Maurer-Cartan Forms for Fields on Surfaces: Application to Heart Fiber Geometry

We study the space of first order models of smooth frame fields using the method of moving frames. By exploiting the Maurer-Cartan matrix of connection forms we develop geometrical embeddings for frame fields which lie on spherical, ellipsoidal and generalized helicoid surfaces. We design methods fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 37; no. 12; pp. 2492 - 2504
Main Authors Piuze, Emmanuel, Sporring, Jon, Siddiqi, Kaleem
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2015
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2015.2408352

Cover

More Information
Summary:We study the space of first order models of smooth frame fields using the method of moving frames. By exploiting the Maurer-Cartan matrix of connection forms we develop geometrical embeddings for frame fields which lie on spherical, ellipsoidal and generalized helicoid surfaces. We design methods for optimizing connection forms in local neighborhoods and apply these to a statistical analysis of heart fiber geometry, using diffusion magnetic resonance imaging. This application of moving frames corroborates and extends recent characterizations of muscle fiber orientation in the heart wall, but also provides for a rich geometrical interpretation. In particular, we can now obtain direct local measurements of the variation of the helix and transverse angles, of fiber fanning and twisting, and of the curvatures of the heart wall in which these fibers lie.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2015.2408352