Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parall...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 106; no. 8
Main Authors Ito, Kota, Miura, Atsushi, Iizuka, Hideo, Toshiyoshi, Hiroshi
Format Journal Article
LanguageEnglish
Published United States 23.02.2015
Subjects
Online AccessGet full text
ISSN0003-6951
1077-3118
DOI10.1063/1.4913692

Cover

Abstract Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.
AbstractList Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.
Author Iizuka, Hideo
Miura, Atsushi
Ito, Kota
Toshiyoshi, Hiroshi
Author_xml – sequence: 1
  givenname: Kota
  orcidid: 0000-0002-1526-5170
  surname: Ito
  fullname: Ito, Kota
– sequence: 2
  givenname: Atsushi
  surname: Miura
  fullname: Miura, Atsushi
– sequence: 3
  givenname: Hideo
  orcidid: 0000-0002-7026-1033
  surname: Iizuka
  fullname: Iizuka, Hideo
– sequence: 4
  givenname: Hiroshi
  orcidid: 0000-0003-3678-7741
  surname: Toshiyoshi
  fullname: Toshiyoshi, Hiroshi
BackLink https://www.osti.gov/biblio/22412723$$D View this record in Osti.gov
BookMark eNptUE1LAzEUDFLBtnrwHwQ8edg2H5vUPUrxCwp60PPyNnlrI2m2JFHpvze1PYm8w-MNM8O8mZBRGAIScsnZjDMt53xWN1zqRpyQMWeLRSU5vxmRMWNMVrpR_IxMUvoopxJSjsnwAhG8R19tPWSk6bPbOBOHQN9hS_shbtDSbkd_wQ2YtQsF8MN3ZTEkl3d067yHmPZcGhBi1Tv0lkawDrL7QrpGyDRHCKnHeE5Oe_AJL457St7u716Xj9Xq-eFpebuqjBQyV9A1CsuAZaiF7mourBWqE4IbbUzda6UWTLMeO6HqurGS1Rpkr4DbTiHIKbk6-A4puzYZl9GszRACmtwKUfwW5f8pmR9Y5bmUIvZtIZbUQyh5nW85a_ettrw9tloU138U2-g2EHf_cH8AezR6Zg
CitedBy_id crossref_primary_10_1103_RevModPhys_93_025009
crossref_primary_10_1063_1_4967832
crossref_primary_10_1016_j_solmat_2021_111556
crossref_primary_10_1063_1_4941405
crossref_primary_10_1103_PhysRevB_100_134305
crossref_primary_10_1016_j_nanoen_2019_04_039
crossref_primary_10_1103_PhysRevB_94_241401
crossref_primary_10_1063_5_0068700
crossref_primary_10_1038_ncomms12900
crossref_primary_10_1016_j_jqsrt_2018_03_015
crossref_primary_10_1038_s41598_017_14242_x
crossref_primary_10_1021_acsphotonics_9b01360
crossref_primary_10_1063_5_0182687
crossref_primary_10_1103_PhysRevApplied_8_014030
crossref_primary_10_1103_PhysRevB_110_035412
crossref_primary_10_1103_PhysRevB_91_195136
crossref_primary_10_1038_s41565_019_0483_1
crossref_primary_10_1016_j_jqsrt_2017_03_011
crossref_primary_10_1103_PhysRevB_92_144307
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124206
crossref_primary_10_1016_j_jqsrt_2018_02_006
crossref_primary_10_1103_PhysRevLett_120_063901
crossref_primary_10_1021_acs_nanolett_9b01086
crossref_primary_10_1088_1361_6463_aaf947
crossref_primary_10_1021_acs_nanolett_7b01422
crossref_primary_10_1103_PhysRevApplied_14_014070
crossref_primary_10_1103_PhysRevLett_121_023903
crossref_primary_10_1103_PhysRevApplied_19_024019
crossref_primary_10_1038_nnano_2016_20
crossref_primary_10_1007_s11708_017_0517_z
crossref_primary_10_1038_nnano_2016_24
crossref_primary_10_1088_1361_6633_abe52b
crossref_primary_10_1063_5_0142651
crossref_primary_10_1038_s41378_019_0071_4
crossref_primary_10_1063_1_5004662
crossref_primary_10_1002_adma_202411524
crossref_primary_10_1016_j_solmat_2016_12_007
crossref_primary_10_1063_5_0008259
crossref_primary_10_1103_PhysRevB_100_085426
crossref_primary_10_1103_PhysRevLett_120_175901
crossref_primary_10_1063_5_0034503
crossref_primary_10_1016_j_jqsrt_2016_06_013
crossref_primary_10_1103_PhysRevApplied_19_037002
crossref_primary_10_1515_zna_2019_0132
crossref_primary_10_1063_1_4973530
crossref_primary_10_1038_s41586_024_07279_2
crossref_primary_10_1021_acsphotonics_4c00963
crossref_primary_10_1016_j_jqsrt_2018_09_029
crossref_primary_10_1063_1_5078602
crossref_primary_10_1063_1_5037468
crossref_primary_10_1016_j_jqsrt_2017_02_001
crossref_primary_10_1016_j_jqsrt_2017_04_033
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_061
crossref_primary_10_1021_acs_nanolett_3c02049
crossref_primary_10_1364_OE_24_00A635
crossref_primary_10_1021_acsnano_7b08231
crossref_primary_10_1021_acsphotonics_0c00404
crossref_primary_10_1038_ncomms14479
crossref_primary_10_1103_PhysRevLett_117_044301
crossref_primary_10_1063_1_4967384
Cites_doi 10.1038/nphoton.2009.144
10.1063/1.4790292
10.1103/PhysRevLett.104.154301
10.1063/1.2905286
10.1063/1.4905132
10.1103/PhysRevLett.112.044301
10.1016/j.jqsrt.2007.08.022
10.1063/1.4825168
10.1109/TEC.2011.2118212
10.1103/PhysRevLett.107.014301
10.1080/15567265.2013.776154
10.1063/1.3596707
10.1063/1.3679694
10.1103/PhysRevB.4.3303
10.1063/1.4804631
10.1063/1.1575936
10.1103/PhysRevB.78.115303
10.1038/nature05265
10.1103/PhysRevLett.109.224302
10.1063/1.3567026
10.1021/nl901208v
10.1063/1.4737465
10.1021/nl504332t
10.1364/AO.46.008118
10.1103/PhysRevB.25.3889
10.1021/nl301708e
10.1021/nl503236k
10.1063/1.2234560
10.1016/j.jqsrt.2014.07.007
10.1016/j.enbuild.2004.05.006
10.1063/1.1539379
10.1103/PhysRevLett.108.234301
10.1016/j.ijheatmasstransfer.2005.09.037
10.1016/S0017-9310(98)00067-2
10.1063/1.1400762
10.1063/1.4904456
10.1063/1.2829999
10.1016/0375-9601(69)90264-3
10.1063/1.3585985
10.1063/1.1499518
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOI 10.1063/1.4913692
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 22412723
10_1063_1_4913692
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
AAYXX
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UPT
WH7
XJE
YZZ
~02
0ZJ
AAEUA
ABFTF
ABPTK
AGIHO
ESX
OTOTI
UCJ
UE8
ID FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3
ISSN 0003-6951
IngestDate Fri May 19 00:36:09 EDT 2023
Wed Oct 01 04:58:18 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3
ORCID 0000-0002-1526-5170
0000-0003-3678-7741
0000-0002-7026-1033
ParticipantIDs osti_scitechconnect_22412723
crossref_citationtrail_10_1063_1_4913692
crossref_primary_10_1063_1_4913692
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-23
PublicationDateYYYYMMDD 2015-02-23
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied physics letters
PublicationYear 2015
References (2023080901314027800_c2) 2003; 82
(2023080901314027800_c35) 2007; 46
(2023080901314027800_c13) 2011; 98
(2023080901314027800_c25) 2014; 14
(2023080901314027800_c22) 2008; 92
(2023080901314027800_c23) 2013; 102
(2023080901314027800_c18) 2009; 9
(2023080901314027800_c20) 2012; 108
(2023080901314027800_c16) 2014; 112
(2023080901314027800_c30) 2012; 109
(2023080901314027800_c17) 2008; 78
(2023080901314027800_c32) 2003; 653
(2023080901314027800_c33) 2008; 92
(2023080901314027800_c7) 2011; 98
(2023080901314027800_c38) 2014; 105
(2023080901314027800_c6) 2010; 104
(2023080901314027800_c11) 2014; 148
(2023080901314027800_c27) 1969; 30
(2023080901314027800_c34) 2006; 49
(2023080901314027800_c28) 2011; 107
(2023080901314027800_c37) 2005; 37
(2023080901314027800_c15) 2014; 105
(2023080901314027800_c12) 2012; 100
(2023080901314027800_c5) 2011; 26
(2023080901314027800_c24) 2015; 15
(2023080901314027800_c4) 2008; 109
(2023080901314027800_c19) 2009; 3
(2023080901314027800_c40) 2002; 81
(2023080901314027800_c26) 2006; 444
(2023080901314027800_c21) 2012; 12
(2023080901314027800_c9) 2013; 17
(2023080901314027800_c36) 1982; 25
(2023080901314027800_c1) 1971; 4
(2023080901314027800_c3) 2006; 100
(2023080901314027800_c29) 2011; 82
(2023080901314027800_c10) 2013; 103
(2023080901314027800_c39) 1998; 41
(2023080901314027800_c14) 2013; 102
(2023080901314027800_c8) 2012; 112
(2023080901314027800_c31) 2001; 79
References_xml – volume: 3
  start-page: 514
  year: 2009
  ident: 2023080901314027800_c19
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.144
– volume: 102
  start-page: 053106
  year: 2013
  ident: 2023080901314027800_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4790292
– volume: 104
  start-page: 154301
  year: 2010
  ident: 2023080901314027800_c6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.154301
– volume: 92
  start-page: 133106
  year: 2008
  ident: 2023080901314027800_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2905286
– volume: 105
  start-page: 253503
  year: 2014
  ident: 2023080901314027800_c38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905132
– volume: 112
  start-page: 044301
  year: 2014
  ident: 2023080901314027800_c16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.044301
– volume: 109
  start-page: 305
  year: 2008
  ident: 2023080901314027800_c4
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2007.08.022
– volume: 103
  start-page: 163101
  year: 2013
  ident: 2023080901314027800_c10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4825168
– volume: 26
  start-page: 686
  year: 2011
  ident: 2023080901314027800_c5
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2011.2118212
– volume: 107
  start-page: 014301
  year: 2011
  ident: 2023080901314027800_c28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.014301
– volume: 17
  start-page: 337
  year: 2013
  ident: 2023080901314027800_c9
  publication-title: Nanoscale Microscale Thermophys. Eng.
  doi: 10.1080/15567265.2013.776154
– volume: 98
  start-page: 243102
  year: 2011
  ident: 2023080901314027800_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3596707
– volume: 100
  start-page: 044104
  year: 2012
  ident: 2023080901314027800_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3679694
– volume: 4
  start-page: 3303
  year: 1971
  ident: 2023080901314027800_c1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.4.3303
– volume: 102
  start-page: 183114
  year: 2013
  ident: 2023080901314027800_c23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4804631
– volume: 82
  start-page: 3544
  year: 2003
  ident: 2023080901314027800_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1575936
– volume: 78
  start-page: 115303
  year: 2008
  ident: 2023080901314027800_c17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.115303
– volume: 444
  start-page: 740
  year: 2006
  ident: 2023080901314027800_c26
  publication-title: Nature
  doi: 10.1038/nature05265
– volume: 109
  start-page: 224302
  year: 2012
  ident: 2023080901314027800_c30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.224302
– volume: 98
  start-page: 113106
  year: 2011
  ident: 2023080901314027800_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3567026
– volume: 9
  start-page: 2909
  year: 2009
  ident: 2023080901314027800_c18
  publication-title: Nano Lett.
  doi: 10.1021/nl901208v
– volume: 112
  start-page: 024304
  year: 2012
  ident: 2023080901314027800_c8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4737465
– volume: 15
  start-page: 1217
  year: 2015
  ident: 2023080901314027800_c24
  publication-title: Nano Lett.
  doi: 10.1021/nl504332t
– volume: 46
  start-page: 8118
  year: 2007
  ident: 2023080901314027800_c35
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.008118
– volume: 25
  start-page: 3889
  year: 1982
  ident: 2023080901314027800_c36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.25.3889
– volume: 12
  start-page: 4546
  year: 2012
  ident: 2023080901314027800_c21
  publication-title: Nano Lett.
  doi: 10.1021/nl301708e
– volume: 14
  start-page: 6971
  year: 2014
  ident: 2023080901314027800_c25
  publication-title: Nano Lett.
  doi: 10.1021/nl503236k
– volume: 100
  start-page: 063704
  year: 2006
  ident: 2023080901314027800_c3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2234560
– volume: 148
  start-page: 156
  year: 2014
  ident: 2023080901314027800_c11
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2014.07.007
– volume: 37
  start-page: 77
  year: 2005
  ident: 2023080901314027800_c37
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.05.006
– volume: 653
  start-page: 232
  year: 2003
  ident: 2023080901314027800_c32
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1539379
– volume: 108
  start-page: 234301
  year: 2012
  ident: 2023080901314027800_c20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.234301
– volume: 49
  start-page: 1703
  year: 2006
  ident: 2023080901314027800_c34
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.09.037
– volume: 41
  start-page: 3469
  year: 1998
  ident: 2023080901314027800_c39
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(98)00067-2
– volume: 79
  start-page: 1894
  year: 2001
  ident: 2023080901314027800_c31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1400762
– volume: 105
  start-page: 244102
  year: 2014
  ident: 2023080901314027800_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904456
– volume: 92
  start-page: 063509
  year: 2008
  ident: 2023080901314027800_c22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2829999
– volume: 30
  start-page: 491
  year: 1969
  ident: 2023080901314027800_c27
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(69)90264-3
– volume: 82
  start-page: 055106
  year: 2011
  ident: 2023080901314027800_c29
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3585985
– volume: 81
  start-page: 1216
  year: 2002
  ident: 2023080901314027800_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1499518
SSID ssj0005233
Score 2.4115071
Snippet Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
SubjectTerms CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DENSITY
ENERGY CONVERSION
HEAT FLUX
INTERFEROMETRY
MODULATION
PLATES
QUARTZ
STEADY-STATE CONDITIONS
SUBSTRATES
SURFACES
THERMAL CONDUCTION
Title Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer
URI https://www.osti.gov/biblio/22412723
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1077-3118
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0005233
  issn: 0003-6951
  databaseCode: ADMLS
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF7OK4J9EK2KrVUW8UEIW5PdZJM8Fn9w_jgp2ELfQnaT1MOYHLkc0v71zmQ3uZzeQ5WD5dhskuPmY_LtZOYbQl7pQupY-gHLChUyP05jFsk0YpGWsHtOVZaHWJw8_ypnF_6ny-ByMlmPq0tadaJvdtaV_I9VYQ7silWy_2DZ4aIwAd_BvjCChWG8lY3P0gZboZRsWQJldFbwbMP8usq5SpddWaKhl93kzy5rEibK-hfLMG0d6PcSew41nSSDUwHmWZfQ5jQoWNDlFKGrxjYSQG5tGm-vWGvZq4mMrJyyKwsaCPrHrjuT87luB7c_X6wbE8RtV-vV98WwdHGz_tEdmC2yvN6EvWHNNQ7mUFP359gYhWdqvsWW3xVMxlZaNjeu1g0xQmq9b--LXTkCXbTTxwOpwnDDiR97QppGets62n8834asw-59uxSJl9hT75A9HkrJp2Tv9N38y7dRbpAQfatF_Nm9JJUUb4b7bhGZaQ0OeURMzh-Q-3ZHQU8NPB6SSV4dkP2RzuQBuXtmrPSI1NuQoQNkKECGGshQdU23IENHkKEWMriWbiBDB8hQhAztIfOYXHx4f_52xmzPDaYFFy1LVRzk8EkzN4e9rvI9nmU8UJx7WmrtFxI126Rb5ArF7eIM36ynoghSL1NBnoonZFrVVf6UUFSYLeB5mrmF8H2tFHDtsADKz2XEQ1Ucktf9H5hoK0iPfVHK5C9DHZKXw9KlUWHZtegYrZAAdUT9Y42JYrpNkKPykIuj21zjGbm3we8xmbbNOn8OrLNVLyxGfgMAD4YD
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel-plate+submicron+gap+formed+by+micromachined+low-density+pillars+for+near-field+radiative+heat+transfer&rft.jtitle=Applied+physics+letters&rft.au=Ito%2C+Kota&rft.au=Miura%2C+Atsushi&rft.au=Iizuka%2C+Hideo&rft.au=Toshiyoshi%2C+Hiroshi&rft.date=2015-02-23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=106&rft.issue=8&rft_id=info:doi/10.1063%2F1.4913692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4913692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon