A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast‐enhanced ultrasound

Purpose: Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. Methods: The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 42; no. 7; pp. 3948 - 3959
Main Authors Gatos, Ilias, Tsantis, Stavros, Spiliopoulos, Stavros, Skouroliakou, Aikaterini, Theotokas, Ioannis, Zoumpoulis, Pavlos, Hazle, John D., Kagadis, George C.
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.07.2015
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1118/1.4921753

Cover

Abstract Purpose: Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. Methods: The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents’ behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. Results: With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame‐subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. Conclusions: The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.
AbstractList Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.
Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.PURPOSEDetect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model.METHODSThe proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model.With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively.RESULTSWith regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively.The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.CONCLUSIONSThe proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.
Purpose: Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. Methods: The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents’ behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. Results: With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame‐subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. Conclusions: The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.
Author Theotokas, Ioannis
Kagadis, George C.
Tsantis, Stavros
Zoumpoulis, Pavlos
Skouroliakou, Aikaterini
Spiliopoulos, Stavros
Gatos, Ilias
Hazle, John D.
Author_xml – sequence: 1
  givenname: Ilias
  surname: Gatos
  fullname: Gatos, Ilias
– sequence: 2
  givenname: Stavros
  surname: Tsantis
  fullname: Tsantis, Stavros
– sequence: 3
  givenname: Stavros
  surname: Spiliopoulos
  fullname: Spiliopoulos, Stavros
– sequence: 4
  givenname: Aikaterini
  surname: Skouroliakou
  fullname: Skouroliakou, Aikaterini
– sequence: 5
  givenname: Ioannis
  surname: Theotokas
  fullname: Theotokas, Ioannis
– sequence: 6
  givenname: Pavlos
  surname: Zoumpoulis
  fullname: Zoumpoulis, Pavlos
– sequence: 7
  givenname: John D.
  surname: Hazle
  fullname: Hazle, John D.
– sequence: 8
  givenname: George C.
  surname: Kagadis
  fullname: Kagadis, George C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26133595$$D View this record in MEDLINE/PubMed
BookMark eNp10cFOHSEUBmDS2NSr7cIXaFi2i1EYYMZZGqO2iaZdtGvCwMFLw4AC4407F30An7FPUnSuG9OuSA7fOYT_7KGdEAMgdEDJIaX0-Ige8qGlvWBv0KrlPWt4S4YdtCJk4E3LidhFezn_IoR0TJB3aLftKGNiECv0-wQH2GA1lzipAgbfzioUZ51WxcWAlb-OyZX1hG1MuKwBGyigl7tgMNwpPy802mq08ti7O0jYQ67VjDe1G-sYSlK5_Hl4hLBWQdeXZv9UinMw79Fbq3yGD9tzH_08P_tx-qW5_Hbx9fTkstGsZaxhgulOWaFtD3YkxwCcDL1iYIhRdKCGG2IF7wz0LR_HjqpR6x5UTaAjYBjbR5-WuTcp3s6Qi5xc1uC9ChDnLGk3sJ4RwXilH7d0Hicw8ia5SaV7-ZJcBUcL0CnmnMBK7cpzEPVXzktK5NNuJJXb3dSOz686Xob-yzaL3TgP9_-H8ur7s_8L4C2fUg
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105260
crossref_primary_10_3390_diagnostics11071244
crossref_primary_10_1007_s00330_020_07562_6
crossref_primary_10_1109_JBHI_2020_2977937
crossref_primary_10_3390_diagnostics13223443
crossref_primary_10_3390_bioengineering10010069
crossref_primary_10_1002_mp_13642
crossref_primary_10_1016_j_compmedimag_2022_102050
crossref_primary_10_1088_1742_6596_2074_1_012034
crossref_primary_10_1007_s12072_019_09937_4
crossref_primary_10_3390_diagnostics13213387
crossref_primary_10_1038_s41598_017_12925_z
crossref_primary_10_1148_radiol_2017170365
crossref_primary_10_1016_j_neucom_2021_08_138
crossref_primary_10_3389_fonc_2020_594580
crossref_primary_10_1007_s00330_017_5152_x
crossref_primary_10_1016_j_ultrasmedbio_2022_06_007
crossref_primary_10_1080_17434440_2019_1669447
crossref_primary_10_34921_amj_2023_2_026
crossref_primary_10_1109_TUFFC_2021_3110590
crossref_primary_10_3389_fonc_2024_1415859
crossref_primary_10_1109_TUFFC_2022_3161719
crossref_primary_10_1007_s10916_023_01968_7
crossref_primary_10_3389_fonc_2021_544979
crossref_primary_10_3748_wjg_v28_i27_3398
crossref_primary_10_1088_1361_6528_ab7040
crossref_primary_10_1007_s00330_021_07872_3
crossref_primary_10_3233_CH_170275
crossref_primary_10_3748_wjg_v28_i38_5530
crossref_primary_10_1007_s00261_023_03984_0
crossref_primary_10_1111_jgh_15522
crossref_primary_10_3390_jcm11216368
crossref_primary_10_3748_wjg_v23_i30_5602
crossref_primary_10_1159_000541540
crossref_primary_10_1007_s10462_021_10023_1
crossref_primary_10_1007_s00535_022_01849_9
Cites_doi 10.1109/ULTSYM.2009.5441991
10.1016/j.cag.2010.12.005
10.1016/j.ejrad.2008.10.016
10.1590/S1807‐03022008000100005
10.1111/j.2517-6161.1974.tb00999.x
10.1109/42.730396
10.1088/0031‐9155/50/19/003
10.1016/j.ultrasmedbio.2012.09.002
10.1007/978-3-642-59957-6
10.1148/radiol.11101866
10.1109/34.142909
10.1016/j.ijleo.2014.01.114
10.1055/s‐0029‐1245649
10.1118/1.2900109
10.1016/S0893‐6080(03)00169‐2
10.1016/j.jbi.2005.02.008
10.1016/j.ejmp.2014.07.163
10.1016/j.ejrad.2011.01.097
10.1109/TPAMI.1984.4767596
10.1148/radiol.2322031401
10.1002/hep.24199
10.1117/12.844071
10.1109/TMI.2008.922695
10.1055/s‐2007‐963785
ContentType Journal Article
Copyright 2015 American Association of Physicists in Medicine
Copyright_xml – notice: 2015 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.4921753
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3959
ExternalDocumentID 26133595
10_1118_1_4921753
MP1753
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3233-353c6af5cf7efb08ee4097a3ed0da191d4d0f546de724bb61abcc7ea24060ed33
ISSN 0094-2405
2473-4209
IngestDate Fri Sep 05 12:45:28 EDT 2025
Wed Feb 19 01:57:56 EST 2025
Wed Oct 01 00:25:37 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Wed Jan 22 16:57:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3233-353c6af5cf7efb08ee4097a3ed0da191d4d0f546de724bb61abcc7ea24060ed33
Notes gkagad@gmail.com
Telephone: +30 2610 962345; Fax: +30 2610 969166.
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 26133595
PQID 1693730534
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1693730534
pubmed_primary_26133595
crossref_citationtrail_10_1118_1_4921753
crossref_primary_10_1118_1_4921753
wiley_primary_10_1118_1_4921753_MP1753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
2015-07-00
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2015
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References 2012; 81
1974; 36
2010; 31
2011; 53
2009
1998
2008; 35
2011; 35
1992; 14
1999
2004; 232
1998; 17
2013; 39
2001
2004; 17
2008; 29
2008; 27
1984; 6
2007; 6
2010; 7629
2014
2005; 50
2011; 261
2005; 38
2014; 125
2010; 73
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Mallat S. (e_1_2_7_18_1) 1998
Lin L. W. (e_1_2_7_28_1) 2007; 6
Besag J. E. (e_1_2_7_21_1) 1974; 36
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_20_1
Kecman V. (e_1_2_7_25_1) 2001
References_xml – year: 2014
  article-title: Automatic focal liver lesions quantification on contrast enhanced ultrasound videos
– volume: 50
  start-page: 4465
  year: 2005
  end-page: 4480
  article-title: A posteriori respiratory gating in contrast ultrasound for assessment of hepatic perfusion
  publication-title: Phys. Med. Biol.
– volume: 14
  start-page: 710
  year: 1992
  end-page: 732
  article-title: Characterization of signals from multiscale edges
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 218
  year: 2011
  end-page: 226
  article-title: Interactive visual analysis of contrast‐enhanced ultrasound data based on small neighborhood statistics
  publication-title: Comput. Graphics
– start-page: 121
  year: 2001
  end-page: 191
  article-title: Support vector machines
– volume: 261
  start-page: 300
  year: 2011
  end-page: 310
  article-title: Differentiation of focal liver lesions: Usefulness of parametric imaging with contrast‐enhanced US
  publication-title: Radiology
– volume: 125
  start-page: 4057
  year: 2014
  end-page: 4063
  article-title: Deep learning based classification of focal liver lesions with contrast‐enhanced ultrasound
  publication-title: Optik
– volume: 81
  start-page: 709
  year: 2012
  end-page: 713
  article-title: Quantification of enhancement of focal liver lesions during contrast‐enhanced ultrasound (CEUS). Analysis of ten selected frames is more simple but as reliable as the analysis of the entire loop for most parameters
  publication-title: Eur. J. Radiol.
– volume: 27
  start-page: 79
  year: 2008
  end-page: 92
  article-title: On the convergence of derivatives of B‐splines to derivatives of the Gaussian function
  publication-title: Comput. Appl. Math.
– volume: 38
  start-page: 404
  year: 2005
  end-page: 415
  article-title: The use of receiver operating characteristic curves in biomedical informatics
  publication-title: J. Biomed. Inf.
– volume: 35
  start-page: 1734
  year: 2008
  end-page: 1746
  article-title: Computer‐aided diagnosis for the classification of focal liver lesions by use of contrast‐enhanced ultrasonography
  publication-title: Med. Phys.
– volume: 27
  start-page: 1449
  year: 2008
  end-page: 1457
  article-title: Hepatic perfusion imaging using factor analysis of contrast enhanced ultrasound
  publication-title: IEEE Trans. Med. Imaging
– year: 1998
– volume: 39
  start-page: 187
  year: 2013
  end-page: 210
  article-title: Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012: A WFUMB‐EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS
  publication-title: Ultrasound Med. Biol.
– volume: 7629
  start-page: 1
  year: 2010
  end-page: 11
  article-title: Replace approximation method for ambiguous solutions in factor analysis of ultrasonic hepatic perfusion
  publication-title: Proc. SPIE
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 28
  year: 2008
  end-page: 44
  article-title: Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS)–update 2008
  publication-title: Ultrasound Med.
– volume: 232
  start-page: 420
  year: 2004
  end-page: 430
  article-title: Characterization of focal liver lesions with contrast‐specific US modes and a sulfur hexafluoride‐filled microbubble contrast agent: Diagnostic performance and confidence
  publication-title: Radiology
– volume: 17
  start-page: 510
  year: 1998
  end-page: 517
  article-title: Automated seeded lesion segmentation on digital mammograms
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1282
  year: 2009
  end-page: 1285
  article-title: Parametric imaging of dynamic vascular patterns of focal liver lesions in contrast‐enhanced ultrasound
– volume: 73
  start-page: 153
  year: 2010
  end-page: 158
  article-title: Quantitative contrast enhanced ultrasound of the liver for time intensity curves‐reliability and potential sources of errors
  publication-title: Eur. J. Radiol.
– volume: 31
  start-page: 577
  year: 2010
  end-page: 581
  article-title: Unclear focal liver lesions in contrast‐enhanced ultrasonography–lessons to be learned from the DEGUM multicenter study for the characterization of liver tumors
  publication-title: Ultrasound Med.
– volume: 6
  start-page: 610
  year: 2007
  end-page: 615
  article-title: Effect of fatty liver background on contrast‐enhanced ultrasonographic appearance of focal nodular hyperplasia
  publication-title: Hepatobiliary Pancreatic Dis. Int.
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Networks
– volume: 53
  start-page: 1020
  year: 2011
  end-page: 1022
  article-title: Management of hepatocellular carcinoma: An update
  publication-title: Hepatology
– volume: 36
  start-page: 192
  year: 1974
  end-page: 236
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. R. Stat. Soc. Ser. B
– year: 1999
– ident: e_1_2_7_12_1
  doi: 10.1109/ULTSYM.2009.5441991
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cag.2010.12.005
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ejrad.2008.10.016
– ident: e_1_2_7_19_1
  doi: 10.1590/S1807‐03022008000100005
– volume: 36
  start-page: 192
  year: 1974
  ident: e_1_2_7_21_1
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: e_1_2_7_23_1
  doi: 10.1109/42.730396
– ident: e_1_2_7_26_1
  doi: 10.1088/0031‐9155/50/19/003
– start-page: 121
  volume-title: Learning and Soft Computing, Support Vector Machines, Neural Networks, and Fuzzy Logic Models
  year: 2001
  ident: e_1_2_7_25_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ultrasmedbio.2012.09.002
– ident: e_1_2_7_4_1
  doi: 10.1007/978-3-642-59957-6
– ident: e_1_2_7_7_1
  doi: 10.1148/radiol.11101866
– ident: e_1_2_7_20_1
  doi: 10.1109/34.142909
– volume-title: A Wavelet Tour of Signal Processing
  year: 1998
  ident: e_1_2_7_18_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ijleo.2014.01.114
– ident: e_1_2_7_8_1
  doi: 10.1055/s‐0029‐1245649
– ident: e_1_2_7_10_1
  doi: 10.1118/1.2900109
– ident: e_1_2_7_27_1
  doi: 10.1016/S0893‐6080(03)00169‐2
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jbi.2005.02.008
– volume: 6
  start-page: 610
  year: 2007
  ident: e_1_2_7_28_1
  article-title: Effect of fatty liver background on contrast‐enhanced ultrasonographic appearance of focal nodular hyperplasia
  publication-title: Hepatobiliary Pancreatic Dis. Int.
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ejmp.2014.07.163
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ejrad.2011.01.097
– ident: e_1_2_7_22_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_7_9_1
  doi: 10.1148/radiol.2322031401
– ident: e_1_2_7_2_1
  doi: 10.1002/hep.24199
– ident: e_1_2_7_13_1
  doi: 10.1117/12.844071
– ident: e_1_2_7_11_1
  doi: 10.1109/TMI.2008.922695
– ident: e_1_2_7_3_1
  doi: 10.1055/s‐2007‐963785
SSID ssj0006350
Score 2.3611982
Snippet Purpose: Detect and classify focal liver lesions (FLLs) from contrast‐enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm....
Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed...
Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm.PURPOSEDetect...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3948
SubjectTerms Adult
Aged
Area Under Curve
Biological material, e.g. blood, urine; Haemocytometers
biomedical ultrasonics
classification
Computed tomography
Contrast
Contrast Media
contrast‐enhanced ultrasound
Diagnosis using ultrasonic, sonic or infrasonic waves
Digital computing or data processing equipment or methods, specially adapted for specific applications
feature extraction
Female
Flow visualization
focal liver lesions
Humans
Image analysis
image classification
Image data processing or generation, in general
Image Interpretation, Computer-Assisted - methods
image segmentation
image sequences
In which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
Inference methods or devices
Integral transforms
liver
Liver - diagnostic imaging
Liver Neoplasms - diagnostic imaging
Magnetic resonance imaging
Male
Markov processes
Medical image contrast
medical image processing
Medical image segmentation
Middle Aged
random processes
ROC Curve
Segmentation
Support Vector Machine
support vector machines
time intensity curves
Ultrasonographic imaging
Ultrasonography
video signal processing
Wavelet Analysis
wavelet transforms
Wavelets
Young Adult
Title A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast‐enhanced ultrasound
URI https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4921753
https://www.ncbi.nlm.nih.gov/pubmed/26133595
https://www.proquest.com/docview/1693730534
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZKRyAuCIatbDIIIaQqQxI7aXKs2EaIopHoSHOLnNiZqQjJMEk4cOLAD-A38kt4L3bclCnSwCWpsrhNvq9vsd9CyFPQql6ehYBAkHGHx1HuRDyVjogUuEOhEBHH5OTFh3D_kL87Co5Go2GF4LZJ97JvW_NK_gdVOAa4YpbsPyBrB4UD8BnwhS0gDNsLYTzHhuBT0TYV2J1gOX5phY790aiK4rgC3__ks40llKpRpjd4KQeVvtFkzFGrTQuM05gWqu4C5PrA9OZM1I2Ni1DliY4baAs8gY2ZhjZuv_ajJ026WV3MtBa6B4ideHgL7r4WUcVKWMt-WeMj1DoATXwFHT5Y3y9W1WnVFtXW05_gjVUwFOw7gYepUZjbuBpObHiBDYK1wjrmuPijF71Vd8znM-Zw342HApz7A6LOBtKYxbqKp9HsLNbFx7doDcyE8PZ47GPh0rVq7MMB_tCYNo5Re1BR4iXm1ktkxwf14o7JzvzV4v1HaxSAXaezocwzmSJXcPML-72bptE5f2fTfersn-V1cs04LnSuWXiDjFS5S64sTGjGLrl8oOG-SX7MKdCSWlrSTVpSS0sKtKRAS2ppSYGWdE1LWuW0oyXtaEkNLSnSkva0_PX9Z09IuibkLXL45vXy5b5jmn04GfMZc1jAslDkQZbPVJ66kVJYiU0wJV0pvNiTXLp5wEOpZj5P09ATaZbNlECL1FWSsdtkXFalukuol4nIVVnMZMC5SFUUpxL8gBw0uZenoZiQ5_17TjJTCR8bshTJOTwn5Im99FSXf9l20eMerASEM664iVJVbZ1gpSNQoQHjE3JHo2iH8cGQxqz4CXnWwfr38ZPFAe7uXeS33CdX1_-lB2TcnLXqIZjNTfrIUPI3_rDIOA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+automated+quantification+algorithm+for+the+detection+and+evaluation+of+focal+liver+lesions+with+contrast%E2%80%90enhanced+ultrasound&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Gatos%2C+Ilias&rft.au=Tsantis%2C+Stavros&rft.au=Spiliopoulos%2C+Stavros&rft.au=Skouroliakou%2C+Aikaterini&rft.date=2015-07-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=42&rft.issue=7&rft.spage=3948&rft.epage=3959&rft_id=info:doi/10.1118%2F1.4921753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_4921753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon