Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity
ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predeter...
Saved in:
Published in | Biometrical journal Vol. 66; no. 8; pp. e202300370 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 1521-4036 |
DOI | 10.1002/bimj.202300370 |
Cover
Abstract | ABSTRACT
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups. |
---|---|
AbstractList | This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups. This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups. This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups. ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups. |
Author | Kim, Younghoon Pipiras, Vladas Fisher, Zachary F. |
Author_xml | – sequence: 1 givenname: Younghoon orcidid: 0009-0007-0117-5530 surname: Kim fullname: Kim, Younghoon email: yk748@cornell.edu organization: Cornell University – sequence: 2 givenname: Zachary F. surname: Fisher fullname: Fisher, Zachary F. organization: The Pennsylvania State University – sequence: 3 givenname: Vladas surname: Pipiras fullname: Pipiras, Vladas organization: University of North Carolina at Chapel Hill |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39470131$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0bFv1DAUBnALtaLXwsqILLGw5PrslzjJ2F5pe6inDgUxWo7PAZ8SO9hO0f33uLq2AwuTZen3nj6975QcOe8MIR8YLBkAP-_suFty4AiANbwhC1ZxVpSA4ogsADkW2JT1CTmNcQcALZT8LTnBtqyBIVsQeRP8PNG1S-ZnUMk-Gnq1d2q0ml4rnXygG781Q6Q_bPpFL6ZpsDoz72jydDMPyU6DoQ9ztzM60cugrKMr71z-2Ueb9u_Ica-GaN4_v2fk-_WXb6vb4u7-Zr26uCt0zigK0edAZd9qJjrWA_S86nSjWMcqaASauqyretujKaFHobUAVqGA1hjdNJopPCOfD3un4H_PJiY52qjNMChn_BwlMs6qFpqmyfTTP3Tn5-ByuqywyncUDLP6-KzmbjRbOQU7qrCXL6fLYHkAOvgYg-lfCQP51I186ka-dpMHysPAHzuY_X-0vFxvvnLBBf4FLSGPyQ |
Cites_doi | 10.3174/ajnr.A3263 10.1016/j.jeconom.2022.04.005 10.1109/TNNLS.2015.2487364 10.1126/science.1194144 10.1016/j.neuroimage.2019.116019 10.1016/j.media.2016.08.003 10.1111/ectj.12029 10.1016/j.neuroimage.2012.06.026 10.1145/3097983.3098014 10.1259/bjr/33553595 10.1007/BF02296963 10.1111/rssb.12123 10.1016/j.csda.2019.05.007 10.1198/073500102317351921 10.1111/rssb.12278 10.1111/biom.13010 10.1198/jasa.2011.ap10089 10.1007/BF02289451 10.1007/BF02289233 10.1016/j.neuroimage.2008.05.008 10.1016/j.neuroimage.2008.10.057 10.1002/(SICI)1099-128X(199805/06)12:3<155::AID-CEM502>3.0.CO;2-5 10.1002/hbm.20359 10.1016/j.neuroimage.2004.10.043 10.1111/biom.13141 10.1111/biom.13108 10.1002/wics.1246 10.1214/09-STS282 10.1162/netn_a_00067 10.1109/TMI.2019.2933160 10.1080/01621459.2021.1967163 10.1016/j.jmva.2018.03.008 10.3389/fnins.2022.969510 10.1007/BF02296962 10.3758/s13428-013-0374-6 10.1007/BF02288918 10.1214/18-EJS1466 10.2202/1544-6115.1470 10.1137/1.9781611970777 10.1007/s11336-013-9331-7 10.1016/j.jeconom.2013.03.007 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B 10.1002/bimj.201600045 10.1109/TIT.2014.2323359 10.1016/j.compbiomed.2011.09.004 10.1016/j.aca.2013.06.026 10.1002/cem.801 10.1016/j.neuroimage.2017.02.072 10.3758/s13428-012-0295-9 10.1007/978-3-540-27752-1 10.4249/scholarpedia.4695 10.1214/12-AOAS597 10.3389/fnins.2016.00417 10.1007/BF02296656 10.1016/S0893-6080(00)00026-5 10.1093/biomet/asr048 10.1007/s11336-021-09825-7 10.1016/j.neuroimage.2016.10.045 10.1080/01621459.2017.1390466 10.1016/j.jeconom.2011.02.012 10.1016/j.neunet.2022.02.005 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/bimj.202300370 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-4036 |
EndPage | n/a |
ExternalDocumentID | 39470131 10_1002_bimj_202300370 BIMJ2626 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMS 1712966; DMS 2113662; DMS 2134107 – fundername: National Science Foundation grantid: DMS 1712966 – fundername: National Science Foundation grantid: DMS 2113662 – fundername: National Science Foundation grantid: DMS 2134107 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3236-6f4704f9c16b1f00f25bc8a1b150863e74757df3e40f36cc60153609eec88c1a3 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 04:35:44 EDT 2025 Fri Jul 25 19:15:33 EDT 2025 Thu Apr 03 07:07:48 EDT 2025 Tue Jul 01 04:18:08 EDT 2025 Wed Jan 22 17:14:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | group‐level analysis fMRI high‐dimensional time series dynamic factor model multiway analysis principal angles |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3236-6f4704f9c16b1f00f25bc8a1b150863e74757df3e40f36cc60153609eec88c1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0007-0117-5530 |
PMID | 39470131 |
PQID | 3135037613 |
PQPubID | 105592 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_3121590888 proquest_journals_3135037613 pubmed_primary_39470131 crossref_primary_10_1002_bimj_202300370 wiley_primary_10_1002_bimj_202300370_BIMJ2626 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom J |
PublicationYear | 2024 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | 2009; 45 2018; 166 2018; 80 2019; 201 2011; 98 2003; 17 2017; 152 2024 2013; 7 2013; 5 2014; 60 2016; 78 2005; 25 2007; 28 2004; 77 2000; 13 2021; 116 2017; 35 1996; 61 1999; 13 2008; 23 2019; 114 2007; 2 2013; 791 1998; 12 2012; 63 2011; 164 2019; 3 2010; 329 2015; 18 2019; 75 2013; 45 2009 2016; 10 2019; 39 2006 2014; 46 1994 2005 2022; 87 2020; 76 1952; 17 1970; 16 1966; 31 2015; 27 2011; 106 2017; 59 2022 2002; 20 2020 2013; 78 2013; 34 2023; 233 1958; 23 2003; 68 2011; 41 2017 2009; 8 2013; 176 2019; 139 2008; 42 2018; 12 2017; 147 2022; 16 2022; 149 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Harshman R. A. (e_1_2_10_28_1) 1970; 16 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Craddock C. (e_1_2_10_14_1) 2013; 7 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Harville D. A. (e_1_2_10_30_1) 2006 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Brockwell P. J. (e_1_2_10_10_1) 2009 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 39 start-page: 644 issue: 3 year: 2019 end-page: 655 article-title: Identifying Autism Spectrum Disorder With Multi‐Site fMRI via Low‐Rank Domain Adaptation publication-title: IEEE Transactions on Medical Imaging – volume: 791 start-page: 13 year: 2013 end-page: 24 article-title: Global, Local and Unique Decompositions in OnPLS for Multiblock Data Analysis publication-title: Analytica Chimica Acta – year: 2009 – volume: 25 start-page: 294 issue: 1 year: 2005 end-page: 311 article-title: Tensorial Extensions of Independent Component Analysis for Multisubject fMRI Analysis publication-title: NeuroImage – volume: 75 start-page: 1121 issue: 4 year: 2019 end-page: 1132 article-title: Structural Learning and Integrative Decomposition of Multi‐View Data publication-title: Biometrics – volume: 61 start-page: 133 issue: 1 year: 1996 end-page: 154 article-title: Uniqueness Proof for a Family of Models Sharing Features of Tucker's Three‐Mode Factor Analysis and PARAFAC/CANDECOMP publication-title: Psychometrika – volume: 13 start-page: 275 issue: 3‐4 year: 1999 end-page: 294 article-title: PARAFAC2–Part I. A Direct Fitting Algorithm for the PARAFAC2 Model publication-title: Journal of Chemometrics – year: 2005 – volume: 45 start-page: 822 issue: 3 year: 2013 end-page: 833 article-title: SCA With Rotation to Distinguish Common and Distinctive Information in Linked Data publication-title: Behavior Research Methods – volume: 35 start-page: 375 year: 2017 end-page: 389 article-title: Identifying Differences in Brain Activities and an Accurate Detection of Autism Spectrum Disorder Using Resting State Functional‐Magnetic Resonance Imaging: A Spatial Filtering Approach publication-title: Medical Image Analysis – volume: 166 start-page: 241 year: 2018 end-page: 265 article-title: Angle‐Based Joint and Individual Variation Explained publication-title: Journal of Multivariate Analysis – volume: 10 start-page: 417 year: 2016 article-title: Validation of Shared and Specific Independent Component Analysis (SSICA) for Between‐Group Comparisons in fMRI publication-title: Frontiers in Neuroscience – volume: 59 start-page: 783 issue: 4 year: 2017 end-page: 803 article-title: Estimating Latent Trends in Multivariate Longitudinal Data via PARAFAC2 With Functional and Structural Constraints publication-title: Biometrical Journal – volume: 23 start-page: 187 issue: 3 year: 1958 end-page: 200 article-title: The Varimax Criterion for Analytic Rotation in Factor Analysis publication-title: Psychometrika – year: 1994 – volume: 139 start-page: 164 year: 2019 end-page: 177 article-title: Regularized Joint Estimation of Related Vector Autoregressive Models publication-title: Computational Statistics & Data Analysis – volume: 3 start-page: 344 issue: 2 year: 2019 end-page: 362 article-title: Functional Connectivity‐Based Subtypes of Individuals With and Without Autism Spectrum Disorder publication-title: Network Neuroscience – volume: 76 start-page: 61 issue: 1 year: 2020 end-page: 74 article-title: Integrative Factorization of Bidimensionally Linked Matrices publication-title: Biometrics – volume: 149 start-page: 157 year: 2022 end-page: 171 article-title: Joint Learning of Multiple Granger Causal Networks via Non‐Convex Regularizations: Inference of Group‐Level Brain Connectivity publication-title: Neural Networks – volume: 20 start-page: 147 issue: 2 year: 2002 end-page: 162 article-title: Macroeconomic Forecasting Using Diffusion Indexes publication-title: Journal of Business & Economic Statistics – volume: 147 start-page: 736 year: 2017 end-page: 745 article-title: Deriving Reproducible Biomarkers From Multi‐Site Resting‐State Data: An Autism‐Based Example publication-title: NeuroImage – volume: 80 start-page: 927 issue: 5 year: 2018 end-page: 950 article-title: Multiple Matrix Gaussian Graphs Estimation publication-title: Journal of the Royal Statistical Society: Serites B (Statistical Methodology) – volume: 18 start-page: C1 issue: 2 year: 2015 end-page: C21 article-title: Likelihood‐Based Dynamic Factor Analysis for Measurement and Forecasting publication-title: Econometrics Journal – volume: 31 start-page: 1 issue: 1 year: 1966 end-page: 10 article-title: A Generalized Solution of the Orthogonal Procrustes Problem publication-title: Psychometrika – volume: 176 start-page: 18 issue: 1 year: 2013 end-page: 29 article-title: Principal Components Estimation and Identification of Static Factors publication-title: Journal of Econometrics – volume: 17 start-page: 274 issue: 5 year: 2003 end-page: 286 article-title: A New Efficient Method for Determining the Number of Components in PARAFAC Models publication-title: Journal of Chemometrics – volume: 63 start-page: 310 issue: 1 year: 2012 end-page: 319 article-title: Group Search Algorithm Recovers Effective Connectivity Maps for Individuals in Homogeneous and Heterogeneous Samples publication-title: NeuroImage – volume: 16 year: 2022 article-title: Interpretive JIVE: Connections With CCA and an Application to Brain Connectivity publication-title: Frontiers in Neuroscience – volume: 77 start-page: S167 year: 2004 end-page: 175 article-title: Overview of fMRI Analysis publication-title: British Journal of Radiology – volume: 41 start-page: 1142 issue: 12 year: 2011 end-page: 1155 article-title: Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis publication-title: Computers in Biology and Medicine – volume: 61 start-page: 123 issue: 1 year: 1996 end-page: 132 article-title: Some Uniqueness Results for PARAFAC2 publication-title: Psychometrika – volume: 13 start-page: 411 issue: 4‐5 year: 2000 end-page: 430 article-title: Independent Component Analysis: Algorithms and Applications publication-title: Neural Networks – volume: 75 start-page: 582 issue: 2 year: 2019 end-page: 592 article-title: Linked Matrix Factorization publication-title: Biometrics – volume: 2 issue: 10 year: 2007 article-title: Brain Connectivity publication-title: Scholarpedia – volume: 12 start-page: 3908 issue: 2 year: 2018 end-page: 3952 article-title: Heterogeneity Adjustment With Applications to Graphical Model Inference publication-title: Electronic Journal of Statistics – volume: 116 start-page: 1746 issue: 536 year: 2021 end-page: 1763 article-title: Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data publication-title: Journal of the American Statistical Association – volume: 114 start-page: 211 issue: 525 year: 2019 end-page: 222 article-title: Functional Graphical Models publication-title: Journal of the American Statistical Association – volume: 45 start-page: S163 issue: 1 year: 2009 end-page: S172 article-title: A Review of Group ICA for fMRI Data and ICA for Joint Inference of Imaging, Genetic, and ERP Data publication-title: NeuroImage – volume: 16 start-page: 1 year: 1970 end-page: 84 article-title: Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanator’ Multimodal Factor Analysis publication-title: UCLA Working Papers in Phonetics – volume: 87 start-page: 1 issue: 2 year: 2022 end-page: 29 article-title: Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data publication-title: Psychometrika – volume: 164 start-page: 188 issue: 1 year: 2011 end-page: 205 article-title: A Two‐Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering publication-title: Journal of Econometrics – volume: 78 start-page: 725 issue: 4 year: 2013 end-page: 739 article-title: The Special Sign Indeterminacy of the Direct‐Fitting PARAFAC2 Model: Some Implications, Cautions, and Recommendations for Simultaneous Component Analysis publication-title: Psychometrika – volume: 152 start-page: 38 year: 2017 end-page: 49 article-title: JIVE Integration of Imaging and Behavioral Data publication-title: NeuroImage – start-page: 375 year: 2017 end-page: 384 article-title: SPARTan: Scalable PARAFAC2 for Large & Sparse Data – volume: 98 start-page: 901 issue: 4 year: 2011 end-page: 918 article-title: Estimation of Latent Factors for High‐Dimensional Time Series publication-title: Biometrika – volume: 78 start-page: 487 issue: 2 year: 2016 end-page: 504 article-title: Joint Estimation of Multiple Graphical Models From High Dimensional Time Series publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 8 issue: 1 year: 2009 article-title: Extensions of Sparse Canonical Correlation Analysis With Applications to Genomic Data publication-title: Statistical Applications in Genetics and Molecular Biology – start-page: 1 year: 2024 end-page: 20 article-title: Structured Estimation of Heterogeneous Time Series – volume: 42 start-page: 1078 issue: 3 year: 2008 end-page: 1093 article-title: A Unified Framework for Group Independent Component Analysis for Multi‐Subject fMRI Data publication-title: NeuroImage – volume: 12 start-page: 155 issue: 3 year: 1998 end-page: 171 article-title: A Three–Step Algorithm for CANDECOMP/PARAFAC Analysis of Large Data Sets With Multicollinearity publication-title: Journal of Chemometrics – volume: 60 start-page: 5040 issue: 8 year: 2014 end-page: 5053 article-title: The Optimal Hard Threshold for Singular Values is publication-title: IEEE Transactions on Information Theory – volume: 7 start-page: 523 issue: 1 year: 2013 end-page: 542 article-title: Joint and Individual Variation Explained (JIVE) for Integrated Analysis of Multiple Data Types publication-title: Annals of Applied Statistics – volume: 28 start-page: 1251 issue: 11 year: 2007 end-page: 1266 article-title: Estimating the Number of Independent Components for Functional Magnetic Resonance Imaging Data publication-title: Human Brain Mapping – volume: 23 start-page: 439 issue: 4 year: 2008 end-page: 464 article-title: The Statistical Analysis of fMRI Data publication-title: Statistical Science – volume: 17 start-page: 429 issue: 4 year: 1952 end-page: 440 article-title: The Orthogonal Approximation of an Oblique Structure in Factor Analysis publication-title: Psychometrika – year: 2022 article-title: Data Integration via Analysis of Subspaces (DIVAS) – volume: 27 start-page: 2426 issue: 11 year: 2015 end-page: 2439 article-title: Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 46 start-page: 576 issue: 2 year: 2014 end-page: 587 article-title: Performing DISCO‐SCA to Search for Distinctive and Common Information in Linked Data publication-title: Behavior Research Methods – volume: 329 start-page: 1358 issue: 5997 year: 2010 end-page: 1361 article-title: Prediction of Individual Brain Maturity Using fMRI publication-title: Science – year: 2006 – year: 2020 – volume: 201 year: 2019 article-title: Exploring Individual and Group Differences in Latent Brain Networks Using Cross‐Validated Simultaneous Component Analysis publication-title: NeuroImage – volume: 5 start-page: 149 issue: 2 year: 2013 end-page: 179 article-title: Multiple Factor Analysis: Principal Component Analysis for Multitable and Multiblock Data Sets publication-title: Wiley Interdisciplinary Reviews: Computational Statistics – volume: 68 start-page: 105 issue: 1 year: 2003 end-page: 121 article-title: Four Simultaneous Component Models for the Analysis of Multivariate Time Series From More Than One Subject to Model Intraindividual and Interindividual Differences publication-title: Psychometrika – volume: 233 start-page: 271 issue: 1 year: 2023 end-page: 301 article-title: Large Dimensional Latent Factor Modeling With Missing Observations and Applications to Causal Inference publication-title: Journal of Econometrics – volume: 34 start-page: 1866 issue: 10 year: 2013 end-page: 1872 article-title: Resting‐State fMRI: A Review of Methods and Clinical Applications publication-title: American Journal of Neuroradiology – volume: 106 start-page: 775 issue: 495 year: 2011 end-page: 790 article-title: Population Value Decomposition, a Framework for the Analysis of Image Populations publication-title: Journal of the American Statistical Association – volume: 7 start-page: 27 year: 2013 article-title: The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives publication-title: Frontiers in Neuroinformatics – ident: e_1_2_10_40_1 doi: 10.3174/ajnr.A3263 – ident: e_1_2_10_67_1 doi: 10.1016/j.jeconom.2022.04.005 – ident: e_1_2_10_69_1 doi: 10.1109/TNNLS.2015.2487364 – ident: e_1_2_10_16_1 doi: 10.1126/science.1194144 – ident: e_1_2_10_33_1 doi: 10.1016/j.neuroimage.2019.116019 – ident: e_1_2_10_62_1 doi: 10.1016/j.media.2016.08.003 – ident: e_1_2_10_35_1 doi: 10.1111/ectj.12029 – ident: e_1_2_10_23_1 doi: 10.1016/j.neuroimage.2012.06.026 – ident: e_1_2_10_51_1 doi: 10.1145/3097983.3098014 – ident: e_1_2_10_59_1 doi: 10.1259/bjr/33553595 – ident: e_1_2_10_29_1 doi: 10.1007/BF02296963 – ident: e_1_2_10_52_1 – ident: e_1_2_10_54_1 doi: 10.1111/rssb.12123 – ident: e_1_2_10_58_1 doi: 10.1016/j.csda.2019.05.007 – ident: e_1_2_10_61_1 doi: 10.1198/073500102317351921 – ident: e_1_2_10_70_1 doi: 10.1111/rssb.12278 – volume-title: Time Series: Theory and Methods year: 2009 ident: e_1_2_10_10_1 – ident: e_1_2_10_49_1 doi: 10.1111/biom.13010 – volume: 16 start-page: 1 year: 1970 ident: e_1_2_10_28_1 article-title: Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanator’ Multimodal Factor Analysis publication-title: UCLA Working Papers in Phonetics – volume: 7 start-page: 27 year: 2013 ident: e_1_2_10_14_1 article-title: The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives publication-title: Frontiers in Neuroinformatics – ident: e_1_2_10_15_1 doi: 10.1198/jasa.2011.ap10089 – ident: e_1_2_10_55_1 doi: 10.1007/BF02289451 – ident: e_1_2_10_36_1 doi: 10.1007/BF02289233 – ident: e_1_2_10_27_1 doi: 10.1016/j.neuroimage.2008.05.008 – ident: e_1_2_10_11_1 doi: 10.1016/j.neuroimage.2008.10.057 – ident: e_1_2_10_37_1 doi: 10.1002/(SICI)1099-128X(199805/06)12:3<155::AID-CEM502>3.0.CO;2-5 – ident: e_1_2_10_41_1 doi: 10.1002/hbm.20359 – ident: e_1_2_10_7_1 doi: 10.1016/j.neuroimage.2004.10.043 – ident: e_1_2_10_12_1 – ident: e_1_2_10_50_1 doi: 10.1111/biom.13141 – ident: e_1_2_10_25_1 doi: 10.1111/biom.13108 – ident: e_1_2_10_2_1 doi: 10.1002/wics.1246 – ident: e_1_2_10_42_1 doi: 10.1214/09-STS282 – ident: e_1_2_10_18_1 doi: 10.1162/netn_a_00067 – ident: e_1_2_10_65_1 doi: 10.1109/TMI.2019.2933160 – ident: e_1_2_10_6_1 doi: 10.1080/01621459.2021.1967163 – ident: e_1_2_10_20_1 doi: 10.1016/j.jmva.2018.03.008 – ident: e_1_2_10_48_1 doi: 10.3389/fnins.2022.969510 – ident: e_1_2_10_63_1 doi: 10.1007/BF02296962 – ident: e_1_2_10_57_1 doi: 10.3758/s13428-013-0374-6 – ident: e_1_2_10_26_1 doi: 10.1007/BF02288918 – ident: e_1_2_10_19_1 doi: 10.1214/18-EJS1466 – ident: e_1_2_10_66_1 doi: 10.2202/1544-6115.1470 – ident: e_1_2_10_8_1 doi: 10.1137/1.9781611970777 – ident: e_1_2_10_31_1 doi: 10.1007/s11336-013-9331-7 – ident: e_1_2_10_5_1 doi: 10.1016/j.jeconom.2013.03.007 – ident: e_1_2_10_38_1 doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B – ident: e_1_2_10_32_1 doi: 10.1002/bimj.201600045 – ident: e_1_2_10_24_1 doi: 10.1109/TIT.2014.2323359 – ident: e_1_2_10_13_1 doi: 10.1016/j.compbiomed.2011.09.004 – ident: e_1_2_10_44_1 doi: 10.1016/j.aca.2013.06.026 – ident: e_1_2_10_9_1 doi: 10.1002/cem.801 – ident: e_1_2_10_68_1 doi: 10.1016/j.neuroimage.2017.02.072 – ident: e_1_2_10_56_1 doi: 10.3758/s13428-012-0295-9 – ident: e_1_2_10_45_1 doi: 10.1007/978-3-540-27752-1 – ident: e_1_2_10_60_1 doi: 10.4249/scholarpedia.4695 – ident: e_1_2_10_43_1 doi: 10.1214/12-AOAS597 – ident: e_1_2_10_46_1 doi: 10.3389/fnins.2016.00417 – ident: e_1_2_10_64_1 doi: 10.1007/BF02296656 – ident: e_1_2_10_34_1 doi: 10.1016/S0893-6080(00)00026-5 – volume-title: Matrix Algebra From a Statistician's Perspective year: 2006 ident: e_1_2_10_30_1 – ident: e_1_2_10_39_1 doi: 10.1093/biomet/asr048 – ident: e_1_2_10_21_1 doi: 10.1007/s11336-021-09825-7 – ident: e_1_2_10_4_1 doi: 10.1016/j.neuroimage.2016.10.045 – ident: e_1_2_10_53_1 doi: 10.1080/01621459.2017.1390466 – ident: e_1_2_10_22_1 – ident: e_1_2_10_3_1 – ident: e_1_2_10_17_1 doi: 10.1016/j.jeconom.2011.02.012 – ident: e_1_2_10_47_1 doi: 10.1016/j.neunet.2022.02.005 |
SSID | ssj0009042 |
Score | 2.3758085 |
Snippet | ABSTRACT
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup... This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative... This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202300370 |
SubjectTerms | Algorithms Autism Autism Spectrum Disorder - diagnostic imaging Autism Spectrum Disorder - physiopathology Biometry - methods Brain - diagnostic imaging dynamic factor model fMRI Functional magnetic resonance imaging Group dynamics group‐level analysis high‐dimensional time series Humans Magnetic Resonance Imaging Models, Statistical multiway analysis Neural networks principal angles Similarity Spatial data |
Title | Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202300370 https://www.ncbi.nlm.nih.gov/pubmed/39470131 https://www.proquest.com/docview/3135037613 https://www.proquest.com/docview/3121590888 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hJCQW3o_wkpGQmNLGsePEI6VUtFIZEBVsUc51xLNFNB3g12PHaUthQIiMsaPYPt_5zj5_H8CJ1EIk2mY3CMV9rhLhJ1xFfoYyC7WMcpT2gnP3Slz2eOcuuvtyi9_hQ0w33KxmlPbaKniGo_oMNBQfXh5rlvzbQqjYoJ0yYcHzm9cz_CgZcHeMEDKfGTs8QW0Mwvr85_Or0g9Xc95zLZee1ipkk0a7jJOn2rjAmvr4huf4n16twUrll5IzN5HWYUEPNmDJMVW-b0Ja7lGRdgUuYUwkaToue9IqGXuIJVV7HpHbh-KenM1OxUkxJN0qaZEYK2W3fUjD8lKQMsdGOfaKLei1Lm7OL_2Km8FXZjCFL3IeBzyXigqkeRDkYYQqyShafHnBtIlSorifM82DnAmlTNwXMRFIrVWSKJqxbVgcDAd6FwhmMowF9kUS9DnGKJHFaB6KKBhGoQenE9mkrw6CI3Vgy2FqhyudDpcHBxPRpZUqjlJGWWQKjdviwfG02CiRPRnJBno4tnWM52MzvhIPdpzIp79i0vSUMuqBXwrulzakjXa3E5owce-P9fdh2bzkLlXmABaLt7E-NA5PgUflpP4EmaH37Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4hJsReGIwNMjowEtKeUpLYceJHyqhaRnlAoO3NyrmOgG3tNNKH7dfji5NWZQ8TIq92FMfnO5_vzt8HcKSslLml6gZpRChMLsNcmDQsUBWJVWmJii44jy7l4Eacf0vbakK6C-PxIeYBN9KM2l6TglNA-niBGop3P--7xP5NGCru1P6qTtKRX3S1QJBSkfCJhISH3FniFrcxSo6X31_el_5xNpd913rz6b8BbIfta06-d2cVds3fJ4iOL_qvTdhoXFN24tfSFqzYyVtY82SVf7ZB12EqNmzwJZyVZJ89nT3r16Q9jHjVfjywr3fVLTtZJMZZNWWjpm6ROUNFkR_WI2oKVpfZGE9g8Q5u-mfXp4OwoWcIjZtNGcpSZJEolYklxmUUlUmKJi9iJIh5ya07qKTZuORWRCWXxrijX8plpKw1eW7igr-H1cl0YneBYaGSTOJY5tFYYIYKeYbuiRElxzQJ4FMrHP3Lo3Boj7ecaJouPZ-uADqt7HSjjQ-axzx1jc5zCeBw3uz0iJIjxcROZ9THOT9U9JUHsONlPv8UV-5PYx4HENaS-88YdG84Ok_cSfHDM_sfwPrgenShL4aXX_bgtesgfOVMB1ar3zP70fk_Fe7XK_wRJdr8Cw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hEKgXHn0RXjVSpZ6yJLHjxEdeK5ayqEKgcrMyXkfltYsge4BfzzjO7nbhUKHmaluxPZ7xjD3-PoDvykqZW5fdII0IhcllmAuThgWqIrEqLVG5B87dU3l0IY4v08u_XvF7fIjxgZvTjNpeOwW_75U7E9BQvLq7bjnybwehQkH7nJC0Vzq36GwCIKUi4e8REh5yMsQj2MYo2ZluP70tvfE1p13Xeu9pL0Ex6rVPOblpDStsmedXgI7_M6xlWGwcU7brV9IKzNj-R5j3VJVPn0DXh1Ss06BLkI1kB57MnrVryh7mWNVuH9nvq-oP251ci7NqwLpN1iIjM-XOfdieI6ZgdZKN8fQVn-GifXi-fxQ25AyhocmUoSxFFolSmVhiXEZRmaRo8iJGBzAvuaUwJc16JbciKrk0hgK_lMtIWWvy3MQF_wKz_UHfrgLDQiWZxJ7Mo57ADBXyDOmLESXHNAngx0g2-t5jcGiPtpxoN116PF0BbIxEpxtdfNQ85ikVkt8SwPa4mLTIXY0UfTsYujrk-riUrzyAr17k419xRSONeRxAWAvuH33Qe53ucUJx4to763-DhV8HbX3SOf25Dh-oXPi0mQ2YrR6GdpOcnwq36vX9AjH5-ro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Integrative+Dynamic+Factor+Models+With+Application+to+Multiple+Subject+Brain+Connectivity&rft.jtitle=Biometrical+journal&rft.au=Kim%2C+Younghoon&rft.au=Fisher%2C+Zachary+F.&rft.au=Pipiras%2C+Vladas&rft.date=2024-12-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=66&rft.issue=8&rft_id=info:doi/10.1002%2Fbimj.202300370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bimj_202300370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |