Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound

Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 26; no. 3
Main Authors Wang, Q. X., Manmi, K.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2014
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/1.4866772

Cover

Abstract Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model is developed to simulate the three dimensional dynamics of acoustic bubbles by using the boundary integral method. A bubble collapses much more violently subjected to high intensity ultrasound than when under normal constant ambient pressure. A few techniques are thus implemented to address the associated numerical challenge. In particular, a high quality mesh of the bubble surface is maintained by implementing a new hybrid approach of the Lagrangian method and elastic mesh technique. It avoids the numerical instabilities which occur at a sharp jet surface as well as generates a fine mesh needed at the jet surface. The model is validated against the Rayleigh-Plesset equation and an axisymmetric model. We then explore microbubble dynamics near a wall subjected to high intensity ultrasound propagating parallel to the wall, where the Bjerknes forces due to the ultrasound and the wall are perpendicular to each other. The bubble system absorbs the energy from the ultrasound and transforms the uniform momentum of the ultrasound parallel to the wall to the highly concentrated momentum of a high-speed liquid jet pointing to the wall. The liquid jet forms towards the end of the collapse phase with a significantly higher speed than without the presence of ultrasound. The jet direction depends mainly on the dimensionless standoff distance γ = s/Rmax of the bubble from the wall, where s is the distance between the wall and the bubble centre at inception and Rmax is the maximum bubble radius. The jet is approximately directed to the wall when γ is 1.5 or smaller and rotates to the direction of the ultrasound as γ increases. When γ is about 10 or larger, the wall effect is negligible and the jet is along the acoustic wave direction. When the amplitude of the ultrasound increases, the jet direction does not change significantly but its width and velocity increase obviously.
AbstractList Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry. Previous numerical studies on this phenomenon were for an axisymmetric configuration. In this paper, a computational model is developed to simulate the three dimensional dynamics of acoustic bubbles by using the boundary integral method. A bubble collapses much more violently subjected to high intensity ultrasound than when under normal constant ambient pressure. A few techniques are thus implemented to address the associated numerical challenge. In particular, a high quality mesh of the bubble surface is maintained by implementing a new hybrid approach of the Lagrangian method and elastic mesh technique. It avoids the numerical instabilities which occur at a sharp jet surface as well as generates a fine mesh needed at the jet surface. The model is validated against the Rayleigh-Plesset equation and an axisymmetric model. We then explore microbubble dynamics near a wall subjected to high intensity ultrasound propagating parallel to the wall, where the Bjerknes forces due to the ultrasound and the wall are perpendicular to each other. The bubble system absorbs the energy from the ultrasound and transforms the uniform momentum of the ultrasound parallel to the wall to the highly concentrated momentum of a high-speed liquid jet pointing to the wall. The liquid jet forms towards the end of the collapse phase with a significantly higher speed than without the presence of ultrasound. The jet direction depends mainly on the dimensionless standoff distance γ = s/Rmax of the bubble from the wall, where s is the distance between the wall and the bubble centre at inception and Rmax is the maximum bubble radius. The jet is approximately directed to the wall when γ is 1.5 or smaller and rotates to the direction of the ultrasound as γ increases. When γ is about 10 or larger, the wall effect is negligible and the jet is along the acoustic wave direction. When the amplitude of the ultrasound increases, the jet direction does not change significantly but its width and velocity increase obviously.
Author Manmi, K.
Wang, Q. X.
Author_xml – sequence: 1
  givenname: Q. X.
  surname: Wang
  fullname: Wang, Q. X.
– sequence: 2
  givenname: K.
  surname: Manmi
  fullname: Manmi, K.
BookMark eNptkEtLAzEUhYNUsK0u_AcBVy6mzWMmmVlK8QUFNxWX4SaTsSnTTE0ySP-9KXYlru6D813uOTM08YO3CN1SsqBE8CVdlLUQUrILNKWkbgophJicekkKITi9QrMYd4QQ3jAxRR-bbbAWt25vfXSDhx7vnQmDHrXu8_7oIc8RewsBA_6Gvsdx1DtrEk4D3rrPLXY-neB0xGOfAsRh9O01uuygj_bmXOfo_elxs3op1m_Pr6uHdWE446mgXFYEJBfMMqDcmq4BU7aCaSIa3oEkuuGalpxBVWlTt0wAbSuueVVTZgyfo7vfu4cwfI02JrUbxpBtRMUok6IuKy6zavmrys5iDLZTxiVI2W_-1_WKEnVKT1F1Ti8T93-IQ3B7CMd_tD9Ls3Ds
CitedBy_id crossref_primary_10_1063_5_0222631
crossref_primary_10_1063_5_0147605
crossref_primary_10_1063_5_0170820
crossref_primary_10_1098_rsfs_2015_0018
crossref_primary_10_1063_1_4999940
crossref_primary_10_1098_rsfs_2015_0017
crossref_primary_10_1063_5_0235947
crossref_primary_10_1016_j_ultsonch_2023_106734
crossref_primary_10_1063_1_5140740
crossref_primary_10_1017_jfm_2022_695
crossref_primary_10_1063_5_0130769
crossref_primary_10_1063_5_0233891
crossref_primary_10_1063_1_4952583
crossref_primary_10_1093_imamat_hxz009
crossref_primary_10_1016_j_enganabound_2023_12_023
crossref_primary_10_1016_j_ultsonch_2024_107023
crossref_primary_10_1016_j_ultsonch_2017_04_037
crossref_primary_10_1017_jfm_2018_82
crossref_primary_10_1063_1_5112049
crossref_primary_10_1016_j_ces_2020_115804
crossref_primary_10_1016_j_ultsonch_2015_09_011
crossref_primary_10_1016_j_oceaneng_2016_07_052
crossref_primary_10_1121_10_0011619
crossref_primary_10_1088_1873_7005_abd1d0
crossref_primary_10_1016_j_ultsonch_2018_01_012
crossref_primary_10_1016_j_ultsonch_2020_105197
crossref_primary_10_1063_1_4984080
crossref_primary_10_1063_1_5143095
crossref_primary_10_1016_j_ultsonch_2019_104704
crossref_primary_10_1063_1_5097929
crossref_primary_10_3811_jjmf_2022_T002
crossref_primary_10_1098_rsfs_2015_0048
crossref_primary_10_1016_j_enganabound_2019_09_008
crossref_primary_10_1063_1_4990837
crossref_primary_10_1063_1_4908045
crossref_primary_10_1016_j_ultsonch_2021_105890
crossref_primary_10_1016_j_ultsonch_2016_11_032
crossref_primary_10_1134_S1995080219110040
crossref_primary_10_1016_j_ijmecsci_2023_108861
crossref_primary_10_1146_annurev_food_052720_113207
crossref_primary_10_1016_j_ultsonch_2021_105545
crossref_primary_10_1016_j_jcp_2018_07_055
crossref_primary_10_1121_1_5116693
crossref_primary_10_1016_j_enganabound_2019_09_010
crossref_primary_10_1016_j_bbe_2024_04_003
crossref_primary_10_1007_s42241_021_0090_0
crossref_primary_10_1017_jfm_2017_658
crossref_primary_10_1016_j_oceaneng_2019_06_001
crossref_primary_10_1063_1_4990471
crossref_primary_10_1063_1_4953175
crossref_primary_10_1017_jfm_2016_281
crossref_primary_10_1017_jfm_2023_514
crossref_primary_10_1016_j_oceaneng_2022_112888
crossref_primary_10_1016_j_oceaneng_2015_09_017
crossref_primary_10_1063_5_0164694
crossref_primary_10_29026_oea_2021_200072
crossref_primary_10_1016_j_ces_2018_09_044
crossref_primary_10_1016_j_euromechflu_2019_09_002
crossref_primary_10_1063_1_5063011
crossref_primary_10_1016_j_ultsonch_2020_104969
crossref_primary_10_1063_1_4972771
crossref_primary_10_1063_5_0075280
crossref_primary_10_1103_PhysRevApplied_14_024052
crossref_primary_10_1063_1_5088528
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104308
crossref_primary_10_1016_j_ultsonch_2023_106562
crossref_primary_10_1063_5_0101841
crossref_primary_10_35848_1347_4065_abef09
crossref_primary_10_1063_1_5005534
crossref_primary_10_1016_j_oceaneng_2019_05_068
Cites_doi 10.1098/rsta.1999.0326
10.1121/1.2390673
10.1098/rsta.1997.0023
10.1016/j.jconrel.2008.09.085
10.1063/1.1595647
10.1529/biophysj.105.075366
10.1016/j.cagd.2005.06.005
10.1016/j.jcp.2003.09.011
10.1017/S0022112005005306
10.1017/S0022112075003448
10.1016/j.ultrasmedbio.2010.11.011
10.1006/jcph.2000.6658
10.1146/annurev.bioeng.8.061505.095852
10.1063/1.2337506
10.1017/S0022112086000745
10.1007/s00466-003-0508-2
10.1063/1.1650531
10.1016/j.ultrasmedbio.2006.03.005
10.1038/nature01613
10.1121/1.2836746
10.1063/1.1704645
10.1017/S0022112086000988
10.1017/jfm.2011.149
10.1017/S0022112098008738
10.1017/S0022112087002052
10.1007/978-3-642-51070-0_3
10.1017/S0022112008003054
10.1088/0034-4885/73/10/106501
10.1016/0045-7930(96)00007-2
10.1063/1.1421102
10.1146/annurev.fluid.40.111406.102116
10.1017/S0022112008000670
10.1063/1.2716633
10.1017/jfm.2013.341
10.1063/1.4812659
10.2174/157489011794578446
10.1115/1.4005688
10.1007/BF00911690
10.1007/BF00312403
10.1103/PhysRevLett.106.034301
10.1063/1.1803925
10.1017/S0022112002003695
10.1016/S0045-7930(02)00105-6
10.1017/S0022112010002430
10.1115/1.4005424
10.1007/s00162-011-0227-9
10.1017/S0022112089002314
10.1016/j.ultsonch.2012.07.024
10.1016/j.jconrel.2011.04.008
10.1109/TUFFC.2002.1041081
10.1098/rsta.1966.0046
10.1016/j.ultsonch.2013.01.010
10.1016/j.jcp.2005.04.015
10.1007/s001620050097
10.1007/s00162-005-0164-6
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4866772
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_1_4866772
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
RQS
SC5
TN5
WH7
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c323t-13750a7362e2a13ecf9ac4d62b0693fa70b93b1432a55bc8d26a1d53b35812cc3
ISSN 1070-6631
IngestDate Mon Jun 30 03:16:17 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Tue Jul 01 03:20:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-13750a7362e2a13ecf9ac4d62b0693fa70b93b1432a55bc8d26a1d53b35812cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2127684537
PQPubID 2050667
ParticipantIDs proquest_journals_2127684537
crossref_citationtrail_10_1063_1_4866772
crossref_primary_10_1063_1_4866772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062817414638600_c24) 2008; 616
(2023062817414638600_c45) 2008; 601
(2023062817414638600_c42) 2011; 133
(2023062817414638600_c13) 2011; 154
(2023062817414638600_c36) 1980
(2023062817414638600_c51) 2004; 194
(2023062817414638600_c7) 2011; 6
(2023062817414638600_c1) 2004; 95
(2023062817414638600_c19) 2011; 679
Wang (2023062817414638600_c37) 1988
(2023062817414638600_c46) 2013; 25
(2023062817414638600_c5) 2013; 20
(2023062817414638600_c26) 1979; 20
(2023062817414638600_c30) 1996; 25
(2023062817414638600_c33) 2002; 14
(2023062817414638600_c38) 1998
(2023062817414638600_c39) 1998; 12
(2023062817414638600_c10) 2004; 115
(2023062817414638600_c11) 2009; 133
(2023062817414638600_c56) 1989; 206
(2023062817414638600_c43) 2012; 134
(2023062817414638600_c53) 2005; 19
(2023062817414638600_c3) 2010; 73
(2023062817414638600_c25) 2013; 730
(2023062817414638600_c16) 2011; 106
(2023062817414638600_c44) 1995
(2023062817414638600_c8) 2008; 40
(2023062817414638600_c55) 1986; 169
(2023062817414638600_c15) 2003; 423
(2023062817414638600_c9) 2011; 37
(2023062817414638600_c4) 1999; 357
(2023062817414638600_c18) 2010; 659
(2023062817414638600_c20) 2004; 33
(2023062817414638600_c54) 1975; 72
(2023062817414638600_c41) 2005; 537
(2023062817414638600_c12) 2006; 89
(2023062817414638600_c32) 1997; 355
(2023062817414638600_c49) 2005; 22
(2023062817414638600_c50) 2003; 32
(2023062817414638600_c21) 2004; 96
(2023062817414638600_c58) 2003; 479
(2023062817414638600_c17) 2007; 19
(2023062817414638600_c57) 1998; 361
(2023062817414638600_c59) 2013; 20
(2023062817414638600_c2) 2006; 91
(2023062817414638600_c22) 2006; 32
Le Croissette (2023062817414638600_c27) 1981
(2023062817414638600_c35) 2012; 26
(2023062817414638600_c40) 2004; 16
(2023062817414638600_c28) 1986; 170
(2023062817414638600_c34) 2003; 15
(2023062817414638600_c52) 1966; 260
(2023062817414638600_c6) 2007; 121
(2023062817414638600_c47) 2001; 166
(2023062817414638600_c29) 1987; 181
(2023062817414638600_c31) 1996; 8
(2023062817414638600_c48) 2005; 210
(2023062817414638600_c23) 2008; 123
(2023062817414638600_c14) 2007; 9
(2023062817414638600_c60) 2002; 49
References_xml – volume: 357
  start-page: 251
  year: 1999
  ident: 2023062817414638600_c4
  article-title: Acoustic cavitation: the fluid dynamics of non-spherical bubbles
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.1999.0326
– volume: 121
  start-page: 648
  year: 2007
  ident: 2023062817414638600_c6
  article-title: Microbubble spectroscopy of ultrasound contrast agents
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2390673
– volume: 355
  start-page: 537
  year: 1997
  ident: 2023062817414638600_c32
  article-title: Collapsing cavities, toroidal bubbles and jet impact
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.1997.0023
– volume: 133
  start-page: 109
  issue: 2
  year: 2009
  ident: 2023062817414638600_c11
  article-title: Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2008.09.085
– volume: 15
  start-page: 2576
  issue: 9
  year: 2003
  ident: 2023062817414638600_c34
  article-title: Heat and mass transfer during the violent collapse of nonspherical bubbles
  publication-title: Phys. Fluids
  doi: 10.1063/1.1595647
– volume: 91
  start-page: 4285
  year: 2006
  ident: 2023062817414638600_c2
  article-title: Sonoporation from jetting cavitation bubbles
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.075366
– volume: 22
  start-page: 632
  issue: 7
  year: 2005
  ident: 2023062817414638600_c49
  article-title: Curvature formulas for implicit curves and surfaces
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2005.06.005
– volume: 194
  start-page: 451
  issue: 2
  year: 2004
  ident: 2023062817414638600_c51
  article-title: An indirect boundary element method for three dimensional explosion bubbles
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.011
– volume: 537
  start-page: 387
  year: 2005
  ident: 2023062817414638600_c41
  article-title: Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/ rigid structure
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005005306
– volume: 72
  start-page: 391
  year: 1975
  ident: 2023062817414638600_c54
  article-title: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075003448
– volume: 37
  start-page: 393
  issue: 3
  year: 2011
  ident: 2023062817414638600_c9
  article-title: Gene therapy of carcinoma using ultrasound-targeted microbubble destruction
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2010.11.011
– volume: 166
  start-page: 336
  year: 2001
  ident: 2023062817414638600_c47
  article-title: 3D jet impact and toroidal bubbles
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6658
– volume: 9
  start-page: 415
  year: 2007
  ident: 2023062817414638600_c14
  article-title: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.8.061505.095852
– volume: 89
  start-page: 074102
  year: 2006
  ident: 2023062817414638600_c12
  article-title: Surface cleaning from laser-induced cavitation bubbles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2337506
– volume: 169
  start-page: 535
  year: 1986
  ident: 2023062817414638600_c55
  article-title: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000745
– volume: 33
  start-page: 129
  year: 2004
  ident: 2023062817414638600_c20
  article-title: Boundary integral equations as applied to an oscillating bubble near a fluid-fluid interface
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-003-0508-2
– volume: 95
  start-page: 2952
  issue: 6
  year: 2004
  ident: 2023062817414638600_c1
  article-title: Laser-induced cavitation bubbles for cleaning of solid surfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1650531
– volume: 32
  start-page: 925
  issue: 6
  year: 2006
  ident: 2023062817414638600_c22
  article-title: Numerical analysis of a gas bubble near biomaterials in an ultrasound field
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.03.005
– volume: 423
  start-page: 153
  issue: 6936
  year: 2003
  ident: 2023062817414638600_c15
  article-title: Controlled vesicle deformation and lysis by single oscillating bubbles
  publication-title: Nature (London)
  doi: 10.1038/nature01613
– volume: 123
  start-page: 1784
  issue: 3
  year: 2008
  ident: 2023062817414638600_c23
  article-title: Interaction of microbubbles with high intensity pulsed ultrasound
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2836746
– volume: 16
  start-page: 1610
  issue: 5
  year: 2004
  ident: 2023062817414638600_c40
  article-title: Numerical modelling of violent bubble motion
  publication-title: Phys. Fluids
  doi: 10.1063/1.1704645
– volume-title: Cavitation and Bubble Dynamics
  year: 1995
  ident: 2023062817414638600_c44
– volume: 170
  start-page: 479
  year: 1986
  ident: 2023062817414638600_c28
  article-title: Transient cavities near boundaries. Part 1. Rigid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000988
– volume: 679
  start-page: 559
  year: 2011
  ident: 2023062817414638600_c19
  article-title: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.149
– volume: 361
  start-page: 75
  year: 1998
  ident: 2023062817414638600_c57
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098008738
– volume: 181
  start-page: 197
  year: 1987
  ident: 2023062817414638600_c29
  article-title: Transient cavities near boundaries. Part 2. Free surface
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087002052
– start-page: 23
  volume-title: Cavitation and Inhomogeneities in Underwater Acoustics
  year: 1980
  ident: 2023062817414638600_c36
  article-title: Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface
  doi: 10.1007/978-3-642-51070-0_3
– volume: 616
  start-page: 63
  year: 2008
  ident: 2023062817414638600_c24
  article-title: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave: II. Reflected shock intensifies non-spherical cavitation collapse
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008003054
– volume: 73
  start-page: 106501
  year: 2010
  ident: 2023062817414638600_c3
  article-title: Physics of bubble oscillations
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/10/106501
– volume: 25
  start-page: 607
  issue: 7
  year: 1996
  ident: 2023062817414638600_c30
  article-title: Nonlinear interaction between gas bubble and free surface
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(96)00007-2
– volume: 14
  start-page: 85
  issue: 1
  year: 2002
  ident: 2023062817414638600_c33
  article-title: The final stage of the collapse of a cavitation bubble close to a rigid boundary
  publication-title: Phys. Fluids
  doi: 10.1063/1.1421102
– volume: 40
  start-page: 395
  year: 2008
  ident: 2023062817414638600_c8
  article-title: Applications of acoustics and cavitation to noninvasive therapy and drug delivery
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.40.111406.102116
– volume: 601
  start-page: 253
  year: 2008
  ident: 2023062817414638600_c45
  article-title: Vapor bubble collapse in isothermal and non-isothermal liquids
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008000670
– volume: 115
  start-page: 137
  year: 2004
  ident: 2023062817414638600_c10
  article-title: Microbubbles and ultrasound: a bird's eye view
  publication-title: Trans. Am. Clin. Climatol. Assoc.
– volume-title: Proceedings of the 3rd International Colloquium on Drops and Bubbles
  year: 1988
  ident: 2023062817414638600_c37
  article-title: Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure
– volume: 19
  start-page: 047101
  year: 2007
  ident: 2023062817414638600_c17
  article-title: Shape stability and violent collapse of microbubbles in acoustic traveling waves
  publication-title: Phys. Fluids
  doi: 10.1063/1.2716633
– volume: 730
  start-page: 245
  year: 2013
  ident: 2023062817414638600_c25
  article-title: Ultrasonic cavitation near a tissue layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.341
– volume: 25
  start-page: 072104
  year: 2013
  ident: 2023062817414638600_c46
  article-title: Underwater explosion bubble dynamics in a compressible liquid
  publication-title: Phys. Fluids
  doi: 10.1063/1.4812659
– volume: 6
  start-page: 27
  issue: 1
  year: 2011
  ident: 2023062817414638600_c7
  article-title: Ultrasound microbubble contrast and current clinical applications
  publication-title: Recent Pat. Cardiovasc. Drug Discovery
  doi: 10.2174/157489011794578446
– volume: 134
  start-page: 031301
  issue: 3
  year: 2012
  ident: 2023062817414638600_c43
  article-title: Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4005688
– volume: 20
  start-page: 333
  issue: 3
  year: 1979
  ident: 2023062817414638600_c26
  article-title: A calculation of the parameters of the high-speed jet formed in the collapse of a bubble
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1007/BF00911690
– volume: 8
  start-page: 73
  year: 1996
  ident: 2023062817414638600_c31
  article-title: Strong interaction between buoyancy bubble and free surface
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/BF00312403
– start-page: 175
  volume-title: Proceedings of the 2nd International Colloquium on Drops and Bubbles
  year: 1981
  ident: 2023062817414638600_c27
  article-title: A numerical method for the dynamics of non-spherical cavitation bubbles
– year: 1998
  ident: 2023062817414638600_c38
  article-title: Multi-cycle underwater explosion model. Part II: Validation examples for hull girder whipping problems
– volume: 106
  start-page: 034301
  issue: 3
  year: 2011
  ident: 2023062817414638600_c16
  article-title: Blood vessel deformations on microsecond time scales by ultrasonic cavitation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.034301
– volume: 96
  start-page: 5808
  issue: 10
  year: 2004
  ident: 2023062817414638600_c21
  article-title: An oscillating bubble near an elastic material
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1803925
– volume: 479
  start-page: 327
  year: 2003
  ident: 2023062817414638600_c58
  article-title: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002003695
– volume: 32
  start-page: 1195
  issue: 9
  year: 2003
  ident: 2023062817414638600_c50
  article-title: Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(02)00105-6
– volume: 659
  start-page: 191
  year: 2010
  ident: 2023062817414638600_c18
  article-title: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010002430
– volume: 133
  start-page: 121305
  issue: 12
  year: 2011
  ident: 2023062817414638600_c42
  article-title: Experimental and numerical investigation of single bubble dynamics in a two-phase bubbly medium
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4005424
– volume: 26
  start-page: 245
  issue: 1–4
  year: 2012
  ident: 2023062817414638600_c35
  article-title: The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-011-0227-9
– volume: 206
  start-page: 299
  year: 1989
  ident: 2023062817414638600_c56
  article-title: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089002314
– volume: 20
  start-page: 510
  year: 2013
  ident: 2023062817414638600_c5
  article-title: Ultrasound artificially nucleated bubbles and their sonochemical radical production
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.07.024
– volume: 154
  start-page: 35
  issue: 1
  year: 2011
  ident: 2023062817414638600_c13
  article-title: Sonoporation of endothelial cells by vibrating targeted microbubbles
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2011.04.008
– volume: 49
  start-page: 1400
  year: 2002
  ident: 2023062817414638600_c60
  article-title: Dynamics and fragmentation of thick-shelled microbubbles
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2002.1041081
– volume: 260
  start-page: 221
  year: 1966
  ident: 2023062817414638600_c52
  article-title: The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.1966.0046
– volume: 20
  start-page: 1098
  issue: 4
  year: 2013
  ident: 2023062817414638600_c59
  article-title: Dynamic features of a laser-induced cavitation bubble near a solid boundary
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.01.010
– volume: 210
  start-page: 183
  issue: 1
  year: 2005
  ident: 2023062817414638600_c48
  article-title: Unstructured MEL modelling of unsteady nonlinear ship waves
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.04.015
– volume: 12
  start-page: 29
  issue: 1
  year: 1998
  ident: 2023062817414638600_c39
  article-title: The evolution of a gas bubble near an inclined wall
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s001620050097
– volume: 19
  start-page: 303
  issue: 5
  year: 2005
  ident: 2023062817414638600_c53
  article-title: Vortex ring modelling for toroidal bubbles
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-005-0164-6
SSID ssj0003926
Score 2.3926084
Snippet Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with important applications in biomedical ultrasound, ultrasonic cleaning,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Boundary integral method
Bubbles
Cavitation
Computer simulation
Dynamics
Finite element method
Fluid dynamics
Mathematical models
Mesh generation
Momentum
Physics
Pressure
Three dimensional models
Ultrasonic cleaning
Ultrasonic imaging
Title Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound
URI https://www.proquest.com/docview/2127684537
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABJ
  databaseName: American Institute of Physics
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: M71
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.scitation.org/
  providerName: American Institute of Physics
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7666
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003926
  issn: 1070-6631
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50S8EXL22l1SqD-CCEpJvMJclj8UIRK0hbum9hboHCNpVNguCv98wl2Wzdh-pLCMPkQr7JmW_OnPMdhN5TUyjFFIm1IjqmZU1jwZmEpUpNMmJgSeF2TM-_87Mr-nXBFkOh7ZBd0slE_d6aV_I_qEIb4GqzZP8B2fGm0ADngC8cAWE4PhDjlTGRtgL9XlwjurXxdbKXLh_KF5tvo8aK9Yjol92FbntpPS-WclqlYicX0bi4jH7ZrURrqyxNCauLEFUu3qNe9jfaKzuVJZ24EK6Dz_lHEi2StYu7ufWRAsnUs5DSdWhVMIZgDmJgJL7JhLaijHPuK6UMFtTnvIeRQrYaZmBC1keQ0ILz3Bfr2RS_vjcpjaGCbpOckyqtwqWP0U4GFnw-Qzunn86_XYzzLjA97iNM_VsPOlKcnIzP3WQfm5OvYxSXz9HTsBTApx7XF-iRafbQs7AswMHotntoN2Cwj64d4HgCOJ4AjgfAsQUcC2wBxwFw3N1hCzgeAcdrwA_Q1ZfPlx_P4lAZI1bwB3VxSoDoiRzIh8lESoyqS6Go5pmc85LUIp_LkkigwplgTKpCZ1ykmhFp1e4ypchLNGvuGnOIsFGSSUK04qWmjIG5JnVBVSYkzee1yo_Qh-GLVSrIxtvqJcvqL2SO0Lux60-vlbKt0_Hw2avwK7WVLTPAC8pI_uoh93iNnqzH6zGadavevAFu2Mm3YVD8ARO9YdE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+microbubble+dynamics+near+a+wall+subject+to+high+intensity+ultrasound&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Wang%2C+Q.+X.&rft.au=Manmi%2C+K.&rft.date=2014-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=26&rft.issue=3&rft_id=info:doi/10.1063%2F1.4866772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4866772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon