Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound
Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model...
Saved in:
| Published in | Physics of fluids (1994) Vol. 26; no. 3 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Melville
American Institute of Physics
01.03.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1070-6631 1089-7666 |
| DOI | 10.1063/1.4866772 |
Cover
| Abstract | Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model is developed to simulate the three dimensional dynamics of acoustic bubbles by using the boundary integral method. A bubble collapses much more violently subjected to high intensity ultrasound than when under normal constant ambient pressure. A few techniques are thus implemented to address the associated numerical challenge. In particular, a high quality mesh of the bubble surface is maintained by implementing a new hybrid approach of the Lagrangian method and elastic mesh technique. It avoids the numerical instabilities which occur at a sharp jet surface as well as generates a fine mesh needed at the jet surface. The model is validated against the Rayleigh-Plesset equation and an axisymmetric model. We then explore microbubble dynamics near a wall subjected to high intensity ultrasound propagating parallel to the wall, where the Bjerknes forces due to the ultrasound and the wall are perpendicular to each other. The bubble system absorbs the energy from the ultrasound and transforms the uniform momentum of the ultrasound parallel to the wall to the highly concentrated momentum of a high-speed liquid jet pointing to the wall. The liquid jet forms towards the end of the collapse phase with a significantly higher speed than without the presence of ultrasound. The jet direction depends mainly on the dimensionless standoff distance γ = s/Rmax of the bubble from the wall, where s is the distance between the wall and the bubble centre at inception and Rmax is the maximum bubble radius. The jet is approximately directed to the wall when γ is 1.5 or smaller and rotates to the direction of the ultrasound as γ increases. When γ is about 10 or larger, the wall effect is negligible and the jet is along the acoustic wave direction. When the amplitude of the ultrasound increases, the jet direction does not change significantly but its width and velocity increase obviously. |
|---|---|
| AbstractList | Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model is developed to simulate the three dimensional dynamics of acoustic bubbles by using the boundary integral method. A bubble collapses much more violently subjected to high intensity ultrasound than when under normal constant ambient pressure. A few techniques are thus implemented to address the associated numerical challenge. In particular, a high quality mesh of the bubble surface is maintained by implementing a new hybrid approach of the Lagrangian method and elastic mesh technique. It avoids the numerical instabilities which occur at a sharp jet surface as well as generates a fine mesh needed at the jet surface. The model is validated against the Rayleigh-Plesset equation and an axisymmetric model. We then explore microbubble dynamics near a wall subjected to high intensity ultrasound propagating parallel to the wall, where the Bjerknes forces due to the ultrasound and the wall are perpendicular to each other. The bubble system absorbs the energy from the ultrasound and transforms the uniform momentum of the ultrasound parallel to the wall to the highly concentrated momentum of a high-speed liquid jet pointing to the wall. The liquid jet forms towards the end of the collapse phase with a significantly higher speed than without the presence of ultrasound. The jet direction depends mainly on the dimensionless standoff distance γ = s/Rmax of the bubble from the wall, where s is the distance between the wall and the bubble centre at inception and Rmax is the maximum bubble radius. The jet is approximately directed to the wall when γ is 1.5 or smaller and rotates to the direction of the ultrasound as γ increases. When γ is about 10 or larger, the wall effect is negligible and the jet is along the acoustic wave direction. When the amplitude of the ultrasound increases, the jet direction does not change significantly but its width and velocity increase obviously. |
| Author | Manmi, K. Wang, Q. X. |
| Author_xml | – sequence: 1 givenname: Q. X. surname: Wang fullname: Wang, Q. X. – sequence: 2 givenname: K. surname: Manmi fullname: Manmi, K. |
| BookMark | eNptkEtLAzEUhYNUsK0u_AcBVy6mzWMmmVlK8QUFNxWX4SaTsSnTTE0ySP-9KXYlru6D813uOTM08YO3CN1SsqBE8CVdlLUQUrILNKWkbgophJicekkKITi9QrMYd4QQ3jAxRR-bbbAWt25vfXSDhx7vnQmDHrXu8_7oIc8RewsBA_6Gvsdx1DtrEk4D3rrPLXY-neB0xGOfAsRh9O01uuygj_bmXOfo_elxs3op1m_Pr6uHdWE446mgXFYEJBfMMqDcmq4BU7aCaSIa3oEkuuGalpxBVWlTt0wAbSuueVVTZgyfo7vfu4cwfI02JrUbxpBtRMUok6IuKy6zavmrys5iDLZTxiVI2W_-1_WKEnVKT1F1Ti8T93-IQ3B7CMd_tD9Ls3Ds |
| CitedBy_id | crossref_primary_10_1063_5_0222631 crossref_primary_10_1063_5_0147605 crossref_primary_10_1063_5_0170820 crossref_primary_10_1098_rsfs_2015_0018 crossref_primary_10_1063_1_4999940 crossref_primary_10_1098_rsfs_2015_0017 crossref_primary_10_1063_5_0235947 crossref_primary_10_1016_j_ultsonch_2023_106734 crossref_primary_10_1063_1_5140740 crossref_primary_10_1017_jfm_2022_695 crossref_primary_10_1063_5_0130769 crossref_primary_10_1063_5_0233891 crossref_primary_10_1063_1_4952583 crossref_primary_10_1093_imamat_hxz009 crossref_primary_10_1016_j_enganabound_2023_12_023 crossref_primary_10_1016_j_ultsonch_2024_107023 crossref_primary_10_1016_j_ultsonch_2017_04_037 crossref_primary_10_1017_jfm_2018_82 crossref_primary_10_1063_1_5112049 crossref_primary_10_1016_j_ces_2020_115804 crossref_primary_10_1016_j_ultsonch_2015_09_011 crossref_primary_10_1016_j_oceaneng_2016_07_052 crossref_primary_10_1121_10_0011619 crossref_primary_10_1088_1873_7005_abd1d0 crossref_primary_10_1016_j_ultsonch_2018_01_012 crossref_primary_10_1016_j_ultsonch_2020_105197 crossref_primary_10_1063_1_4984080 crossref_primary_10_1063_1_5143095 crossref_primary_10_1016_j_ultsonch_2019_104704 crossref_primary_10_1063_1_5097929 crossref_primary_10_3811_jjmf_2022_T002 crossref_primary_10_1098_rsfs_2015_0048 crossref_primary_10_1016_j_enganabound_2019_09_008 crossref_primary_10_1063_1_4990837 crossref_primary_10_1063_1_4908045 crossref_primary_10_1016_j_ultsonch_2021_105890 crossref_primary_10_1016_j_ultsonch_2016_11_032 crossref_primary_10_1134_S1995080219110040 crossref_primary_10_1016_j_ijmecsci_2023_108861 crossref_primary_10_1146_annurev_food_052720_113207 crossref_primary_10_1016_j_ultsonch_2021_105545 crossref_primary_10_1016_j_jcp_2018_07_055 crossref_primary_10_1121_1_5116693 crossref_primary_10_1016_j_enganabound_2019_09_010 crossref_primary_10_1016_j_bbe_2024_04_003 crossref_primary_10_1007_s42241_021_0090_0 crossref_primary_10_1017_jfm_2017_658 crossref_primary_10_1016_j_oceaneng_2019_06_001 crossref_primary_10_1063_1_4990471 crossref_primary_10_1063_1_4953175 crossref_primary_10_1017_jfm_2016_281 crossref_primary_10_1017_jfm_2023_514 crossref_primary_10_1016_j_oceaneng_2022_112888 crossref_primary_10_1016_j_oceaneng_2015_09_017 crossref_primary_10_1063_5_0164694 crossref_primary_10_29026_oea_2021_200072 crossref_primary_10_1016_j_ces_2018_09_044 crossref_primary_10_1016_j_euromechflu_2019_09_002 crossref_primary_10_1063_1_5063011 crossref_primary_10_1016_j_ultsonch_2020_104969 crossref_primary_10_1063_1_4972771 crossref_primary_10_1063_5_0075280 crossref_primary_10_1103_PhysRevApplied_14_024052 crossref_primary_10_1063_1_5088528 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104308 crossref_primary_10_1016_j_ultsonch_2023_106562 crossref_primary_10_1063_5_0101841 crossref_primary_10_35848_1347_4065_abef09 crossref_primary_10_1063_1_5005534 crossref_primary_10_1016_j_oceaneng_2019_05_068 |
| Cites_doi | 10.1098/rsta.1999.0326 10.1121/1.2390673 10.1098/rsta.1997.0023 10.1016/j.jconrel.2008.09.085 10.1063/1.1595647 10.1529/biophysj.105.075366 10.1016/j.cagd.2005.06.005 10.1016/j.jcp.2003.09.011 10.1017/S0022112005005306 10.1017/S0022112075003448 10.1016/j.ultrasmedbio.2010.11.011 10.1006/jcph.2000.6658 10.1146/annurev.bioeng.8.061505.095852 10.1063/1.2337506 10.1017/S0022112086000745 10.1007/s00466-003-0508-2 10.1063/1.1650531 10.1016/j.ultrasmedbio.2006.03.005 10.1038/nature01613 10.1121/1.2836746 10.1063/1.1704645 10.1017/S0022112086000988 10.1017/jfm.2011.149 10.1017/S0022112098008738 10.1017/S0022112087002052 10.1007/978-3-642-51070-0_3 10.1017/S0022112008003054 10.1088/0034-4885/73/10/106501 10.1016/0045-7930(96)00007-2 10.1063/1.1421102 10.1146/annurev.fluid.40.111406.102116 10.1017/S0022112008000670 10.1063/1.2716633 10.1017/jfm.2013.341 10.1063/1.4812659 10.2174/157489011794578446 10.1115/1.4005688 10.1007/BF00911690 10.1007/BF00312403 10.1103/PhysRevLett.106.034301 10.1063/1.1803925 10.1017/S0022112002003695 10.1016/S0045-7930(02)00105-6 10.1017/S0022112010002430 10.1115/1.4005424 10.1007/s00162-011-0227-9 10.1017/S0022112089002314 10.1016/j.ultsonch.2012.07.024 10.1016/j.jconrel.2011.04.008 10.1109/TUFFC.2002.1041081 10.1098/rsta.1966.0046 10.1016/j.ultsonch.2013.01.010 10.1016/j.jcp.2005.04.015 10.1007/s001620050097 10.1007/s00162-005-0164-6 |
| ContentType | Journal Article |
| Copyright | 2014 AIP Publishing LLC. |
| Copyright_xml | – notice: 2014 AIP Publishing LLC. |
| DBID | AAYXX CITATION 8FD H8D L7M |
| DOI | 10.1063/1.4866772 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1089-7666 |
| ExternalDocumentID | 10_1063_1_4866772 |
| GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BDMKI BPZLN CITATION CS3 DU5 EBS EJD F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 WH7 ~02 8FD H8D L7M |
| ID | FETCH-LOGICAL-c323t-13750a7362e2a13ecf9ac4d62b0693fa70b93b1432a55bc8d26a1d53b35812cc3 |
| ISSN | 1070-6631 |
| IngestDate | Mon Jun 30 03:16:17 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Tue Jul 01 03:20:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c323t-13750a7362e2a13ecf9ac4d62b0693fa70b93b1432a55bc8d26a1d53b35812cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2127684537 |
| PQPubID | 2050667 |
| ParticipantIDs | proquest_journals_2127684537 crossref_citationtrail_10_1063_1_4866772 crossref_primary_10_1063_1_4866772 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville |
| PublicationTitle | Physics of fluids (1994) |
| PublicationYear | 2014 |
| Publisher | American Institute of Physics |
| Publisher_xml | – name: American Institute of Physics |
| References | (2023062817414638600_c24) 2008; 616 (2023062817414638600_c45) 2008; 601 (2023062817414638600_c42) 2011; 133 (2023062817414638600_c13) 2011; 154 (2023062817414638600_c36) 1980 (2023062817414638600_c51) 2004; 194 (2023062817414638600_c7) 2011; 6 (2023062817414638600_c1) 2004; 95 (2023062817414638600_c19) 2011; 679 Wang (2023062817414638600_c37) 1988 (2023062817414638600_c46) 2013; 25 (2023062817414638600_c5) 2013; 20 (2023062817414638600_c26) 1979; 20 (2023062817414638600_c30) 1996; 25 (2023062817414638600_c33) 2002; 14 (2023062817414638600_c38) 1998 (2023062817414638600_c39) 1998; 12 (2023062817414638600_c10) 2004; 115 (2023062817414638600_c11) 2009; 133 (2023062817414638600_c56) 1989; 206 (2023062817414638600_c43) 2012; 134 (2023062817414638600_c53) 2005; 19 (2023062817414638600_c3) 2010; 73 (2023062817414638600_c25) 2013; 730 (2023062817414638600_c16) 2011; 106 (2023062817414638600_c44) 1995 (2023062817414638600_c8) 2008; 40 (2023062817414638600_c55) 1986; 169 (2023062817414638600_c15) 2003; 423 (2023062817414638600_c9) 2011; 37 (2023062817414638600_c4) 1999; 357 (2023062817414638600_c18) 2010; 659 (2023062817414638600_c20) 2004; 33 (2023062817414638600_c54) 1975; 72 (2023062817414638600_c41) 2005; 537 (2023062817414638600_c12) 2006; 89 (2023062817414638600_c32) 1997; 355 (2023062817414638600_c49) 2005; 22 (2023062817414638600_c50) 2003; 32 (2023062817414638600_c21) 2004; 96 (2023062817414638600_c58) 2003; 479 (2023062817414638600_c17) 2007; 19 (2023062817414638600_c57) 1998; 361 (2023062817414638600_c59) 2013; 20 (2023062817414638600_c2) 2006; 91 (2023062817414638600_c22) 2006; 32 Le Croissette (2023062817414638600_c27) 1981 (2023062817414638600_c35) 2012; 26 (2023062817414638600_c40) 2004; 16 (2023062817414638600_c28) 1986; 170 (2023062817414638600_c34) 2003; 15 (2023062817414638600_c52) 1966; 260 (2023062817414638600_c6) 2007; 121 (2023062817414638600_c47) 2001; 166 (2023062817414638600_c29) 1987; 181 (2023062817414638600_c31) 1996; 8 (2023062817414638600_c48) 2005; 210 (2023062817414638600_c23) 2008; 123 (2023062817414638600_c14) 2007; 9 (2023062817414638600_c60) 2002; 49 |
| References_xml | – volume: 357 start-page: 251 year: 1999 ident: 2023062817414638600_c4 article-title: Acoustic cavitation: the fluid dynamics of non-spherical bubbles publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.1999.0326 – volume: 121 start-page: 648 year: 2007 ident: 2023062817414638600_c6 article-title: Microbubble spectroscopy of ultrasound contrast agents publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2390673 – volume: 355 start-page: 537 year: 1997 ident: 2023062817414638600_c32 article-title: Collapsing cavities, toroidal bubbles and jet impact publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.1997.0023 – volume: 133 start-page: 109 issue: 2 year: 2009 ident: 2023062817414638600_c11 article-title: Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2008.09.085 – volume: 15 start-page: 2576 issue: 9 year: 2003 ident: 2023062817414638600_c34 article-title: Heat and mass transfer during the violent collapse of nonspherical bubbles publication-title: Phys. Fluids doi: 10.1063/1.1595647 – volume: 91 start-page: 4285 year: 2006 ident: 2023062817414638600_c2 article-title: Sonoporation from jetting cavitation bubbles publication-title: Biophys. J. doi: 10.1529/biophysj.105.075366 – volume: 22 start-page: 632 issue: 7 year: 2005 ident: 2023062817414638600_c49 article-title: Curvature formulas for implicit curves and surfaces publication-title: Comput. Aided Geom. Des. doi: 10.1016/j.cagd.2005.06.005 – volume: 194 start-page: 451 issue: 2 year: 2004 ident: 2023062817414638600_c51 article-title: An indirect boundary element method for three dimensional explosion bubbles publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.011 – volume: 537 start-page: 387 year: 2005 ident: 2023062817414638600_c41 article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/ rigid structure publication-title: J. Fluid Mech. doi: 10.1017/S0022112005005306 – volume: 72 start-page: 391 year: 1975 ident: 2023062817414638600_c54 article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112075003448 – volume: 37 start-page: 393 issue: 3 year: 2011 ident: 2023062817414638600_c9 article-title: Gene therapy of carcinoma using ultrasound-targeted microbubble destruction publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2010.11.011 – volume: 166 start-page: 336 year: 2001 ident: 2023062817414638600_c47 article-title: 3D jet impact and toroidal bubbles publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6658 – volume: 9 start-page: 415 year: 2007 ident: 2023062817414638600_c14 article-title: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.8.061505.095852 – volume: 89 start-page: 074102 year: 2006 ident: 2023062817414638600_c12 article-title: Surface cleaning from laser-induced cavitation bubbles publication-title: Appl. Phys. Lett. doi: 10.1063/1.2337506 – volume: 169 start-page: 535 year: 1986 ident: 2023062817414638600_c55 article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000745 – volume: 33 start-page: 129 year: 2004 ident: 2023062817414638600_c20 article-title: Boundary integral equations as applied to an oscillating bubble near a fluid-fluid interface publication-title: Comput. Mech. doi: 10.1007/s00466-003-0508-2 – volume: 95 start-page: 2952 issue: 6 year: 2004 ident: 2023062817414638600_c1 article-title: Laser-induced cavitation bubbles for cleaning of solid surfaces publication-title: J. Appl. Phys. doi: 10.1063/1.1650531 – volume: 32 start-page: 925 issue: 6 year: 2006 ident: 2023062817414638600_c22 article-title: Numerical analysis of a gas bubble near biomaterials in an ultrasound field publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.03.005 – volume: 423 start-page: 153 issue: 6936 year: 2003 ident: 2023062817414638600_c15 article-title: Controlled vesicle deformation and lysis by single oscillating bubbles publication-title: Nature (London) doi: 10.1038/nature01613 – volume: 123 start-page: 1784 issue: 3 year: 2008 ident: 2023062817414638600_c23 article-title: Interaction of microbubbles with high intensity pulsed ultrasound publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2836746 – volume: 16 start-page: 1610 issue: 5 year: 2004 ident: 2023062817414638600_c40 article-title: Numerical modelling of violent bubble motion publication-title: Phys. Fluids doi: 10.1063/1.1704645 – volume-title: Cavitation and Bubble Dynamics year: 1995 ident: 2023062817414638600_c44 – volume: 170 start-page: 479 year: 1986 ident: 2023062817414638600_c28 article-title: Transient cavities near boundaries. Part 1. Rigid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000988 – volume: 679 start-page: 559 year: 2011 ident: 2023062817414638600_c19 article-title: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.149 – volume: 361 start-page: 75 year: 1998 ident: 2023062817414638600_c57 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid Mech. doi: 10.1017/S0022112098008738 – volume: 181 start-page: 197 year: 1987 ident: 2023062817414638600_c29 article-title: Transient cavities near boundaries. Part 2. Free surface publication-title: J. Fluid Mech. doi: 10.1017/S0022112087002052 – start-page: 23 volume-title: Cavitation and Inhomogeneities in Underwater Acoustics year: 1980 ident: 2023062817414638600_c36 article-title: Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface doi: 10.1007/978-3-642-51070-0_3 – volume: 616 start-page: 63 year: 2008 ident: 2023062817414638600_c24 article-title: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: II. Reflected shock intensifies non-spherical cavitation collapse publication-title: J. Fluid Mech. doi: 10.1017/S0022112008003054 – volume: 73 start-page: 106501 year: 2010 ident: 2023062817414638600_c3 article-title: Physics of bubble oscillations publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/10/106501 – volume: 25 start-page: 607 issue: 7 year: 1996 ident: 2023062817414638600_c30 article-title: Nonlinear interaction between gas bubble and free surface publication-title: Comput. Fluids doi: 10.1016/0045-7930(96)00007-2 – volume: 14 start-page: 85 issue: 1 year: 2002 ident: 2023062817414638600_c33 article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary publication-title: Phys. Fluids doi: 10.1063/1.1421102 – volume: 40 start-page: 395 year: 2008 ident: 2023062817414638600_c8 article-title: Applications of acoustics and cavitation to noninvasive therapy and drug delivery publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.40.111406.102116 – volume: 601 start-page: 253 year: 2008 ident: 2023062817414638600_c45 article-title: Vapor bubble collapse in isothermal and non-isothermal liquids publication-title: J. Fluid Mech. doi: 10.1017/S0022112008000670 – volume: 115 start-page: 137 year: 2004 ident: 2023062817414638600_c10 article-title: Microbubbles and ultrasound: a bird's eye view publication-title: Trans. Am. Clin. Climatol. Assoc. – volume-title: Proceedings of the 3rd International Colloquium on Drops and Bubbles year: 1988 ident: 2023062817414638600_c37 article-title: Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure – volume: 19 start-page: 047101 year: 2007 ident: 2023062817414638600_c17 article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves publication-title: Phys. Fluids doi: 10.1063/1.2716633 – volume: 730 start-page: 245 year: 2013 ident: 2023062817414638600_c25 article-title: Ultrasonic cavitation near a tissue layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.341 – volume: 25 start-page: 072104 year: 2013 ident: 2023062817414638600_c46 article-title: Underwater explosion bubble dynamics in a compressible liquid publication-title: Phys. Fluids doi: 10.1063/1.4812659 – volume: 6 start-page: 27 issue: 1 year: 2011 ident: 2023062817414638600_c7 article-title: Ultrasound microbubble contrast and current clinical applications publication-title: Recent Pat. Cardiovasc. Drug Discovery doi: 10.2174/157489011794578446 – volume: 134 start-page: 031301 issue: 3 year: 2012 ident: 2023062817414638600_c43 article-title: Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall publication-title: J. Fluids Eng. doi: 10.1115/1.4005688 – volume: 20 start-page: 333 issue: 3 year: 1979 ident: 2023062817414638600_c26 article-title: A calculation of the parameters of the high-speed jet formed in the collapse of a bubble publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1007/BF00911690 – volume: 8 start-page: 73 year: 1996 ident: 2023062817414638600_c31 article-title: Strong interaction between buoyancy bubble and free surface publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/BF00312403 – start-page: 175 volume-title: Proceedings of the 2nd International Colloquium on Drops and Bubbles year: 1981 ident: 2023062817414638600_c27 article-title: A numerical method for the dynamics of non-spherical cavitation bubbles – year: 1998 ident: 2023062817414638600_c38 article-title: Multi-cycle underwater explosion model. Part II: Validation examples for hull girder whipping problems – volume: 106 start-page: 034301 issue: 3 year: 2011 ident: 2023062817414638600_c16 article-title: Blood vessel deformations on microsecond time scales by ultrasonic cavitation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.034301 – volume: 96 start-page: 5808 issue: 10 year: 2004 ident: 2023062817414638600_c21 article-title: An oscillating bubble near an elastic material publication-title: J. Appl. Phys. doi: 10.1063/1.1803925 – volume: 479 start-page: 327 year: 2003 ident: 2023062817414638600_c58 article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall publication-title: J. Fluid Mech. doi: 10.1017/S0022112002003695 – volume: 32 start-page: 1195 issue: 9 year: 2003 ident: 2023062817414638600_c50 article-title: Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics publication-title: Comput. Fluids doi: 10.1016/S0045-7930(02)00105-6 – volume: 659 start-page: 191 year: 2010 ident: 2023062817414638600_c18 article-title: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave publication-title: J. Fluid Mech. doi: 10.1017/S0022112010002430 – volume: 133 start-page: 121305 issue: 12 year: 2011 ident: 2023062817414638600_c42 article-title: Experimental and numerical investigation of single bubble dynamics in a two-phase bubbly medium publication-title: J. Fluids Eng. doi: 10.1115/1.4005424 – volume: 26 start-page: 245 issue: 1–4 year: 2012 ident: 2023062817414638600_c35 article-title: The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-011-0227-9 – volume: 206 start-page: 299 year: 1989 ident: 2023062817414638600_c56 article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary publication-title: J. Fluid Mech. doi: 10.1017/S0022112089002314 – volume: 20 start-page: 510 year: 2013 ident: 2023062817414638600_c5 article-title: Ultrasound artificially nucleated bubbles and their sonochemical radical production publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.07.024 – volume: 154 start-page: 35 issue: 1 year: 2011 ident: 2023062817414638600_c13 article-title: Sonoporation of endothelial cells by vibrating targeted microbubbles publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2011.04.008 – volume: 49 start-page: 1400 year: 2002 ident: 2023062817414638600_c60 article-title: Dynamics and fragmentation of thick-shelled microbubbles publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2002.1041081 – volume: 260 start-page: 221 year: 1966 ident: 2023062817414638600_c52 article-title: The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.1966.0046 – volume: 20 start-page: 1098 issue: 4 year: 2013 ident: 2023062817414638600_c59 article-title: Dynamic features of a laser-induced cavitation bubble near a solid boundary publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.01.010 – volume: 210 start-page: 183 issue: 1 year: 2005 ident: 2023062817414638600_c48 article-title: Unstructured MEL modelling of unsteady nonlinear ship waves publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.04.015 – volume: 12 start-page: 29 issue: 1 year: 1998 ident: 2023062817414638600_c39 article-title: The evolution of a gas bubble near an inclined wall publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s001620050097 – volume: 19 start-page: 303 issue: 5 year: 2005 ident: 2023062817414638600_c53 article-title: Vortex ring modelling for toroidal bubbles publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-005-0164-6 |
| SSID | ssj0003926 |
| Score | 2.3926084 |
| Snippet | Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Boundary integral method Bubbles Cavitation Computer simulation Dynamics Finite element method Fluid dynamics Mathematical models Mesh generation Momentum Physics Pressure Three dimensional models Ultrasonic cleaning Ultrasonic imaging |
| Title | Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound |
| URI | https://www.proquest.com/docview/2127684537 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABJ databaseName: American Institute of Physics customDbUrl: eissn: 1089-7666 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: M71 dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.scitation.org/ providerName: American Institute of Physics – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7666 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0003926 issn: 1070-6631 databaseCode: ADMLS dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50S8EXL22l1SqD-CCEpJvMJclj8UIRK0hbum9hboHCNpVNguCv98wl2Wzdh-pLCMPkQr7JmW_OnPMdhN5TUyjFFIm1IjqmZU1jwZmEpUpNMmJgSeF2TM-_87Mr-nXBFkOh7ZBd0slE_d6aV_I_qEIb4GqzZP8B2fGm0ADngC8cAWE4PhDjlTGRtgL9XlwjurXxdbKXLh_KF5tvo8aK9Yjol92FbntpPS-WclqlYicX0bi4jH7ZrURrqyxNCauLEFUu3qNe9jfaKzuVJZ24EK6Dz_lHEi2StYu7ufWRAsnUs5DSdWhVMIZgDmJgJL7JhLaijHPuK6UMFtTnvIeRQrYaZmBC1keQ0ILz3Bfr2RS_vjcpjaGCbpOckyqtwqWP0U4GFnw-Qzunn86_XYzzLjA97iNM_VsPOlKcnIzP3WQfm5OvYxSXz9HTsBTApx7XF-iRafbQs7AswMHotntoN2Cwj64d4HgCOJ4AjgfAsQUcC2wBxwFw3N1hCzgeAcdrwA_Q1ZfPlx_P4lAZI1bwB3VxSoDoiRzIh8lESoyqS6Go5pmc85LUIp_LkkigwplgTKpCZ1ykmhFp1e4ypchLNGvuGnOIsFGSSUK04qWmjIG5JnVBVSYkzee1yo_Qh-GLVSrIxtvqJcvqL2SO0Lux60-vlbKt0_Hw2avwK7WVLTPAC8pI_uoh93iNnqzH6zGadavevAFu2Mm3YVD8ARO9YdE |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+microbubble+dynamics+near+a+wall+subject+to+high+intensity+ultrasound&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Wang%2C+Q.+X.&rft.au=Manmi%2C+K.&rft.date=2014-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=26&rft.issue=3&rft_id=info:doi/10.1063%2F1.4866772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4866772 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |