Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis

Purpose: Human skin consists of several layers including epidermis, dermis, and hypodermis. The determination of the in vivo mechanical properties of an individual skin layer represents a great challenge to date. In this study, the authors explore the use of the supersonic shear imaging (SSI) techni...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 42; no. 7; pp. 4106 - 4115
Main Authors Luo, Cheng‐Cheng, Qian, Lin‐Xue, Li, Guo‐Yang, Jiang, Yi, Liang, Si, Cao, Yanping
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.07.2015
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1118/1.4922133

Cover

More Information
Summary:Purpose: Human skin consists of several layers including epidermis, dermis, and hypodermis. The determination of the in vivo mechanical properties of an individual skin layer represents a great challenge to date. In this study, the authors explore the use of the supersonic shear imaging (SSI) technique and inverse analysis to determine the in vivo elastic properties of the dermis layer of human skin. Methods: The measurements are conducted on the volar forearms and dorsal forearms of 18 healthy volunteers (nine females and nine males) using the SSI technique that gives the velocities of the shear wave generated by the acoustic force. Finite element analysis is carried out to simulate the propagation of the shear wave in the multilayer soft media and the results are used to interpret the experimental data and deduce the shear modulus of the dermis layer. Results: The shear moduli of the skin dermis layer obtained for the 18 healthy volunteers exhibit significant anisotropy. A standard statistical analysis demonstrates the differences between sexes. Conclusions: This study demonstrates that the SSI technique together with the inverse analysis represents a useful tool to characterize the in vivo elastic properties of human skin.
Bibliography:C.‐C. Luo and L.‐X. Qian contributed equally to this work.
Author to whom correspondence should be addressed. Electronic mail
caoyanping@tsinghua.edu.cn
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0094-2405
2473-4209
2473-4209
DOI:10.1118/1.4922133