A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast‐enhanced ultrasound
Purpose: Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. Methods: The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30...
Saved in:
| Published in | Medical physics (Lancaster) Vol. 42; no. 7; pp. 3948 - 3959 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Association of Physicists in Medicine
01.07.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-2405 2473-4209 2473-4209 |
| DOI | 10.1118/1.4921753 |
Cover
| Abstract | Purpose:
Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.
Methods:
The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents’ behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model.
Results:
With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame‐subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively.
Conclusions:
The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures. |
|---|---|
| AbstractList | Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.
The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model.
With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively.
The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures. Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.PURPOSEDetect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model.METHODSThe proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model.With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively.RESULTSWith regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively.The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.CONCLUSIONSThe proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures. Purpose: Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. Methods: The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents’ behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. Results: With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame‐subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. Conclusions: The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures. |
| Author | Theotokas, Ioannis Kagadis, George C. Tsantis, Stavros Zoumpoulis, Pavlos Skouroliakou, Aikaterini Spiliopoulos, Stavros Gatos, Ilias Hazle, John D. |
| Author_xml | – sequence: 1 givenname: Ilias surname: Gatos fullname: Gatos, Ilias – sequence: 2 givenname: Stavros surname: Tsantis fullname: Tsantis, Stavros – sequence: 3 givenname: Stavros surname: Spiliopoulos fullname: Spiliopoulos, Stavros – sequence: 4 givenname: Aikaterini surname: Skouroliakou fullname: Skouroliakou, Aikaterini – sequence: 5 givenname: Ioannis surname: Theotokas fullname: Theotokas, Ioannis – sequence: 6 givenname: Pavlos surname: Zoumpoulis fullname: Zoumpoulis, Pavlos – sequence: 7 givenname: John D. surname: Hazle fullname: Hazle, John D. – sequence: 8 givenname: George C. surname: Kagadis fullname: Kagadis, George C. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26133595$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10cFOHSEUBmDS2NSr7cIXaFi2i1EYYMZZGqO2iaZdtGvCwMFLw4AC4407F30An7FPUnSuG9OuSA7fOYT_7KGdEAMgdEDJIaX0-Ige8qGlvWBv0KrlPWt4S4YdtCJk4E3LidhFezn_IoR0TJB3aLftKGNiECv0-wQH2GA1lzipAgbfzioUZ51WxcWAlb-OyZX1hG1MuKwBGyigl7tgMNwpPy802mq08ti7O0jYQ67VjDe1G-sYSlK5_Hl4hLBWQdeXZv9UinMw79Fbq3yGD9tzH_08P_tx-qW5_Hbx9fTkstGsZaxhgulOWaFtD3YkxwCcDL1iYIhRdKCGG2IF7wz0LR_HjqpR6x5UTaAjYBjbR5-WuTcp3s6Qi5xc1uC9ChDnLGk3sJ4RwXilH7d0Hicw8ia5SaV7-ZJcBUcL0CnmnMBK7cpzEPVXzktK5NNuJJXb3dSOz686Xob-yzaL3TgP9_-H8ur7s_8L4C2fUg |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105260 crossref_primary_10_3390_diagnostics11071244 crossref_primary_10_1007_s00330_020_07562_6 crossref_primary_10_1109_JBHI_2020_2977937 crossref_primary_10_3390_diagnostics13223443 crossref_primary_10_3390_bioengineering10010069 crossref_primary_10_1002_mp_13642 crossref_primary_10_1016_j_compmedimag_2022_102050 crossref_primary_10_1088_1742_6596_2074_1_012034 crossref_primary_10_1007_s12072_019_09937_4 crossref_primary_10_3390_diagnostics13213387 crossref_primary_10_1038_s41598_017_12925_z crossref_primary_10_1148_radiol_2017170365 crossref_primary_10_1016_j_neucom_2021_08_138 crossref_primary_10_3389_fonc_2020_594580 crossref_primary_10_1007_s00330_017_5152_x crossref_primary_10_1016_j_ultrasmedbio_2022_06_007 crossref_primary_10_1080_17434440_2019_1669447 crossref_primary_10_34921_amj_2023_2_026 crossref_primary_10_1109_TUFFC_2021_3110590 crossref_primary_10_3389_fonc_2024_1415859 crossref_primary_10_1109_TUFFC_2022_3161719 crossref_primary_10_1007_s10916_023_01968_7 crossref_primary_10_3389_fonc_2021_544979 crossref_primary_10_3748_wjg_v28_i27_3398 crossref_primary_10_1088_1361_6528_ab7040 crossref_primary_10_1007_s00330_021_07872_3 crossref_primary_10_3233_CH_170275 crossref_primary_10_3748_wjg_v28_i38_5530 crossref_primary_10_1007_s00261_023_03984_0 crossref_primary_10_1111_jgh_15522 crossref_primary_10_3390_jcm11216368 crossref_primary_10_3748_wjg_v23_i30_5602 crossref_primary_10_1159_000541540 crossref_primary_10_1007_s10462_021_10023_1 crossref_primary_10_1007_s00535_022_01849_9 |
| Cites_doi | 10.1109/ULTSYM.2009.5441991 10.1016/j.cag.2010.12.005 10.1016/j.ejrad.2008.10.016 10.1590/S1807‐03022008000100005 10.1111/j.2517-6161.1974.tb00999.x 10.1109/42.730396 10.1088/0031‐9155/50/19/003 10.1016/j.ultrasmedbio.2012.09.002 10.1007/978-3-642-59957-6 10.1148/radiol.11101866 10.1109/34.142909 10.1016/j.ijleo.2014.01.114 10.1055/s‐0029‐1245649 10.1118/1.2900109 10.1016/S0893‐6080(03)00169‐2 10.1016/j.jbi.2005.02.008 10.1016/j.ejmp.2014.07.163 10.1016/j.ejrad.2011.01.097 10.1109/TPAMI.1984.4767596 10.1148/radiol.2322031401 10.1002/hep.24199 10.1117/12.844071 10.1109/TMI.2008.922695 10.1055/s‐2007‐963785 |
| ContentType | Journal Article |
| Copyright | 2015 American Association of Physicists in Medicine |
| Copyright_xml | – notice: 2015 American Association of Physicists in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1118/1.4921753 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 3959 |
| ExternalDocumentID | 26133595 10_1118_1_4921753 MP1753 |
| Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3233-353c6af5cf7efb08ee4097a3ed0da191d4d0f546de724bb61abcc7ea24060ed33 |
| ISSN | 0094-2405 2473-4209 |
| IngestDate | Fri Sep 05 12:45:28 EDT 2025 Wed Feb 19 01:57:56 EST 2025 Wed Oct 01 00:25:37 EDT 2025 Thu Apr 24 22:59:02 EDT 2025 Wed Jan 22 16:57:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3233-353c6af5cf7efb08ee4097a3ed0da191d4d0f546de724bb61abcc7ea24060ed33 |
| Notes | gkagad@gmail.com Telephone: +30 2610 962345; Fax: +30 2610 969166. Author to whom correspondence should be addressed. Electronic mail ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| PMID | 26133595 |
| PQID | 1693730534 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1693730534 pubmed_primary_26133595 crossref_citationtrail_10_1118_1_4921753 crossref_primary_10_1118_1_4921753 wiley_primary_10_1118_1_4921753_MP1753 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2015 2015-07-00 2015-Jul 20150701 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2015 |
| Publisher | American Association of Physicists in Medicine |
| Publisher_xml | – name: American Association of Physicists in Medicine |
| References | 2012; 81 1974; 36 2010; 31 2011; 53 2009 1998 2008; 35 2011; 35 1992; 14 1999 2004; 232 1998; 17 2013; 39 2001 2004; 17 2008; 29 2008; 27 1984; 6 2007; 6 2010; 7629 2014 2005; 50 2011; 261 2005; 38 2014; 125 2010; 73 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 Mallat S. (e_1_2_7_18_1) 1998 Lin L. W. (e_1_2_7_28_1) 2007; 6 Besag J. E. (e_1_2_7_21_1) 1974; 36 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_20_1 Kecman V. (e_1_2_7_25_1) 2001 |
| References_xml | – year: 2014 article-title: Automatic focal liver lesions quantification on contrast enhanced ultrasound videos – volume: 50 start-page: 4465 year: 2005 end-page: 4480 article-title: A posteriori respiratory gating in contrast ultrasound for assessment of hepatic perfusion publication-title: Phys. Med. Biol. – volume: 14 start-page: 710 year: 1992 end-page: 732 article-title: Characterization of signals from multiscale edges publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 218 year: 2011 end-page: 226 article-title: Interactive visual analysis of contrast‐enhanced ultrasound data based on small neighborhood statistics publication-title: Comput. Graphics – start-page: 121 year: 2001 end-page: 191 article-title: Support vector machines – volume: 261 start-page: 300 year: 2011 end-page: 310 article-title: Differentiation of focal liver lesions: Usefulness of parametric imaging with contrast‐enhanced US publication-title: Radiology – volume: 125 start-page: 4057 year: 2014 end-page: 4063 article-title: Deep learning based classification of focal liver lesions with contrast‐enhanced ultrasound publication-title: Optik – volume: 81 start-page: 709 year: 2012 end-page: 713 article-title: Quantification of enhancement of focal liver lesions during contrast‐enhanced ultrasound (CEUS). Analysis of ten selected frames is more simple but as reliable as the analysis of the entire loop for most parameters publication-title: Eur. J. Radiol. – volume: 27 start-page: 79 year: 2008 end-page: 92 article-title: On the convergence of derivatives of B‐splines to derivatives of the Gaussian function publication-title: Comput. Appl. Math. – volume: 38 start-page: 404 year: 2005 end-page: 415 article-title: The use of receiver operating characteristic curves in biomedical informatics publication-title: J. Biomed. Inf. – volume: 35 start-page: 1734 year: 2008 end-page: 1746 article-title: Computer‐aided diagnosis for the classification of focal liver lesions by use of contrast‐enhanced ultrasonography publication-title: Med. Phys. – volume: 27 start-page: 1449 year: 2008 end-page: 1457 article-title: Hepatic perfusion imaging using factor analysis of contrast enhanced ultrasound publication-title: IEEE Trans. Med. Imaging – year: 1998 – volume: 39 start-page: 187 year: 2013 end-page: 210 article-title: Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012: A WFUMB‐EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS publication-title: Ultrasound Med. Biol. – volume: 7629 start-page: 1 year: 2010 end-page: 11 article-title: Replace approximation method for ambiguous solutions in factor analysis of ultrasonic hepatic perfusion publication-title: Proc. SPIE – volume: 6 start-page: 721 year: 1984 end-page: 741 article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 29 start-page: 28 year: 2008 end-page: 44 article-title: Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS)–update 2008 publication-title: Ultrasound Med. – volume: 232 start-page: 420 year: 2004 end-page: 430 article-title: Characterization of focal liver lesions with contrast‐specific US modes and a sulfur hexafluoride‐filled microbubble contrast agent: Diagnostic performance and confidence publication-title: Radiology – volume: 17 start-page: 510 year: 1998 end-page: 517 article-title: Automated seeded lesion segmentation on digital mammograms publication-title: IEEE Trans. Med. Imaging – start-page: 1282 year: 2009 end-page: 1285 article-title: Parametric imaging of dynamic vascular patterns of focal liver lesions in contrast‐enhanced ultrasound – volume: 73 start-page: 153 year: 2010 end-page: 158 article-title: Quantitative contrast enhanced ultrasound of the liver for time intensity curves‐reliability and potential sources of errors publication-title: Eur. J. Radiol. – volume: 31 start-page: 577 year: 2010 end-page: 581 article-title: Unclear focal liver lesions in contrast‐enhanced ultrasonography–lessons to be learned from the DEGUM multicenter study for the characterization of liver tumors publication-title: Ultrasound Med. – volume: 6 start-page: 610 year: 2007 end-page: 615 article-title: Effect of fatty liver background on contrast‐enhanced ultrasonographic appearance of focal nodular hyperplasia publication-title: Hepatobiliary Pancreatic Dis. Int. – volume: 17 start-page: 113 year: 2004 end-page: 126 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Networks – volume: 53 start-page: 1020 year: 2011 end-page: 1022 article-title: Management of hepatocellular carcinoma: An update publication-title: Hepatology – volume: 36 start-page: 192 year: 1974 end-page: 236 article-title: Spatial interaction and the statistical analysis of lattice systems publication-title: J. R. Stat. Soc. Ser. B – year: 1999 – ident: e_1_2_7_12_1 doi: 10.1109/ULTSYM.2009.5441991 – ident: e_1_2_7_5_1 doi: 10.1016/j.cag.2010.12.005 – ident: e_1_2_7_6_1 doi: 10.1016/j.ejrad.2008.10.016 – ident: e_1_2_7_19_1 doi: 10.1590/S1807‐03022008000100005 – volume: 36 start-page: 192 year: 1974 ident: e_1_2_7_21_1 article-title: Spatial interaction and the statistical analysis of lattice systems publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1974.tb00999.x – ident: e_1_2_7_23_1 doi: 10.1109/42.730396 – ident: e_1_2_7_26_1 doi: 10.1088/0031‐9155/50/19/003 – start-page: 121 volume-title: Learning and Soft Computing, Support Vector Machines, Neural Networks, and Fuzzy Logic Models year: 2001 ident: e_1_2_7_25_1 – ident: e_1_2_7_15_1 doi: 10.1016/j.ultrasmedbio.2012.09.002 – ident: e_1_2_7_4_1 doi: 10.1007/978-3-642-59957-6 – ident: e_1_2_7_7_1 doi: 10.1148/radiol.11101866 – ident: e_1_2_7_20_1 doi: 10.1109/34.142909 – volume-title: A Wavelet Tour of Signal Processing year: 1998 ident: e_1_2_7_18_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.ijleo.2014.01.114 – ident: e_1_2_7_8_1 doi: 10.1055/s‐0029‐1245649 – ident: e_1_2_7_10_1 doi: 10.1118/1.2900109 – ident: e_1_2_7_27_1 doi: 10.1016/S0893‐6080(03)00169‐2 – ident: e_1_2_7_24_1 doi: 10.1016/j.jbi.2005.02.008 – volume: 6 start-page: 610 year: 2007 ident: e_1_2_7_28_1 article-title: Effect of fatty liver background on contrast‐enhanced ultrasonographic appearance of focal nodular hyperplasia publication-title: Hepatobiliary Pancreatic Dis. Int. – ident: e_1_2_7_17_1 doi: 10.1016/j.ejmp.2014.07.163 – ident: e_1_2_7_16_1 doi: 10.1016/j.ejrad.2011.01.097 – ident: e_1_2_7_22_1 doi: 10.1109/TPAMI.1984.4767596 – ident: e_1_2_7_9_1 doi: 10.1148/radiol.2322031401 – ident: e_1_2_7_2_1 doi: 10.1002/hep.24199 – ident: e_1_2_7_13_1 doi: 10.1117/12.844071 – ident: e_1_2_7_11_1 doi: 10.1109/TMI.2008.922695 – ident: e_1_2_7_3_1 doi: 10.1055/s‐2007‐963785 |
| SSID | ssj0006350 |
| Score | 2.3611982 |
| Snippet | Purpose:
Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.... Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed... Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.PURPOSEDetect... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3948 |
| SubjectTerms | Adult Aged Area Under Curve Biological material, e.g. blood, urine; Haemocytometers biomedical ultrasonics classification Computed tomography Contrast Contrast Media contrast‐enhanced ultrasound Diagnosis using ultrasonic, sonic or infrasonic waves Digital computing or data processing equipment or methods, specially adapted for specific applications feature extraction Female Flow visualization focal liver lesions Humans Image analysis image classification Image data processing or generation, in general Image Interpretation, Computer-Assisted - methods image segmentation image sequences In which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines Inference methods or devices Integral transforms liver Liver - diagnostic imaging Liver Neoplasms - diagnostic imaging Magnetic resonance imaging Male Markov processes Medical image contrast medical image processing Medical image segmentation Middle Aged random processes ROC Curve Segmentation Support Vector Machine support vector machines time intensity curves Ultrasonographic imaging Ultrasonography video signal processing Wavelet Analysis wavelet transforms Wavelets Young Adult |
| Title | A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast‐enhanced ultrasound |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4921753 https://www.ncbi.nlm.nih.gov/pubmed/26133595 https://www.proquest.com/docview/1693730534 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241028 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZKRyAuCIatbDIIIaQqQxI7aXKs2EaIopHoSHOLnNiZqQjJMEk4cOLAD-A38kt4L3bclCnSwCWpsrhNvq9vsd9CyFPQql6ehYBAkHGHx1HuRDyVjogUuEOhEBHH5OTFh3D_kL87Co5Go2GF4LZJ97JvW_NK_gdVOAa4YpbsPyBrB4UD8BnwhS0gDNsLYTzHhuBT0TYV2J1gOX5phY790aiK4rgC3__ks40llKpRpjd4KQeVvtFkzFGrTQuM05gWqu4C5PrA9OZM1I2Ni1DliY4baAs8gY2ZhjZuv_ajJ026WV3MtBa6B4ideHgL7r4WUcVKWMt-WeMj1DoATXwFHT5Y3y9W1WnVFtXW05_gjVUwFOw7gYepUZjbuBpObHiBDYK1wjrmuPijF71Vd8znM-Zw342HApz7A6LOBtKYxbqKp9HsLNbFx7doDcyE8PZ47GPh0rVq7MMB_tCYNo5Re1BR4iXm1ktkxwf14o7JzvzV4v1HaxSAXaezocwzmSJXcPML-72bptE5f2fTfersn-V1cs04LnSuWXiDjFS5S64sTGjGLrl8oOG-SX7MKdCSWlrSTVpSS0sKtKRAS2ppSYGWdE1LWuW0oyXtaEkNLSnSkva0_PX9Z09IuibkLXL45vXy5b5jmn04GfMZc1jAslDkQZbPVJ66kVJYiU0wJV0pvNiTXLp5wEOpZj5P09ATaZbNlECL1FWSsdtkXFalukuol4nIVVnMZMC5SFUUpxL8gBw0uZenoZiQ5_17TjJTCR8bshTJOTwn5Im99FSXf9l20eMerASEM664iVJVbZ1gpSNQoQHjE3JHo2iH8cGQxqz4CXnWwfr38ZPFAe7uXeS33CdX1_-lB2TcnLXqIZjNTfrIUPI3_rDIOA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+automated+quantification+algorithm+for+the+detection+and+evaluation+of+focal+liver+lesions+with+contrast%E2%80%90enhanced+ultrasound&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Gatos%2C+Ilias&rft.au=Tsantis%2C+Stavros&rft.au=Spiliopoulos%2C+Stavros&rft.au=Skouroliakou%2C+Aikaterini&rft.date=2015-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=42&rft.issue=7&rft.spage=3948&rft.epage=3959&rft_id=info:doi/10.1118%2F1.4921753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_4921753 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |