Hybrid Multi-Objective-Derived Horse Herd and Dragonfly Algorithm-Based Energy-Efficient Secured Routing in WSN

Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the “Quality of Service” (QoS) since it is restricted by fewer constrained resources. Although the existing routing protocols acquire efficient tr...

Full description

Saved in:
Bibliographic Details
Published inJournal of information & knowledge management Vol. 23; no. 1
Main Authors Kalpana, Dingari, Ajitha, P.
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.02.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-6492
1793-6926
DOI10.1142/S0219649223500570

Cover

Abstract Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the “Quality of Service” (QoS) since it is restricted by fewer constrained resources. Although the existing routing protocols acquire efficient transmission, they are still subsisting with the challenges of improving security and energy conservation. It will be helpful in practical implications like the military, weather forecasting and healthcare industry. As the nodes are operated by the energy preservation of the battery, developing an energy-efficient protocol is challenging. Since WSN possesses massive numbers of sensor nodes, it also has to avoid long-term communication, and the clustering mechanism is a prerequisite. Considering the diverse objectives like delay, energy and distance, there are still remarkable challenges to develop the routing protocol. Moreover, security enhancement becomes another challenging issue over the network for data transmission through the sensor nodes. To overcome these issues, a novel energy-efficient routing model is designed in this paper by using a hybrid algorithm and the multi-objective derivatives. Initially, the clustering approach is employed to reduce the complexity and improve the security in an energy-efficient manner. Therefore, the Cluster Head (CH) is selected significantly using the novel Hybrid Horse Herd-Dragonfly Optimisation (HHHDO). The hybrid algorithm is developed by integrating Horse Herd Optimisation (HHO) and Dragonfly Algorithm (DA). Here, the optimal CH selection is achieved by deriving the multi-objective function regarding “distance, delay, energy, load and trust of nodes”. Trust is measured with the Neural Network (NN)-based HHHDO (NN-HHHDO) model. Depending on the trust evaluation and energy efficiency, the proposed model obtains better communication between the nodes. In the end, the experimentation of the recommended model is made using various measures and it’s ensured that the suggested technique enhances trust among the nodes and energy conservation in comparison to the existing algorithms.
AbstractList Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the “Quality of Service” (QoS) since it is restricted by fewer constrained resources. Although the existing routing protocols acquire efficient transmission, they are still subsisting with the challenges of improving security and energy conservation. It will be helpful in practical implications like the military, weather forecasting and healthcare industry. As the nodes are operated by the energy preservation of the battery, developing an energy-efficient protocol is challenging. Since WSN possesses massive numbers of sensor nodes, it also has to avoid long-term communication, and the clustering mechanism is a prerequisite. Considering the diverse objectives like delay, energy and distance, there are still remarkable challenges to develop the routing protocol. Moreover, security enhancement becomes another challenging issue over the network for data transmission through the sensor nodes. To overcome these issues, a novel energy-efficient routing model is designed in this paper by using a hybrid algorithm and the multi-objective derivatives. Initially, the clustering approach is employed to reduce the complexity and improve the security in an energy-efficient manner. Therefore, the Cluster Head (CH) is selected significantly using the novel Hybrid Horse Herd-Dragonfly Optimisation (HHHDO). The hybrid algorithm is developed by integrating Horse Herd Optimisation (HHO) and Dragonfly Algorithm (DA). Here, the optimal CH selection is achieved by deriving the multi-objective function regarding “distance, delay, energy, load and trust of nodes”. Trust is measured with the Neural Network (NN)-based HHHDO (NN-HHHDO) model. Depending on the trust evaluation and energy efficiency, the proposed model obtains better communication between the nodes. In the end, the experimentation of the recommended model is made using various measures and it’s ensured that the suggested technique enhances trust among the nodes and energy conservation in comparison to the existing algorithms.
Author Ajitha, P.
Kalpana, Dingari
Author_xml – sequence: 1
  givenname: Dingari
  surname: Kalpana
  fullname: Kalpana, Dingari
– sequence: 2
  givenname: P.
  surname: Ajitha
  fullname: Ajitha, P.
BookMark eNplkEFPAjEUhBujiYD-AG9NPFdfW9qlRwUUE5RENB433d0WS9YW210N_95FjBdOc5j53stMHx374A1CFxSuKB2y6yUwquRQMcYFgMjgCPVopjiRislj1NvZZOefon5KawAm-FD2UJhti-gq_NjWjSOLYm3Kxn0ZMjGxkwrPQkwGz0yssPYVnkS9Ct7WW3xTr0J0zfsHudWpC069iastmVrrSmd8g5embGNnPIe2cX6Fncdvy6czdGJ1ncz5nw7Q6930ZTwj88X9w_hmTkrOOBALMCys4pSN9MhqLrmgQpus4lIbKqVShaBgqCotFCVVBZQ0kyAtqIpJw_gAXe7vbmL4bE1q8nVoo-9e5pxKIbNMiF2K7lNlDClFY_NNdB86bnMK-W7X_GDXjoE98x1iXaXfsq4r_Y8eIj_hsnsL
Cites_doi 10.1109/ACCESS.2019.2922971
10.1109/TVT.2012.2205284
10.1007/s11831-021-09585-8
10.1109/ACCESS.2021.3107230
10.1155/2022/5497120
10.1007/978-981-10-0251-9_16
10.1016/j.jksuci.2020.10.012
10.1177/14759217211073335
10.1007/s11276-015-1063-4
10.1109/TIFS.2016.2570740
10.1093/comjnl/bxy133
10.1007/s11277-017-4914-8
10.14445/22315381/IJETT-V49P240
10.1002/stc.2690
10.1109/ACCESS.2018.2865909
10.1016/j.pmcj.2019.05.010
10.1109/ACCESS.2020.3010313
10.1016/j.euromechsol.2017.06.003
10.1109/TEM.2019.2953889
10.1109/ACCESS.2019.2955993
10.1007/s11277-020-07469-x
10.1186/s40537-022-00592-5
10.1016/j.asoc.2019.01.034
10.1007/978-3-030-28364-3_17
10.1109/JCN.2013.000073
10.1016/j.adhoc.2021.102766
10.1109/ACCESS.2019.2942321
10.1016/j.adhoc.2020.102317
10.1109/TSUSC.2020.2976096
10.1016/j.jksuci.2015.11.001
10.1109/ACCESS.2020.3022285
10.1016/j.knosys.2020.106711
10.1016/j.jksuci.2019.11.009
10.1109/ICACCI.2013.6637376
10.1109/ACCESS.2019.2934889
ContentType Journal Article
Copyright 2024, World Scientific Publishing Co.
2024. World Scientific Publishing Co.
Copyright_xml – notice: 2024, World Scientific Publishing Co.
– notice: 2024. World Scientific Publishing Co.
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1142/S0219649223500570
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList CrossRef

Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1793-6926
ExternalDocumentID 10_1142_S0219649223500570
S0219649223500570
GroupedDBID 0R~
4.4
5GY
ADSJI
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
EBS
EJD
HZ~
O9-
P2P
P71
RWJ
77I
AAYXX
ADMLS
CITATION
E3H
F2A
ID FETCH-LOGICAL-c3230-f004bf93128a8fa363515ae7d36ae16699b510e19cf0bc19b0c17606f09d26e23
ISSN 0219-6492
IngestDate Mon Jun 30 12:59:51 EDT 2025
Wed Oct 01 03:41:58 EDT 2025
Fri Aug 23 08:19:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords security analysis
Neural Network
Wireless Sensor Network
Cluster Head selection
Hybrid Horse Herd-Dragonfly Optimisation
multi-objective constraints
energy efficiency
trust evaluation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3230-f004bf93128a8fa363515ae7d36ae16699b510e19cf0bc19b0c17606f09d26e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3165677552
PQPubID 2035496
ParticipantIDs proquest_journals_3165677552
worldscientific_primary_S0219649223500570
crossref_primary_10_1142_S0219649223500570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of information & knowledge management
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0219649223500570BIB031
S0219649223500570BIB030
S0219649223500570BIB011
S0219649223500570BIB033
S0219649223500570BIB010
S0219649223500570BIB032
S0219649223500570BIB035
S0219649223500570BIB012
S0219649223500570BIB034
S0219649223500570BIB014
S0219649223500570BIB036
S0219649223500570BIB017
S0219649223500570BIB016
S0219649223500570BIB019
S0219649223500570BIB018
Jose D (S0219649223500570BIB013) 2015; 412
S0219649223500570BIB020
S0219649223500570BIB022
S0219649223500570BIB021
S0219649223500570BIB002
S0219649223500570BIB024
S0219649223500570BIB001
S0219649223500570BIB023
S0219649223500570BIB004
S0219649223500570BIB026
S0219649223500570BIB003
Kavitha BC (S0219649223500570BIB015) 2018; 118
S0219649223500570BIB025
S0219649223500570BIB006
S0219649223500570BIB028
S0219649223500570BIB005
S0219649223500570BIB027
S0219649223500570BIB008
S0219649223500570BIB007
S0219649223500570BIB029
S0219649223500570BIB009
References_xml – ident: S0219649223500570BIB011
  doi: 10.1109/ACCESS.2019.2922971
– ident: S0219649223500570BIB017
  doi: 10.1109/TVT.2012.2205284
– ident: S0219649223500570BIB036
  doi: 10.1007/s11831-021-09585-8
– ident: S0219649223500570BIB001
  doi: 10.1109/ACCESS.2021.3107230
– ident: S0219649223500570BIB026
  doi: 10.1155/2022/5497120
– volume: 412
  start-page: 155
  volume-title: Computational Intelligence, Cyber Security and Computational Models
  year: 2015
  ident: S0219649223500570BIB013
  doi: 10.1007/978-981-10-0251-9_16
– ident: S0219649223500570BIB031
  doi: 10.1016/j.jksuci.2020.10.012
– ident: S0219649223500570BIB029
  doi: 10.1177/14759217211073335
– ident: S0219649223500570BIB020
  doi: 10.1007/s11276-015-1063-4
– ident: S0219649223500570BIB018
  doi: 10.1109/TIFS.2016.2570740
– ident: S0219649223500570BIB004
  doi: 10.1093/comjnl/bxy133
– ident: S0219649223500570BIB009
  doi: 10.1007/s11277-017-4914-8
– ident: S0219649223500570BIB023
  doi: 10.14445/22315381/IJETT-V49P240
– ident: S0219649223500570BIB030
  doi: 10.1002/stc.2690
– ident: S0219649223500570BIB002
  doi: 10.1109/ACCESS.2018.2865909
– ident: S0219649223500570BIB003
  doi: 10.1016/j.pmcj.2019.05.010
– ident: S0219649223500570BIB034
  doi: 10.1109/ACCESS.2020.3010313
– ident: S0219649223500570BIB012
  doi: 10.1016/j.euromechsol.2017.06.003
– ident: S0219649223500570BIB024
  doi: 10.1109/TEM.2019.2953889
– ident: S0219649223500570BIB005
  doi: 10.1109/ACCESS.2019.2955993
– ident: S0219649223500570BIB027
  doi: 10.1007/s11277-020-07469-x
– ident: S0219649223500570BIB025
  doi: 10.1186/s40537-022-00592-5
– ident: S0219649223500570BIB028
  doi: 10.1016/j.asoc.2019.01.034
– ident: S0219649223500570BIB033
  doi: 10.1007/978-3-030-28364-3_17
– ident: S0219649223500570BIB008
  doi: 10.1109/JCN.2013.000073
– ident: S0219649223500570BIB022
  doi: 10.1016/j.adhoc.2021.102766
– ident: S0219649223500570BIB035
  doi: 10.1109/ACCESS.2019.2942321
– volume: 118
  start-page: 1
  issue: 24
  year: 2018
  ident: S0219649223500570BIB015
  publication-title: International Journal of Pure and Applied Mathematics
– ident: S0219649223500570BIB019
  doi: 10.1016/j.adhoc.2020.102317
– ident: S0219649223500570BIB007
  doi: 10.1109/TSUSC.2020.2976096
– ident: S0219649223500570BIB006
  doi: 10.1016/j.jksuci.2015.11.001
– ident: S0219649223500570BIB010
  doi: 10.1109/ACCESS.2020.3022285
– ident: S0219649223500570BIB021
  doi: 10.1016/j.knosys.2020.106711
– ident: S0219649223500570BIB032
  doi: 10.1016/j.jksuci.2019.11.009
– ident: S0219649223500570BIB014
  doi: 10.1109/ICACCI.2013.6637376
– ident: S0219649223500570BIB016
  doi: 10.1109/ACCESS.2019.2934889
SSID ssj0025346
Score 2.2789004
Snippet Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Clustering
Data transmission
Energy conservation
Energy efficiency
Industrial development
Multiple objective analysis
Neural networks
Nodes
Optimization
Quality of service architectures
Routing (telecommunications)
Sensors
Trustworthiness
Weather forecasting
Wireless sensor networks
Title Hybrid Multi-Objective-Derived Horse Herd and Dragonfly Algorithm-Based Energy-Efficient Secured Routing in WSN
URI http://www.worldscientific.com/doi/abs/10.1142/S0219649223500570
https://www.proquest.com/docview/3165677552
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1793-6926
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0025346
  issn: 0219-6492
  databaseCode: ADMLS
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyFeJj5FYSA_8AKVS2LHSf1YWFEFbCBtE3uL7MQZnUaL0g4xfj3XH3FDwyTGS1QlqRP5npx7bd9zjdALXo2LWBaaCMEpSRLNiEgzRsA7GIcxFqWVjx0cprOT5P0pP-31frayli7XalT8-quu5H-sCufArkYlewPLhkbhBPwG-8IRLAzHf7Lx7MrorYZWREs-qXNHXmQfnv0DAsnZsl5pcCx16RKOa3lmRCBXw8nF2bKer79-I2_AiZXDqRUAkqktJ2GSA-wsPFww-UJe9PLl6PCaQNbXXg1ACtN0PjW2nVvzQV4A_bg1JrMZdz0PiDuHF7IXPo_aUxE0abKXG8Kz6T-Wk2yeU3smrctuQJUkTdxGeCPt2BfIgqTCSegbenZy5DYMu6yfULvuTE11MQEBDzca22jj4kLiYeeeW2iHgj-I-mhnsn_w8SgM1jlzIq_mNf2KODzqdaeRP2OazUBl11a9XYUOaUUux3fRrrcUnjj83EM9vbiPbjeKhwdo6WCEr4ERtjDCBkYYYIQDjPAWjPA2jLCHEfYwwvMFBhg9RCfvpsdvZ8Tvw0EKBiNUUsEnpyrBIJSR40oyiFFjLnVWslTqOE2FUMDsOhZFFakiFioq4gwGxlUkSppqyh6h_mK50I8RBtCocZkJW9ZSq1JWSoo4kZpV8D_OB-hV05P5d1duJXfSeZp3un2A9pq-zv1XucqZKSeVZZzTAXq51f-hyU5TT25w71N0ZwP-PdRf15f6GUSma_Xcg-g3ZcOLow
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Multi-Objective-Derived+Horse+Herd+and+Dragonfly+Algorithm-Based+Energy-Efficient+Secured+Routing+in+WSN&rft.jtitle=Journal+of+information+%26+knowledge+management&rft.au=Kalpana%2C+Dingari&rft.au=Ajitha%2C+P.&rft.date=2024-02-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0219-6492&rft.eissn=1793-6926&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1142%2FS0219649223500570&rft.externalDocID=S0219649223500570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6492&client=summon