Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity

ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predeter...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 66; no. 8; pp. e202300370 - n/a
Main Authors Kim, Younghoon, Fisher, Zachary F., Pipiras, Vladas
Format Journal Article
LanguageEnglish
Published Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.12.2024
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.202300370

Cover

Abstract ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
AbstractList This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle-based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting-state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative DYnamic factor (GRIDY) models. The framework identifies and characterizes intersubject similarities and differences between two predetermined groups by considering a combination of group spatial information and individual temporal dynamics. Furthermore, it enables the identification of intrasubject similarities and differences over time by employing different model configurations for each subject. Methodologically, the framework combines a novel principal angle‐based rank selection algorithm and a noniterative integrative analysis framework. Inspired by simultaneous component analysis, this approach also reconstructs identifiable latent factor series with flexible covariance structures. The performance of the GRIDY models is evaluated through simulations conducted under various scenarios. An application is also presented to compare resting‐state functional MRI data collected from multiple subjects in autism spectrum disorder and control groups.
Author Kim, Younghoon
Pipiras, Vladas
Fisher, Zachary F.
Author_xml – sequence: 1
  givenname: Younghoon
  orcidid: 0009-0007-0117-5530
  surname: Kim
  fullname: Kim, Younghoon
  email: yk748@cornell.edu
  organization: Cornell University
– sequence: 2
  givenname: Zachary F.
  surname: Fisher
  fullname: Fisher, Zachary F.
  organization: The Pennsylvania State University
– sequence: 3
  givenname: Vladas
  surname: Pipiras
  fullname: Pipiras, Vladas
  organization: University of North Carolina at Chapel Hill
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39470131$$D View this record in MEDLINE/PubMed
BookMark eNqF0bFv1DAUBnALtaLXwsqILLGw5PrslzjJ2F5pe6inDgUxWo7PAZ8SO9hO0f33uLq2AwuTZen3nj6975QcOe8MIR8YLBkAP-_suFty4AiANbwhC1ZxVpSA4ogsADkW2JT1CTmNcQcALZT8LTnBtqyBIVsQeRP8PNG1S-ZnUMk-Gnq1d2q0ml4rnXygG781Q6Q_bPpFL6ZpsDoz72jydDMPyU6DoQ9ztzM60cugrKMr71z-2Ueb9u_Ica-GaN4_v2fk-_WXb6vb4u7-Zr26uCt0zigK0edAZd9qJjrWA_S86nSjWMcqaASauqyretujKaFHobUAVqGA1hjdNJopPCOfD3un4H_PJiY52qjNMChn_BwlMs6qFpqmyfTTP3Tn5-ByuqywyncUDLP6-KzmbjRbOQU7qrCXL6fLYHkAOvgYg-lfCQP51I186ka-dpMHysPAHzuY_X-0vFxvvnLBBf4FLSGPyQ
Cites_doi 10.3174/ajnr.A3263
10.1016/j.jeconom.2022.04.005
10.1109/TNNLS.2015.2487364
10.1126/science.1194144
10.1016/j.neuroimage.2019.116019
10.1016/j.media.2016.08.003
10.1111/ectj.12029
10.1016/j.neuroimage.2012.06.026
10.1145/3097983.3098014
10.1259/bjr/33553595
10.1007/BF02296963
10.1111/rssb.12123
10.1016/j.csda.2019.05.007
10.1198/073500102317351921
10.1111/rssb.12278
10.1111/biom.13010
10.1198/jasa.2011.ap10089
10.1007/BF02289451
10.1007/BF02289233
10.1016/j.neuroimage.2008.05.008
10.1016/j.neuroimage.2008.10.057
10.1002/(SICI)1099-128X(199805/06)12:3<155::AID-CEM502>3.0.CO;2-5
10.1002/hbm.20359
10.1016/j.neuroimage.2004.10.043
10.1111/biom.13141
10.1111/biom.13108
10.1002/wics.1246
10.1214/09-STS282
10.1162/netn_a_00067
10.1109/TMI.2019.2933160
10.1080/01621459.2021.1967163
10.1016/j.jmva.2018.03.008
10.3389/fnins.2022.969510
10.1007/BF02296962
10.3758/s13428-013-0374-6
10.1007/BF02288918
10.1214/18-EJS1466
10.2202/1544-6115.1470
10.1137/1.9781611970777
10.1007/s11336-013-9331-7
10.1016/j.jeconom.2013.03.007
10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
10.1002/bimj.201600045
10.1109/TIT.2014.2323359
10.1016/j.compbiomed.2011.09.004
10.1016/j.aca.2013.06.026
10.1002/cem.801
10.1016/j.neuroimage.2017.02.072
10.3758/s13428-012-0295-9
10.1007/978-3-540-27752-1
10.4249/scholarpedia.4695
10.1214/12-AOAS597
10.3389/fnins.2016.00417
10.1007/BF02296656
10.1016/S0893-6080(00)00026-5
10.1093/biomet/asr048
10.1007/s11336-021-09825-7
10.1016/j.neuroimage.2016.10.045
10.1080/01621459.2017.1390466
10.1016/j.jeconom.2011.02.012
10.1016/j.neunet.2022.02.005
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.202300370
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage n/a
ExternalDocumentID 39470131
10_1002_bimj_202300370
BIMJ2626
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS 1712966; DMS 2113662; DMS 2134107
– fundername: National Science Foundation
  grantid: DMS 1712966
– fundername: National Science Foundation
  grantid: DMS 2113662
– fundername: National Science Foundation
  grantid: DMS 2134107
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3236-6f4704f9c16b1f00f25bc8a1b150863e74757df3e40f36cc60153609eec88c1a3
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 04:35:44 EDT 2025
Fri Jul 25 19:15:33 EDT 2025
Thu Apr 03 07:07:48 EDT 2025
Tue Jul 01 04:18:08 EDT 2025
Wed Jan 22 17:14:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords group‐level analysis
fMRI
high‐dimensional time series
dynamic factor model
multiway analysis
principal angles
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3236-6f4704f9c16b1f00f25bc8a1b150863e74757df3e40f36cc60153609eec88c1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-0117-5530
PMID 39470131
PQID 3135037613
PQPubID 105592
PageCount 21
ParticipantIDs proquest_miscellaneous_3121590888
proquest_journals_3135037613
pubmed_primary_39470131
crossref_primary_10_1002_bimj_202300370
wiley_primary_10_1002_bimj_202300370_BIMJ2626
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2024
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2009; 45
2018; 166
2018; 80
2019; 201
2011; 98
2003; 17
2017; 152
2024
2013; 7
2013; 5
2014; 60
2016; 78
2005; 25
2007; 28
2004; 77
2000; 13
2021; 116
2017; 35
1996; 61
1999; 13
2008; 23
2019; 114
2007; 2
2013; 791
1998; 12
2012; 63
2011; 164
2019; 3
2010; 329
2015; 18
2019; 75
2013; 45
2009
2016; 10
2019; 39
2006
2014; 46
1994
2005
2022; 87
2020; 76
1952; 17
1970; 16
1966; 31
2015; 27
2011; 106
2017; 59
2022
2002; 20
2020
2013; 78
2013; 34
2023; 233
1958; 23
2003; 68
2011; 41
2017
2009; 8
2013; 176
2019; 139
2008; 42
2018; 12
2017; 147
2022; 16
2022; 149
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
Harshman R. A. (e_1_2_10_28_1) 1970; 16
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Craddock C. (e_1_2_10_14_1) 2013; 7
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Harville D. A. (e_1_2_10_30_1) 2006
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Brockwell P. J. (e_1_2_10_10_1) 2009
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 39
  start-page: 644
  issue: 3
  year: 2019
  end-page: 655
  article-title: Identifying Autism Spectrum Disorder With Multi‐Site fMRI via Low‐Rank Domain Adaptation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 791
  start-page: 13
  year: 2013
  end-page: 24
  article-title: Global, Local and Unique Decompositions in OnPLS for Multiblock Data Analysis
  publication-title: Analytica Chimica Acta
– year: 2009
– volume: 25
  start-page: 294
  issue: 1
  year: 2005
  end-page: 311
  article-title: Tensorial Extensions of Independent Component Analysis for Multisubject fMRI Analysis
  publication-title: NeuroImage
– volume: 75
  start-page: 1121
  issue: 4
  year: 2019
  end-page: 1132
  article-title: Structural Learning and Integrative Decomposition of Multi‐View Data
  publication-title: Biometrics
– volume: 61
  start-page: 133
  issue: 1
  year: 1996
  end-page: 154
  article-title: Uniqueness Proof for a Family of Models Sharing Features of Tucker's Three‐Mode Factor Analysis and PARAFAC/CANDECOMP
  publication-title: Psychometrika
– volume: 13
  start-page: 275
  issue: 3‐4
  year: 1999
  end-page: 294
  article-title: PARAFAC2–Part I. A Direct Fitting Algorithm for the PARAFAC2 Model
  publication-title: Journal of Chemometrics
– year: 2005
– volume: 45
  start-page: 822
  issue: 3
  year: 2013
  end-page: 833
  article-title: SCA With Rotation to Distinguish Common and Distinctive Information in Linked Data
  publication-title: Behavior Research Methods
– volume: 35
  start-page: 375
  year: 2017
  end-page: 389
  article-title: Identifying Differences in Brain Activities and an Accurate Detection of Autism Spectrum Disorder Using Resting State Functional‐Magnetic Resonance Imaging: A Spatial Filtering Approach
  publication-title: Medical Image Analysis
– volume: 166
  start-page: 241
  year: 2018
  end-page: 265
  article-title: Angle‐Based Joint and Individual Variation Explained
  publication-title: Journal of Multivariate Analysis
– volume: 10
  start-page: 417
  year: 2016
  article-title: Validation of Shared and Specific Independent Component Analysis (SSICA) for Between‐Group Comparisons in fMRI
  publication-title: Frontiers in Neuroscience
– volume: 59
  start-page: 783
  issue: 4
  year: 2017
  end-page: 803
  article-title: Estimating Latent Trends in Multivariate Longitudinal Data via PARAFAC2 With Functional and Structural Constraints
  publication-title: Biometrical Journal
– volume: 23
  start-page: 187
  issue: 3
  year: 1958
  end-page: 200
  article-title: The Varimax Criterion for Analytic Rotation in Factor Analysis
  publication-title: Psychometrika
– year: 1994
– volume: 139
  start-page: 164
  year: 2019
  end-page: 177
  article-title: Regularized Joint Estimation of Related Vector Autoregressive Models
  publication-title: Computational Statistics & Data Analysis
– volume: 3
  start-page: 344
  issue: 2
  year: 2019
  end-page: 362
  article-title: Functional Connectivity‐Based Subtypes of Individuals With and Without Autism Spectrum Disorder
  publication-title: Network Neuroscience
– volume: 76
  start-page: 61
  issue: 1
  year: 2020
  end-page: 74
  article-title: Integrative Factorization of Bidimensionally Linked Matrices
  publication-title: Biometrics
– volume: 149
  start-page: 157
  year: 2022
  end-page: 171
  article-title: Joint Learning of Multiple Granger Causal Networks via Non‐Convex Regularizations: Inference of Group‐Level Brain Connectivity
  publication-title: Neural Networks
– volume: 20
  start-page: 147
  issue: 2
  year: 2002
  end-page: 162
  article-title: Macroeconomic Forecasting Using Diffusion Indexes
  publication-title: Journal of Business & Economic Statistics
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  article-title: Deriving Reproducible Biomarkers From Multi‐Site Resting‐State Data: An Autism‐Based Example
  publication-title: NeuroImage
– volume: 80
  start-page: 927
  issue: 5
  year: 2018
  end-page: 950
  article-title: Multiple Matrix Gaussian Graphs Estimation
  publication-title: Journal of the Royal Statistical Society: Serites B (Statistical Methodology)
– volume: 18
  start-page: C1
  issue: 2
  year: 2015
  end-page: C21
  article-title: Likelihood‐Based Dynamic Factor Analysis for Measurement and Forecasting
  publication-title: Econometrics Journal
– volume: 31
  start-page: 1
  issue: 1
  year: 1966
  end-page: 10
  article-title: A Generalized Solution of the Orthogonal Procrustes Problem
  publication-title: Psychometrika
– volume: 176
  start-page: 18
  issue: 1
  year: 2013
  end-page: 29
  article-title: Principal Components Estimation and Identification of Static Factors
  publication-title: Journal of Econometrics
– volume: 17
  start-page: 274
  issue: 5
  year: 2003
  end-page: 286
  article-title: A New Efficient Method for Determining the Number of Components in PARAFAC Models
  publication-title: Journal of Chemometrics
– volume: 63
  start-page: 310
  issue: 1
  year: 2012
  end-page: 319
  article-title: Group Search Algorithm Recovers Effective Connectivity Maps for Individuals in Homogeneous and Heterogeneous Samples
  publication-title: NeuroImage
– volume: 16
  year: 2022
  article-title: Interpretive JIVE: Connections With CCA and an Application to Brain Connectivity
  publication-title: Frontiers in Neuroscience
– volume: 77
  start-page: S167
  year: 2004
  end-page: 175
  article-title: Overview of fMRI Analysis
  publication-title: British Journal of Radiology
– volume: 41
  start-page: 1142
  issue: 12
  year: 2011
  end-page: 1155
  article-title: Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis
  publication-title: Computers in Biology and Medicine
– volume: 61
  start-page: 123
  issue: 1
  year: 1996
  end-page: 132
  article-title: Some Uniqueness Results for PARAFAC2
  publication-title: Psychometrika
– volume: 13
  start-page: 411
  issue: 4‐5
  year: 2000
  end-page: 430
  article-title: Independent Component Analysis: Algorithms and Applications
  publication-title: Neural Networks
– volume: 75
  start-page: 582
  issue: 2
  year: 2019
  end-page: 592
  article-title: Linked Matrix Factorization
  publication-title: Biometrics
– volume: 2
  issue: 10
  year: 2007
  article-title: Brain Connectivity
  publication-title: Scholarpedia
– volume: 12
  start-page: 3908
  issue: 2
  year: 2018
  end-page: 3952
  article-title: Heterogeneity Adjustment With Applications to Graphical Model Inference
  publication-title: Electronic Journal of Statistics
– volume: 116
  start-page: 1746
  issue: 536
  year: 2021
  end-page: 1763
  article-title: Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data
  publication-title: Journal of the American Statistical Association
– volume: 114
  start-page: 211
  issue: 525
  year: 2019
  end-page: 222
  article-title: Functional Graphical Models
  publication-title: Journal of the American Statistical Association
– volume: 45
  start-page: S163
  issue: 1
  year: 2009
  end-page: S172
  article-title: A Review of Group ICA for fMRI Data and ICA for Joint Inference of Imaging, Genetic, and ERP Data
  publication-title: NeuroImage
– volume: 16
  start-page: 1
  year: 1970
  end-page: 84
  article-title: Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanator’ Multimodal Factor Analysis
  publication-title: UCLA Working Papers in Phonetics
– volume: 87
  start-page: 1
  issue: 2
  year: 2022
  end-page: 29
  article-title: Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data
  publication-title: Psychometrika
– volume: 164
  start-page: 188
  issue: 1
  year: 2011
  end-page: 205
  article-title: A Two‐Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering
  publication-title: Journal of Econometrics
– volume: 78
  start-page: 725
  issue: 4
  year: 2013
  end-page: 739
  article-title: The Special Sign Indeterminacy of the Direct‐Fitting PARAFAC2 Model: Some Implications, Cautions, and Recommendations for Simultaneous Component Analysis
  publication-title: Psychometrika
– volume: 152
  start-page: 38
  year: 2017
  end-page: 49
  article-title: JIVE Integration of Imaging and Behavioral Data
  publication-title: NeuroImage
– start-page: 375
  year: 2017
  end-page: 384
  article-title: SPARTan: Scalable PARAFAC2 for Large & Sparse Data
– volume: 98
  start-page: 901
  issue: 4
  year: 2011
  end-page: 918
  article-title: Estimation of Latent Factors for High‐Dimensional Time Series
  publication-title: Biometrika
– volume: 78
  start-page: 487
  issue: 2
  year: 2016
  end-page: 504
  article-title: Joint Estimation of Multiple Graphical Models From High Dimensional Time Series
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 8
  issue: 1
  year: 2009
  article-title: Extensions of Sparse Canonical Correlation Analysis With Applications to Genomic Data
  publication-title: Statistical Applications in Genetics and Molecular Biology
– start-page: 1
  year: 2024
  end-page: 20
  article-title: Structured Estimation of Heterogeneous Time Series
– volume: 42
  start-page: 1078
  issue: 3
  year: 2008
  end-page: 1093
  article-title: A Unified Framework for Group Independent Component Analysis for Multi‐Subject fMRI Data
  publication-title: NeuroImage
– volume: 12
  start-page: 155
  issue: 3
  year: 1998
  end-page: 171
  article-title: A Three–Step Algorithm for CANDECOMP/PARAFAC Analysis of Large Data Sets With Multicollinearity
  publication-title: Journal of Chemometrics
– volume: 60
  start-page: 5040
  issue: 8
  year: 2014
  end-page: 5053
  article-title: The Optimal Hard Threshold for Singular Values is
  publication-title: IEEE Transactions on Information Theory
– volume: 7
  start-page: 523
  issue: 1
  year: 2013
  end-page: 542
  article-title: Joint and Individual Variation Explained (JIVE) for Integrated Analysis of Multiple Data Types
  publication-title: Annals of Applied Statistics
– volume: 28
  start-page: 1251
  issue: 11
  year: 2007
  end-page: 1266
  article-title: Estimating the Number of Independent Components for Functional Magnetic Resonance Imaging Data
  publication-title: Human Brain Mapping
– volume: 23
  start-page: 439
  issue: 4
  year: 2008
  end-page: 464
  article-title: The Statistical Analysis of fMRI Data
  publication-title: Statistical Science
– volume: 17
  start-page: 429
  issue: 4
  year: 1952
  end-page: 440
  article-title: The Orthogonal Approximation of an Oblique Structure in Factor Analysis
  publication-title: Psychometrika
– year: 2022
  article-title: Data Integration via Analysis of Subspaces (DIVAS)
– volume: 27
  start-page: 2426
  issue: 11
  year: 2015
  end-page: 2439
  article-title: Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 46
  start-page: 576
  issue: 2
  year: 2014
  end-page: 587
  article-title: Performing DISCO‐SCA to Search for Distinctive and Common Information in Linked Data
  publication-title: Behavior Research Methods
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  end-page: 1361
  article-title: Prediction of Individual Brain Maturity Using fMRI
  publication-title: Science
– year: 2006
– year: 2020
– volume: 201
  year: 2019
  article-title: Exploring Individual and Group Differences in Latent Brain Networks Using Cross‐Validated Simultaneous Component Analysis
  publication-title: NeuroImage
– volume: 5
  start-page: 149
  issue: 2
  year: 2013
  end-page: 179
  article-title: Multiple Factor Analysis: Principal Component Analysis for Multitable and Multiblock Data Sets
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
– volume: 68
  start-page: 105
  issue: 1
  year: 2003
  end-page: 121
  article-title: Four Simultaneous Component Models for the Analysis of Multivariate Time Series From More Than One Subject to Model Intraindividual and Interindividual Differences
  publication-title: Psychometrika
– volume: 233
  start-page: 271
  issue: 1
  year: 2023
  end-page: 301
  article-title: Large Dimensional Latent Factor Modeling With Missing Observations and Applications to Causal Inference
  publication-title: Journal of Econometrics
– volume: 34
  start-page: 1866
  issue: 10
  year: 2013
  end-page: 1872
  article-title: Resting‐State fMRI: A Review of Methods and Clinical Applications
  publication-title: American Journal of Neuroradiology
– volume: 106
  start-page: 775
  issue: 495
  year: 2011
  end-page: 790
  article-title: Population Value Decomposition, a Framework for the Analysis of Image Populations
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 27
  year: 2013
  article-title: The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives
  publication-title: Frontiers in Neuroinformatics
– ident: e_1_2_10_40_1
  doi: 10.3174/ajnr.A3263
– ident: e_1_2_10_67_1
  doi: 10.1016/j.jeconom.2022.04.005
– ident: e_1_2_10_69_1
  doi: 10.1109/TNNLS.2015.2487364
– ident: e_1_2_10_16_1
  doi: 10.1126/science.1194144
– ident: e_1_2_10_33_1
  doi: 10.1016/j.neuroimage.2019.116019
– ident: e_1_2_10_62_1
  doi: 10.1016/j.media.2016.08.003
– ident: e_1_2_10_35_1
  doi: 10.1111/ectj.12029
– ident: e_1_2_10_23_1
  doi: 10.1016/j.neuroimage.2012.06.026
– ident: e_1_2_10_51_1
  doi: 10.1145/3097983.3098014
– ident: e_1_2_10_59_1
  doi: 10.1259/bjr/33553595
– ident: e_1_2_10_29_1
  doi: 10.1007/BF02296963
– ident: e_1_2_10_52_1
– ident: e_1_2_10_54_1
  doi: 10.1111/rssb.12123
– ident: e_1_2_10_58_1
  doi: 10.1016/j.csda.2019.05.007
– ident: e_1_2_10_61_1
  doi: 10.1198/073500102317351921
– ident: e_1_2_10_70_1
  doi: 10.1111/rssb.12278
– volume-title: Time Series: Theory and Methods
  year: 2009
  ident: e_1_2_10_10_1
– ident: e_1_2_10_49_1
  doi: 10.1111/biom.13010
– volume: 16
  start-page: 1
  year: 1970
  ident: e_1_2_10_28_1
  article-title: Foundations of the PARAFAC Procedure: Models and Conditions for an ‘Explanator’ Multimodal Factor Analysis
  publication-title: UCLA Working Papers in Phonetics
– volume: 7
  start-page: 27
  year: 2013
  ident: e_1_2_10_14_1
  article-title: The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives
  publication-title: Frontiers in Neuroinformatics
– ident: e_1_2_10_15_1
  doi: 10.1198/jasa.2011.ap10089
– ident: e_1_2_10_55_1
  doi: 10.1007/BF02289451
– ident: e_1_2_10_36_1
  doi: 10.1007/BF02289233
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neuroimage.2008.05.008
– ident: e_1_2_10_11_1
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: e_1_2_10_37_1
  doi: 10.1002/(SICI)1099-128X(199805/06)12:3<155::AID-CEM502>3.0.CO;2-5
– ident: e_1_2_10_41_1
  doi: 10.1002/hbm.20359
– ident: e_1_2_10_7_1
  doi: 10.1016/j.neuroimage.2004.10.043
– ident: e_1_2_10_12_1
– ident: e_1_2_10_50_1
  doi: 10.1111/biom.13141
– ident: e_1_2_10_25_1
  doi: 10.1111/biom.13108
– ident: e_1_2_10_2_1
  doi: 10.1002/wics.1246
– ident: e_1_2_10_42_1
  doi: 10.1214/09-STS282
– ident: e_1_2_10_18_1
  doi: 10.1162/netn_a_00067
– ident: e_1_2_10_65_1
  doi: 10.1109/TMI.2019.2933160
– ident: e_1_2_10_6_1
  doi: 10.1080/01621459.2021.1967163
– ident: e_1_2_10_20_1
  doi: 10.1016/j.jmva.2018.03.008
– ident: e_1_2_10_48_1
  doi: 10.3389/fnins.2022.969510
– ident: e_1_2_10_63_1
  doi: 10.1007/BF02296962
– ident: e_1_2_10_57_1
  doi: 10.3758/s13428-013-0374-6
– ident: e_1_2_10_26_1
  doi: 10.1007/BF02288918
– ident: e_1_2_10_19_1
  doi: 10.1214/18-EJS1466
– ident: e_1_2_10_66_1
  doi: 10.2202/1544-6115.1470
– ident: e_1_2_10_8_1
  doi: 10.1137/1.9781611970777
– ident: e_1_2_10_31_1
  doi: 10.1007/s11336-013-9331-7
– ident: e_1_2_10_5_1
  doi: 10.1016/j.jeconom.2013.03.007
– ident: e_1_2_10_38_1
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
– ident: e_1_2_10_32_1
  doi: 10.1002/bimj.201600045
– ident: e_1_2_10_24_1
  doi: 10.1109/TIT.2014.2323359
– ident: e_1_2_10_13_1
  doi: 10.1016/j.compbiomed.2011.09.004
– ident: e_1_2_10_44_1
  doi: 10.1016/j.aca.2013.06.026
– ident: e_1_2_10_9_1
  doi: 10.1002/cem.801
– ident: e_1_2_10_68_1
  doi: 10.1016/j.neuroimage.2017.02.072
– ident: e_1_2_10_56_1
  doi: 10.3758/s13428-012-0295-9
– ident: e_1_2_10_45_1
  doi: 10.1007/978-3-540-27752-1
– ident: e_1_2_10_60_1
  doi: 10.4249/scholarpedia.4695
– ident: e_1_2_10_43_1
  doi: 10.1214/12-AOAS597
– ident: e_1_2_10_46_1
  doi: 10.3389/fnins.2016.00417
– ident: e_1_2_10_64_1
  doi: 10.1007/BF02296656
– ident: e_1_2_10_34_1
  doi: 10.1016/S0893-6080(00)00026-5
– volume-title: Matrix Algebra From a Statistician's Perspective
  year: 2006
  ident: e_1_2_10_30_1
– ident: e_1_2_10_39_1
  doi: 10.1093/biomet/asr048
– ident: e_1_2_10_21_1
  doi: 10.1007/s11336-021-09825-7
– ident: e_1_2_10_4_1
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: e_1_2_10_53_1
  doi: 10.1080/01621459.2017.1390466
– ident: e_1_2_10_22_1
– ident: e_1_2_10_3_1
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jeconom.2011.02.012
– ident: e_1_2_10_47_1
  doi: 10.1016/j.neunet.2022.02.005
SSID ssj0009042
Score 2.3758085
Snippet ABSTRACT This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup...
This work introduces a novel framework for dynamic factor model‐based group‐level analysis of multiple subjects time‐series data, called GRoup Integrative...
This work introduces a novel framework for dynamic factor model-based group-level analysis of multiple subjects time-series data, called GRoup Integrative...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202300370
SubjectTerms Algorithms
Autism
Autism Spectrum Disorder - diagnostic imaging
Autism Spectrum Disorder - physiopathology
Biometry - methods
Brain - diagnostic imaging
dynamic factor model
fMRI
Functional magnetic resonance imaging
Group dynamics
group‐level analysis
high‐dimensional time series
Humans
Magnetic Resonance Imaging
Models, Statistical
multiway analysis
Neural networks
principal angles
Similarity
Spatial data
Title Group Integrative Dynamic Factor Models With Application to Multiple Subject Brain Connectivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202300370
https://www.ncbi.nlm.nih.gov/pubmed/39470131
https://www.proquest.com/docview/3135037613
https://www.proquest.com/docview/3121590888
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hJCQW3o_wkpGQmNLGsePEI6VUtFIZEBVsUc51xLNFNB3g12PHaUthQIiMsaPYPt_5zj5_H8CJ1EIk2mY3CMV9rhLhJ1xFfoYyC7WMcpT2gnP3Slz2eOcuuvtyi9_hQ0w33KxmlPbaKniGo_oMNBQfXh5rlvzbQqjYoJ0yYcHzm9cz_CgZcHeMEDKfGTs8QW0Mwvr85_Or0g9Xc95zLZee1ipkk0a7jJOn2rjAmvr4huf4n16twUrll5IzN5HWYUEPNmDJMVW-b0Ja7lGRdgUuYUwkaToue9IqGXuIJVV7HpHbh-KenM1OxUkxJN0qaZEYK2W3fUjD8lKQMsdGOfaKLei1Lm7OL_2Km8FXZjCFL3IeBzyXigqkeRDkYYQqyShafHnBtIlSorifM82DnAmlTNwXMRFIrVWSKJqxbVgcDAd6FwhmMowF9kUS9DnGKJHFaB6KKBhGoQenE9mkrw6CI3Vgy2FqhyudDpcHBxPRpZUqjlJGWWQKjdviwfG02CiRPRnJBno4tnWM52MzvhIPdpzIp79i0vSUMuqBXwrulzakjXa3E5owce-P9fdh2bzkLlXmABaLt7E-NA5PgUflpP4EmaH37Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4hJsReGIwNMjowEtKeUpLYceJHyqhaRnlAoO3NyrmOgG3tNNKH7dfji5NWZQ8TIq92FMfnO5_vzt8HcKSslLml6gZpRChMLsNcmDQsUBWJVWmJii44jy7l4Eacf0vbakK6C-PxIeYBN9KM2l6TglNA-niBGop3P--7xP5NGCru1P6qTtKRX3S1QJBSkfCJhISH3FniFrcxSo6X31_el_5xNpd913rz6b8BbIfta06-d2cVds3fJ4iOL_qvTdhoXFN24tfSFqzYyVtY82SVf7ZB12EqNmzwJZyVZJ89nT3r16Q9jHjVfjywr3fVLTtZJMZZNWWjpm6ROUNFkR_WI2oKVpfZGE9g8Q5u-mfXp4OwoWcIjZtNGcpSZJEolYklxmUUlUmKJi9iJIh5ya07qKTZuORWRCWXxrijX8plpKw1eW7igr-H1cl0YneBYaGSTOJY5tFYYIYKeYbuiRElxzQJ4FMrHP3Lo3Boj7ecaJouPZ-uADqt7HSjjQ-axzx1jc5zCeBw3uz0iJIjxcROZ9THOT9U9JUHsONlPv8UV-5PYx4HENaS-88YdG84Ok_cSfHDM_sfwPrgenShL4aXX_bgtesgfOVMB1ar3zP70fk_Fe7XK_wRJdr8Cw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hEKgXHn0RXjVSpZ6yJLHjxEdeK5ayqEKgcrMyXkfltYsge4BfzzjO7nbhUKHmaluxPZ7xjD3-PoDvykqZW5fdII0IhcllmAuThgWqIrEqLVG5B87dU3l0IY4v08u_XvF7fIjxgZvTjNpeOwW_75U7E9BQvLq7bjnybwehQkH7nJC0Vzq36GwCIKUi4e8REh5yMsQj2MYo2ZluP70tvfE1p13Xeu9pL0Ex6rVPOblpDStsmedXgI7_M6xlWGwcU7brV9IKzNj-R5j3VJVPn0DXh1Ss06BLkI1kB57MnrVryh7mWNVuH9nvq-oP251ci7NqwLpN1iIjM-XOfdieI6ZgdZKN8fQVn-GifXi-fxQ25AyhocmUoSxFFolSmVhiXEZRmaRo8iJGBzAvuaUwJc16JbciKrk0hgK_lMtIWWvy3MQF_wKz_UHfrgLDQiWZxJ7Mo57ADBXyDOmLESXHNAngx0g2-t5jcGiPtpxoN116PF0BbIxEpxtdfNQ85ikVkt8SwPa4mLTIXY0UfTsYujrk-riUrzyAr17k419xRSONeRxAWAvuH33Qe53ucUJx4to763-DhV8HbX3SOf25Dh-oXPi0mQ2YrR6GdpOcnwq36vX9AjH5-ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Integrative+Dynamic+Factor+Models+With+Application+to+Multiple+Subject+Brain+Connectivity&rft.jtitle=Biometrical+journal&rft.au=Kim%2C+Younghoon&rft.au=Fisher%2C+Zachary+F.&rft.au=Pipiras%2C+Vladas&rft.date=2024-12-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=66&rft.issue=8&rft_id=info:doi/10.1002%2Fbimj.202300370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bimj_202300370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon