 7026
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b33
  article-title: Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional numerical optimization
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-019-03127-7
– volume: 52
  start-page: 36
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b43
  article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.06.006
– volume: 139
  start-page: 119
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b22
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.10.017
– start-page: 163
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b96
  article-title: Firefly algorithm
  publication-title: Swarm Intelligence Algorithms
  doi: 10.1201/9780429422614-13
– volume: 13
  start-page: 34
  year: 2013
  ident: 10.1016/j.eswa.2025.126503_b37
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.06.001
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b77
  article-title: Io-inspired dimensionality reduction for Parkinson’s disease (PD) classification
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-020-00104-w
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2025.126503_b70
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– volume: 132
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b78
  article-title: Airborne contamination and surgical site infection: could a thirty-year-old idea help solve the problem?
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2019.109351
– start-page: 167
  year: 2014
  ident: 10.1016/j.eswa.2025.126503_b95
  article-title: Fruit fly optimization algorithm
  publication-title: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms
– volume: 25
  start-page: 663
  year: 2014
  ident: 10.1016/j.eswa.2025.126503_b71
  article-title: Binary bat algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1525-5
– volume: 36
  start-page: 7033
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2025.126503_b25
  article-title: A vision-based analysis system for gait recognition in patients with Parkinson’s disease
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.08.076
– volume: 137
  start-page: 22
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b9
  article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.06.052
– volume: 397
  start-page: 2284
  issue: 10291
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b20
  article-title: Parkinson’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(21)00218-X
– volume: 2018
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b21
  article-title: An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2018/2396952
– start-page: 175
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b45
  article-title: Multi-objective particle swarm optimization: theory, literature review, and application in feature selection for medical diagnosis
  publication-title: Evolutionary Machine Learning Techniques: Algorithms and Applications
– volume: 44
  start-page: 710
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2025.126503_b92
  article-title: Modified cuckoo search: a new gradient free optimisation algorithm
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2011.06.004
– volume: 87
  start-page: 251
  year: 2002
  ident: 10.1016/j.eswa.2025.126503_b18
  article-title: A study of K-nearest neighbour as an imputation method
  publication-title: Soft Computing Systems - Design, Management and Applications
– volume: 8
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2025.126503_b55
  article-title: Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0056956
– volume: 168
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b3
  article-title: Survival exploration strategies for Harris hawks optimizer
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114243
– volume: 117
  start-page: 267
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b68
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.015
– volume: 110
  start-page: 182
  year: 2018
  ident: 10.1016/j.eswa.2025.126503_b76
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.003
– volume: 33
  start-page: 8939
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b6
  article-title: Harris hawks optimization: a comprehensive review of recent variants and applications
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-05720-5
– ident: 10.1016/j.eswa.2025.126503_b69
  doi: 10.1049/cp.2013.2636
– volume: 167
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b39
  article-title: Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114202
– volume: 4
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2025.126503_b17
  article-title: An expert diagnosis system for parkinson disease based on genetic algorithm-wavelet kernel-extreme learning machine
  publication-title: Parkinson’s Disease
– volume: 7
  start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2025.126503_b60
  article-title: Machine learning in bioinformatics
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbk007
– volume: 10
  start-page: 3445
  year: 2019
  ident: 10.1016/j.eswa.2025.126503_b5
  article-title: Binary multi-verse optimization algorithm for global optimization and discrete problems
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-00931-8
– volume: 202
  year: 2022
  ident: 10.1016/j.eswa.2025.126503_b67
  article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117255
– volume: 11
  start-page: 1423
  year: 2020
  ident: 10.1016/j.eswa.2025.126503_b72
  article-title: Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-019-01047-9
– volume: 139
  start-page: 171
  year: 2017
  ident: 10.1016/j.eswa.2025.126503_b89
  article-title: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2016.07.029
– volume: 186
  year: 2021
  ident: 10.1016/j.eswa.2025.126503_b52
  article-title: Elitist non-dominated sorting harris hawks optimization: Framework and developments for multi-objective problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115747
– start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2025.126503_b74
  article-title: A gait recognition method based on KFDA and SVM
SSID ssj0017007
Score 2.4846487
Snippet Parkinson’s disease, an idiopathic neurological illness, affects over 1% of the global elderly population. Feature-based methods are frequently used to...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 126503
SubjectTerms Feature selection
Harris Hawk
KNN
Multi-objective
Parkinson’s disease
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IF734NuIrPXjTArvb7sLREAkx0YuScNv0sRUQWAJLiBfj3_Dv-UucobtEDxrjadOmTTfT7cw325lvCLnwGuBxKRuySAqfcaPqTEEX85H5xQ-bKpD4a-DuPux0-W1P9EqkVeTCYFhlrvudTl9p67ynlkuzNh0Mag8ADsAcgmsn0GYLZPzkPMIqBtXXdZgH0s9Fjm8vYjg6T5xxMV7JfIncQ76oej5AleAn47SxmEzly1KORl-MT3uHbOWokV67F9slpWSyR7aLigw0P6D7JF7l07JUDZ0eox05g1MMj-UzHSeZ7CcLR81M5egpnQ2y_nhOAbdSwIHUuLA7GJ9aiunQq8ywj7f3Oc3vcQ5It33z2OqwvIQC04EfZEyB7dHGyNALARhIYYXWQioT1UMFyCRUvJHUubQBlj7XSVPrQBoNXqG0MmoCuDsk5Uk6SY4I1cpq9PYaShnOrW14yAXIlWfqRghhK-SykF08dUwZcRFCNoxR0jFKOnaSrhBRiDf-tt8xqPJf512t9-IPyxz_c5kTsoktvDbyxSkpZ7NFcgboI1Pnq8_rE3mi2Og
  priority: 102
  providerName: Elsevier
Title Multi-objective Harris Hawk metaheuristic algorithms for the diagnosis of Parkinson’s disease
URI https://dx.doi.org/10.1016/j.eswa.2025.126503
https://doi.org/10.1016/j.eswa.2025.126503
UnpaywallVersion publishedVersion
Volume 270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8CF8RTPKQdukGl9JO2OE2IaICYOTIJTlUcDjLGhrdMEB8Tf4O_xS3CWDgECBKeqVdqqdlJ_ju3PALtejB6XNJxGgvk01LJKJV6ivmV-8XlNBsJuDZy2eLMdHl-wi5wmx9bCfIrfT_Kw0uHY8gP5rOL5CCeCWShyhri7AMV266x-6cj0Iho6ymUvjgLKcdblFTLfP-QnKzQ36t2Lh7Hodj9YmUbJtSsaTsgJbXLJbWWUyYp6_ELd-LcPWISFHGySupsdSzCT9pahNG3kQPJ1vQLJpAyX9mXH_f5IUwxw8eNhfEvu0kxcpyPH6ExE96o_uMmu74YE4S5B-Ei0y9bD8X1DbBX1pKDs9fllSPLwzyq0G4fnB02ad16gKvCDjEo0WUprwT2OeEIww5RiQuqoyiUCGi7DOK2GwgS2Y7pKa0oFQit0JoURUQ0x4RoUev1eug5ESaOskxhLqcPQmNizFIKh9HRVM8bMBuxNNZHcO4KNZJp51kms7BIru8TJbgPYVFlJDhGc6U9Q7r_et_-u2T-8ZvN_w7dg3p7ZIJPPtqGQDUbpDmKVTJZhtvLklaFYPzpptsr5lH0Dpx3mgg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFG0UF7jxbcRnF-60wDw6A0tDJKjARkjYNX1MBeQVGELcGH_D3_NLvKUzRBca42qSTiednE7vPXd67ylCl04JIi6hAxJy6hJfiSIR0ERco_ziBmXhcfNroNEMam3_vkM7a6iS1sKYtMrE9lubvrTWSUshQbMw6fUKj0AOwB1CaEeNz6beOtrwqRuaCCz_usrzMPpzoRXcC4npnlTO2CSvaLYw4kMuzTsucBXvJ--UnY8m_GXBB4Mv3qe6g7YS2ohv7JvtorVotIe20yMZcLJC9xFbFtSSsehbQ4ZrfArLGC6LZzyMYt6N5labGfPB03jai7vDGQbiioEIYmXz7qD_WGNTD70sDft4e5_hZCPnALWrt61KjSRnKBDpuV5MBDgfqRQPnACYAaeaSkm5UGExEEBNAuGXoqLPtWfOPpdRWUqPKwlhIdc8LAO7O0SZ0XgUHSEshZYm3CsJoXxf65JjxAB94aiiopTqHLpKsWMTK5XB0hyyPjNIM4M0s0jnEE3hZd8mnIEt__W569Vc_GGY438Oc4GytVajzup3zYcTtGnumD0kl56iTDydR2dARWJxvvzUPgF0V9wL
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHPQiPiO-sgdvuqSv3ZYjMRJiIvEgCZ6afXRFBEqghOjJv-Hf85c4y7ZGjRo8NW22bTqz2_lmZ-YbhE7dCDwuoRkJOfVIoIRDBFwinmF-8Vhd-NxsDVy3WasTXHVpN6fJMbUwX-L3izysZDo3_EAerbkewAl_FZUZBdxdQuVO-6ZxZ8n0QhJYymU3Cn3CYNblFTI_P-Q3K7Q2G43505wPBp-sTLNi2xVNF-SEJrnksTbLRE0-f6NuXO4DNtFGDjZxw86OLbSSjLZRpWjkgPN1vYPiRRkuSUXf_v5wi09g8cNh_oiHScZ7ycwyOmM-uE8nD1lvOMUAdzHAR6xsth6MTzU2VdSLgrK3l9cpzsM_u6jTvLy9aJG88wKRvudnRIDJkkpx5jLAE5xqKiXlQoUOEwBomAiixAm49k3HdJnUpfS5kuBMcs3DOmDCPVQapaNkH2EptDROYiSECgKtI9dQCAbCVY6ilOoqOis0EY8twUZcZJ71YyO72MgutrKrIlooK84hgjX9Mcj9z_vOPzS7xGsO_jf8EK2bMxNk8ugRKmWTWXIMWCUTJ_kkfQcimOP2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+Harris+Hawk+metaheuristic+algorithms+for+the+diagnosis+of+Parkinson%E2%80%99s+disease&rft.jtitle=Expert+systems+with+applications&rft.au=Dokeroglu%2C+Tansel&rft.au=Kucukyilmaz%2C+Tayfun&rft.date=2025-04-25&rft.issn=0957-4174&rft.volume=270&rft.spage=126503&rft_id=info:doi/10.1016%2Fj.eswa.2025.126503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon