Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer
Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parall...
Saved in:
Published in | Applied physics letters Vol. 106; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
23.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6951 1077-3118 |
DOI | 10.1063/1.4913692 |
Cover
Abstract | Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics. |
---|---|
AbstractList | Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics. |
Author | Iizuka, Hideo Miura, Atsushi Ito, Kota Toshiyoshi, Hiroshi |
Author_xml | – sequence: 1 givenname: Kota orcidid: 0000-0002-1526-5170 surname: Ito fullname: Ito, Kota – sequence: 2 givenname: Atsushi surname: Miura fullname: Miura, Atsushi – sequence: 3 givenname: Hideo orcidid: 0000-0002-7026-1033 surname: Iizuka fullname: Iizuka, Hideo – sequence: 4 givenname: Hiroshi orcidid: 0000-0003-3678-7741 surname: Toshiyoshi fullname: Toshiyoshi, Hiroshi |
BackLink | https://www.osti.gov/biblio/22412723$$D View this record in Osti.gov |
BookMark | eNptUE1LAzEUDFLBtnrwHwQ8edg2H5vUPUrxCwp60PPyNnlrI2m2JFHpvze1PYm8w-MNM8O8mZBRGAIScsnZjDMt53xWN1zqRpyQMWeLRSU5vxmRMWNMVrpR_IxMUvoopxJSjsnwAhG8R19tPWSk6bPbOBOHQN9hS_shbtDSbkd_wQ2YtQsF8MN3ZTEkl3d067yHmPZcGhBi1Tv0lkawDrL7QrpGyDRHCKnHeE5Oe_AJL457St7u716Xj9Xq-eFpebuqjBQyV9A1CsuAZaiF7mourBWqE4IbbUzda6UWTLMeO6HqurGS1Rpkr4DbTiHIKbk6-A4puzYZl9GszRACmtwKUfwW5f8pmR9Y5bmUIvZtIZbUQyh5nW85a_ettrw9tloU138U2-g2EHf_cH8AezR6Zg |
CitedBy_id | crossref_primary_10_1103_RevModPhys_93_025009 crossref_primary_10_1063_1_4967832 crossref_primary_10_1016_j_solmat_2021_111556 crossref_primary_10_1063_1_4941405 crossref_primary_10_1103_PhysRevB_100_134305 crossref_primary_10_1016_j_nanoen_2019_04_039 crossref_primary_10_1103_PhysRevB_94_241401 crossref_primary_10_1063_5_0068700 crossref_primary_10_1038_ncomms12900 crossref_primary_10_1016_j_jqsrt_2018_03_015 crossref_primary_10_1038_s41598_017_14242_x crossref_primary_10_1021_acsphotonics_9b01360 crossref_primary_10_1063_5_0182687 crossref_primary_10_1103_PhysRevApplied_8_014030 crossref_primary_10_1103_PhysRevB_110_035412 crossref_primary_10_1103_PhysRevB_91_195136 crossref_primary_10_1038_s41565_019_0483_1 crossref_primary_10_1016_j_jqsrt_2017_03_011 crossref_primary_10_1103_PhysRevB_92_144307 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124206 crossref_primary_10_1016_j_jqsrt_2018_02_006 crossref_primary_10_1103_PhysRevLett_120_063901 crossref_primary_10_1021_acs_nanolett_9b01086 crossref_primary_10_1088_1361_6463_aaf947 crossref_primary_10_1021_acs_nanolett_7b01422 crossref_primary_10_1103_PhysRevApplied_14_014070 crossref_primary_10_1103_PhysRevLett_121_023903 crossref_primary_10_1103_PhysRevApplied_19_024019 crossref_primary_10_1038_nnano_2016_20 crossref_primary_10_1007_s11708_017_0517_z crossref_primary_10_1038_nnano_2016_24 crossref_primary_10_1088_1361_6633_abe52b crossref_primary_10_1063_5_0142651 crossref_primary_10_1038_s41378_019_0071_4 crossref_primary_10_1063_1_5004662 crossref_primary_10_1002_adma_202411524 crossref_primary_10_1016_j_solmat_2016_12_007 crossref_primary_10_1063_5_0008259 crossref_primary_10_1103_PhysRevB_100_085426 crossref_primary_10_1103_PhysRevLett_120_175901 crossref_primary_10_1063_5_0034503 crossref_primary_10_1016_j_jqsrt_2016_06_013 crossref_primary_10_1103_PhysRevApplied_19_037002 crossref_primary_10_1515_zna_2019_0132 crossref_primary_10_1063_1_4973530 crossref_primary_10_1038_s41586_024_07279_2 crossref_primary_10_1021_acsphotonics_4c00963 crossref_primary_10_1016_j_jqsrt_2018_09_029 crossref_primary_10_1063_1_5078602 crossref_primary_10_1063_1_5037468 crossref_primary_10_1016_j_jqsrt_2017_02_001 crossref_primary_10_1016_j_jqsrt_2017_04_033 crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_061 crossref_primary_10_1021_acs_nanolett_3c02049 crossref_primary_10_1364_OE_24_00A635 crossref_primary_10_1021_acsnano_7b08231 crossref_primary_10_1021_acsphotonics_0c00404 crossref_primary_10_1038_ncomms14479 crossref_primary_10_1103_PhysRevLett_117_044301 crossref_primary_10_1063_1_4967384 |
Cites_doi | 10.1038/nphoton.2009.144 10.1063/1.4790292 10.1103/PhysRevLett.104.154301 10.1063/1.2905286 10.1063/1.4905132 10.1103/PhysRevLett.112.044301 10.1016/j.jqsrt.2007.08.022 10.1063/1.4825168 10.1109/TEC.2011.2118212 10.1103/PhysRevLett.107.014301 10.1080/15567265.2013.776154 10.1063/1.3596707 10.1063/1.3679694 10.1103/PhysRevB.4.3303 10.1063/1.4804631 10.1063/1.1575936 10.1103/PhysRevB.78.115303 10.1038/nature05265 10.1103/PhysRevLett.109.224302 10.1063/1.3567026 10.1021/nl901208v 10.1063/1.4737465 10.1021/nl504332t 10.1364/AO.46.008118 10.1103/PhysRevB.25.3889 10.1021/nl301708e 10.1021/nl503236k 10.1063/1.2234560 10.1016/j.jqsrt.2014.07.007 10.1016/j.enbuild.2004.05.006 10.1063/1.1539379 10.1103/PhysRevLett.108.234301 10.1016/j.ijheatmasstransfer.2005.09.037 10.1016/S0017-9310(98)00067-2 10.1063/1.1400762 10.1063/1.4904456 10.1063/1.2829999 10.1016/0375-9601(69)90264-3 10.1063/1.3585985 10.1063/1.1499518 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1063/1.4913692 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 22412723 10_1063_1_4913692 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 0ZJ AAEUA ABFTF ABPTK AGIHO ESX OTOTI UCJ UE8 |
ID | FETCH-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3 |
ISSN | 0003-6951 |
IngestDate | Fri May 19 00:36:09 EDT 2023 Wed Oct 01 04:58:18 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-ab95e5e5ad0e626b412dd25b221c6cc4f6557060feb25449d3046a3f5a1db5ea3 |
ORCID | 0000-0002-1526-5170 0000-0003-3678-7741 0000-0002-7026-1033 |
ParticipantIDs | osti_scitechconnect_22412723 crossref_citationtrail_10_1063_1_4913692 crossref_primary_10_1063_1_4913692 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-23 |
PublicationDateYYYYMMDD | 2015-02-23 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2015 |
References | (2023080901314027800_c2) 2003; 82 (2023080901314027800_c35) 2007; 46 (2023080901314027800_c13) 2011; 98 (2023080901314027800_c25) 2014; 14 (2023080901314027800_c22) 2008; 92 (2023080901314027800_c23) 2013; 102 (2023080901314027800_c18) 2009; 9 (2023080901314027800_c20) 2012; 108 (2023080901314027800_c16) 2014; 112 (2023080901314027800_c30) 2012; 109 (2023080901314027800_c17) 2008; 78 (2023080901314027800_c32) 2003; 653 (2023080901314027800_c33) 2008; 92 (2023080901314027800_c7) 2011; 98 (2023080901314027800_c38) 2014; 105 (2023080901314027800_c6) 2010; 104 (2023080901314027800_c11) 2014; 148 (2023080901314027800_c27) 1969; 30 (2023080901314027800_c34) 2006; 49 (2023080901314027800_c28) 2011; 107 (2023080901314027800_c37) 2005; 37 (2023080901314027800_c15) 2014; 105 (2023080901314027800_c12) 2012; 100 (2023080901314027800_c5) 2011; 26 (2023080901314027800_c24) 2015; 15 (2023080901314027800_c4) 2008; 109 (2023080901314027800_c19) 2009; 3 (2023080901314027800_c40) 2002; 81 (2023080901314027800_c26) 2006; 444 (2023080901314027800_c21) 2012; 12 (2023080901314027800_c9) 2013; 17 (2023080901314027800_c36) 1982; 25 (2023080901314027800_c1) 1971; 4 (2023080901314027800_c3) 2006; 100 (2023080901314027800_c29) 2011; 82 (2023080901314027800_c10) 2013; 103 (2023080901314027800_c39) 1998; 41 (2023080901314027800_c14) 2013; 102 (2023080901314027800_c8) 2012; 112 (2023080901314027800_c31) 2001; 79 |
References_xml | – volume: 3 start-page: 514 year: 2009 ident: 2023080901314027800_c19 publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.144 – volume: 102 start-page: 053106 year: 2013 ident: 2023080901314027800_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4790292 – volume: 104 start-page: 154301 year: 2010 ident: 2023080901314027800_c6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.154301 – volume: 92 start-page: 133106 year: 2008 ident: 2023080901314027800_c33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2905286 – volume: 105 start-page: 253503 year: 2014 ident: 2023080901314027800_c38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905132 – volume: 112 start-page: 044301 year: 2014 ident: 2023080901314027800_c16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.044301 – volume: 109 start-page: 305 year: 2008 ident: 2023080901314027800_c4 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2007.08.022 – volume: 103 start-page: 163101 year: 2013 ident: 2023080901314027800_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4825168 – volume: 26 start-page: 686 year: 2011 ident: 2023080901314027800_c5 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2011.2118212 – volume: 107 start-page: 014301 year: 2011 ident: 2023080901314027800_c28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.014301 – volume: 17 start-page: 337 year: 2013 ident: 2023080901314027800_c9 publication-title: Nanoscale Microscale Thermophys. Eng. doi: 10.1080/15567265.2013.776154 – volume: 98 start-page: 243102 year: 2011 ident: 2023080901314027800_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3596707 – volume: 100 start-page: 044104 year: 2012 ident: 2023080901314027800_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3679694 – volume: 4 start-page: 3303 year: 1971 ident: 2023080901314027800_c1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.4.3303 – volume: 102 start-page: 183114 year: 2013 ident: 2023080901314027800_c23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4804631 – volume: 82 start-page: 3544 year: 2003 ident: 2023080901314027800_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1575936 – volume: 78 start-page: 115303 year: 2008 ident: 2023080901314027800_c17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.115303 – volume: 444 start-page: 740 year: 2006 ident: 2023080901314027800_c26 publication-title: Nature doi: 10.1038/nature05265 – volume: 109 start-page: 224302 year: 2012 ident: 2023080901314027800_c30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.224302 – volume: 98 start-page: 113106 year: 2011 ident: 2023080901314027800_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3567026 – volume: 9 start-page: 2909 year: 2009 ident: 2023080901314027800_c18 publication-title: Nano Lett. doi: 10.1021/nl901208v – volume: 112 start-page: 024304 year: 2012 ident: 2023080901314027800_c8 publication-title: J. Appl. Phys. doi: 10.1063/1.4737465 – volume: 15 start-page: 1217 year: 2015 ident: 2023080901314027800_c24 publication-title: Nano Lett. doi: 10.1021/nl504332t – volume: 46 start-page: 8118 year: 2007 ident: 2023080901314027800_c35 publication-title: Appl. Opt. doi: 10.1364/AO.46.008118 – volume: 25 start-page: 3889 year: 1982 ident: 2023080901314027800_c36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.25.3889 – volume: 12 start-page: 4546 year: 2012 ident: 2023080901314027800_c21 publication-title: Nano Lett. doi: 10.1021/nl301708e – volume: 14 start-page: 6971 year: 2014 ident: 2023080901314027800_c25 publication-title: Nano Lett. doi: 10.1021/nl503236k – volume: 100 start-page: 063704 year: 2006 ident: 2023080901314027800_c3 publication-title: J. Appl. Phys. doi: 10.1063/1.2234560 – volume: 148 start-page: 156 year: 2014 ident: 2023080901314027800_c11 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2014.07.007 – volume: 37 start-page: 77 year: 2005 ident: 2023080901314027800_c37 publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.05.006 – volume: 653 start-page: 232 year: 2003 ident: 2023080901314027800_c32 publication-title: AIP Conf. Proc. doi: 10.1063/1.1539379 – volume: 108 start-page: 234301 year: 2012 ident: 2023080901314027800_c20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.234301 – volume: 49 start-page: 1703 year: 2006 ident: 2023080901314027800_c34 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.09.037 – volume: 41 start-page: 3469 year: 1998 ident: 2023080901314027800_c39 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(98)00067-2 – volume: 79 start-page: 1894 year: 2001 ident: 2023080901314027800_c31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1400762 – volume: 105 start-page: 244102 year: 2014 ident: 2023080901314027800_c15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904456 – volume: 92 start-page: 063509 year: 2008 ident: 2023080901314027800_c22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2829999 – volume: 30 start-page: 491 year: 1969 ident: 2023080901314027800_c27 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(69)90264-3 – volume: 82 start-page: 055106 year: 2011 ident: 2023080901314027800_c29 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3585985 – volume: 81 start-page: 1216 year: 2002 ident: 2023080901314027800_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1499518 |
SSID | ssj0005233 |
Score | 2.4115071 |
Snippet | Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a... |
SourceID | osti crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
SubjectTerms | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DENSITY ENERGY CONVERSION HEAT FLUX INTERFEROMETRY MODULATION PLATES QUARTZ STEADY-STATE CONDITIONS SUBSTRATES SURFACES THERMAL CONDUCTION |
Title | Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer |
URI | https://www.osti.gov/biblio/22412723 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1077-3118 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0005233 issn: 0003-6951 databaseCode: ADMLS dateStart: 19840101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF7OK4J9EK2KrVUW8UEIW5PdZJM8Fn9w_jgp2ELfQnaT1MOYHLkc0v71zmQ3uZzeQ5WD5dhskuPmY_LtZOYbQl7pQupY-gHLChUyP05jFsk0YpGWsHtOVZaHWJw8_ypnF_6ny-ByMlmPq0tadaJvdtaV_I9VYQ7silWy_2DZ4aIwAd_BvjCChWG8lY3P0gZboZRsWQJldFbwbMP8usq5SpddWaKhl93kzy5rEibK-hfLMG0d6PcSew41nSSDUwHmWZfQ5jQoWNDlFKGrxjYSQG5tGm-vWGvZq4mMrJyyKwsaCPrHrjuT87luB7c_X6wbE8RtV-vV98WwdHGz_tEdmC2yvN6EvWHNNQ7mUFP359gYhWdqvsWW3xVMxlZaNjeu1g0xQmq9b--LXTkCXbTTxwOpwnDDiR97QppGets62n8834asw-59uxSJl9hT75A9HkrJp2Tv9N38y7dRbpAQfatF_Nm9JJUUb4b7bhGZaQ0OeURMzh-Q-3ZHQU8NPB6SSV4dkP2RzuQBuXtmrPSI1NuQoQNkKECGGshQdU23IENHkKEWMriWbiBDB8hQhAztIfOYXHx4f_52xmzPDaYFFy1LVRzk8EkzN4e9rvI9nmU8UJx7WmrtFxI126Rb5ArF7eIM36ynoghSL1NBnoonZFrVVf6UUFSYLeB5mrmF8H2tFHDtsADKz2XEQ1Ucktf9H5hoK0iPfVHK5C9DHZKXw9KlUWHZtegYrZAAdUT9Y42JYrpNkKPykIuj21zjGbm3we8xmbbNOn8OrLNVLyxGfgMAD4YD |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel-plate+submicron+gap+formed+by+micromachined+low-density+pillars+for+near-field+radiative+heat+transfer&rft.jtitle=Applied+physics+letters&rft.au=Ito%2C+Kota&rft.au=Miura%2C+Atsushi&rft.au=Iizuka%2C+Hideo&rft.au=Toshiyoshi%2C+Hiroshi&rft.date=2015-02-23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=106&rft.issue=8&rft_id=info:doi/10.1063%2F1.4913692&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4913692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |