Hybrid Multi-Objective-Derived Horse Herd and Dragonfly Algorithm-Based Energy-Efficient Secured Routing in WSN
Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the “Quality of Service” (QoS) since it is restricted by fewer constrained resources. Although the existing routing protocols acquire efficient tr...
        Saved in:
      
    
          | Published in | Journal of information & knowledge management Vol. 23; no. 1 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          World Scientific Publishing Company
    
        01.02.2024
     World Scientific Publishing Co. Pte., Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0219-6492 1793-6926  | 
| DOI | 10.1142/S0219649223500570 | 
Cover
| Abstract | Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the “Quality of Service” (QoS) since it is restricted by fewer constrained resources. Although the existing routing protocols acquire efficient transmission, they are still subsisting with the challenges of improving security and energy conservation. It will be helpful in practical implications like the military, weather forecasting and healthcare industry. As the nodes are operated by the energy preservation of the battery, developing an energy-efficient protocol is challenging. Since WSN possesses massive numbers of sensor nodes, it also has to avoid long-term communication, and the clustering mechanism is a prerequisite. Considering the diverse objectives like delay, energy and distance, there are still remarkable challenges to develop the routing protocol. Moreover, security enhancement becomes another challenging issue over the network for data transmission through the sensor nodes. To overcome these issues, a novel energy-efficient routing model is designed in this paper by using a hybrid algorithm and the multi-objective derivatives. Initially, the clustering approach is employed to reduce the complexity and improve the security in an energy-efficient manner. Therefore, the Cluster Head (CH) is selected significantly using the novel Hybrid Horse Herd-Dragonfly Optimisation (HHHDO). The hybrid algorithm is developed by integrating Horse Herd Optimisation (HHO) and Dragonfly Algorithm (DA). Here, the optimal CH selection is achieved by deriving the multi-objective function regarding “distance, delay, energy, load and trust of nodes”. Trust is measured with the Neural Network (NN)-based HHHDO (NN-HHHDO) model. Depending on the trust evaluation and energy efficiency, the proposed model obtains better communication between the nodes. In the end, the experimentation of the recommended model is made using various measures and it’s ensured that the suggested technique enhances trust among the nodes and energy conservation in comparison to the existing algorithms. | 
    
|---|---|
| AbstractList | Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the “Quality of Service” (QoS) since it is restricted by fewer constrained resources. Although the existing routing protocols acquire efficient transmission, they are still subsisting with the challenges of improving security and energy conservation. It will be helpful in practical implications like the military, weather forecasting and healthcare industry. As the nodes are operated by the energy preservation of the battery, developing an energy-efficient protocol is challenging. Since WSN possesses massive numbers of sensor nodes, it also has to avoid long-term communication, and the clustering mechanism is a prerequisite. Considering the diverse objectives like delay, energy and distance, there are still remarkable challenges to develop the routing protocol. Moreover, security enhancement becomes another challenging issue over the network for data transmission through the sensor nodes. To overcome these issues, a novel energy-efficient routing model is designed in this paper by using a hybrid algorithm and the multi-objective derivatives. Initially, the clustering approach is employed to reduce the complexity and improve the security in an energy-efficient manner. Therefore, the Cluster Head (CH) is selected significantly using the novel Hybrid Horse Herd-Dragonfly Optimisation (HHHDO). The hybrid algorithm is developed by integrating Horse Herd Optimisation (HHO) and Dragonfly Algorithm (DA). Here, the optimal CH selection is achieved by deriving the multi-objective function regarding “distance, delay, energy, load and trust of nodes”. Trust is measured with the Neural Network (NN)-based HHHDO (NN-HHHDO) model. Depending on the trust evaluation and energy efficiency, the proposed model obtains better communication between the nodes. In the end, the experimentation of the recommended model is made using various measures and it’s ensured that the suggested technique enhances trust among the nodes and energy conservation in comparison to the existing algorithms. | 
    
| Author | Ajitha, P. Kalpana, Dingari  | 
    
| Author_xml | – sequence: 1 givenname: Dingari surname: Kalpana fullname: Kalpana, Dingari – sequence: 2 givenname: P. surname: Ajitha fullname: Ajitha, P.  | 
    
| BookMark | eNplkEFPAjEUhBujiYD-AG9NPFdfW9qlRwUUE5RENB433d0WS9YW210N_95FjBdOc5j53stMHx374A1CFxSuKB2y6yUwquRQMcYFgMjgCPVopjiRislj1NvZZOefon5KawAm-FD2UJhti-gq_NjWjSOLYm3Kxn0ZMjGxkwrPQkwGz0yssPYVnkS9Ct7WW3xTr0J0zfsHudWpC069iastmVrrSmd8g5embGNnPIe2cX6Fncdvy6czdGJ1ncz5nw7Q6930ZTwj88X9w_hmTkrOOBALMCys4pSN9MhqLrmgQpus4lIbKqVShaBgqCotFCVVBZQ0kyAtqIpJw_gAXe7vbmL4bE1q8nVoo-9e5pxKIbNMiF2K7lNlDClFY_NNdB86bnMK-W7X_GDXjoE98x1iXaXfsq4r_Y8eIj_hsnsL | 
    
| Cites_doi | 10.1109/ACCESS.2019.2922971 10.1109/TVT.2012.2205284 10.1007/s11831-021-09585-8 10.1109/ACCESS.2021.3107230 10.1155/2022/5497120 10.1007/978-981-10-0251-9_16 10.1016/j.jksuci.2020.10.012 10.1177/14759217211073335 10.1007/s11276-015-1063-4 10.1109/TIFS.2016.2570740 10.1093/comjnl/bxy133 10.1007/s11277-017-4914-8 10.14445/22315381/IJETT-V49P240 10.1002/stc.2690 10.1109/ACCESS.2018.2865909 10.1016/j.pmcj.2019.05.010 10.1109/ACCESS.2020.3010313 10.1016/j.euromechsol.2017.06.003 10.1109/TEM.2019.2953889 10.1109/ACCESS.2019.2955993 10.1007/s11277-020-07469-x 10.1186/s40537-022-00592-5 10.1016/j.asoc.2019.01.034 10.1007/978-3-030-28364-3_17 10.1109/JCN.2013.000073 10.1016/j.adhoc.2021.102766 10.1109/ACCESS.2019.2942321 10.1016/j.adhoc.2020.102317 10.1109/TSUSC.2020.2976096 10.1016/j.jksuci.2015.11.001 10.1109/ACCESS.2020.3022285 10.1016/j.knosys.2020.106711 10.1016/j.jksuci.2019.11.009 10.1109/ICACCI.2013.6637376 10.1109/ACCESS.2019.2934889  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024, World Scientific Publishing Co. 2024. World Scientific Publishing Co.  | 
    
| Copyright_xml | – notice: 2024, World Scientific Publishing Co. – notice: 2024. World Scientific Publishing Co.  | 
    
| DBID | AAYXX CITATION E3H F2A  | 
    
| DOI | 10.1142/S0219649223500570 | 
    
| DatabaseName | CrossRef Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA)  | 
    
| DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA)  | 
    
| DatabaseTitleList | CrossRef Library and Information Science Abstracts (LISA)  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Business | 
    
| EISSN | 1793-6926 | 
    
| ExternalDocumentID | 10_1142_S0219649223500570 S0219649223500570  | 
    
| GroupedDBID | 0R~ 4.4 5GY ADSJI ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 EBS EJD HZ~ O9- P2P P71 RWJ 77I AAYXX ADMLS CITATION E3H F2A  | 
    
| ID | FETCH-LOGICAL-c3230-f004bf93128a8fa363515ae7d36ae16699b510e19cf0bc19b0c17606f09d26e23 | 
    
| ISSN | 0219-6492 | 
    
| IngestDate | Mon Jun 30 12:59:51 EDT 2025 Wed Oct 01 03:41:58 EDT 2025 Fri Aug 23 08:19:26 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | security analysis Neural Network Wireless Sensor Network Cluster Head selection Hybrid Horse Herd-Dragonfly Optimisation multi-objective constraints energy efficiency trust evaluation  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c3230-f004bf93128a8fa363515ae7d36ae16699b510e19cf0bc19b0c17606f09d26e23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3165677552 | 
    
| PQPubID | 2035496 | 
    
| ParticipantIDs | proquest_journals_3165677552 worldscientific_primary_S0219649223500570 crossref_primary_10_1142_S0219649223500570  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240200 | 
    
| PublicationDateYYYYMMDD | 2024-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2024 text: 20240200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore | 
    
| PublicationTitle | Journal of information & knowledge management | 
    
| PublicationYear | 2024 | 
    
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd  | 
    
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd  | 
    
| References | S0219649223500570BIB031 S0219649223500570BIB030 S0219649223500570BIB011 S0219649223500570BIB033 S0219649223500570BIB010 S0219649223500570BIB032 S0219649223500570BIB035 S0219649223500570BIB012 S0219649223500570BIB034 S0219649223500570BIB014 S0219649223500570BIB036 S0219649223500570BIB017 S0219649223500570BIB016 S0219649223500570BIB019 S0219649223500570BIB018 Jose D (S0219649223500570BIB013) 2015; 412 S0219649223500570BIB020 S0219649223500570BIB022 S0219649223500570BIB021 S0219649223500570BIB002 S0219649223500570BIB024 S0219649223500570BIB001 S0219649223500570BIB023 S0219649223500570BIB004 S0219649223500570BIB026 S0219649223500570BIB003 Kavitha BC (S0219649223500570BIB015) 2018; 118 S0219649223500570BIB025 S0219649223500570BIB006 S0219649223500570BIB028 S0219649223500570BIB005 S0219649223500570BIB027 S0219649223500570BIB008 S0219649223500570BIB007 S0219649223500570BIB029 S0219649223500570BIB009  | 
    
| References_xml | – ident: S0219649223500570BIB011 doi: 10.1109/ACCESS.2019.2922971 – ident: S0219649223500570BIB017 doi: 10.1109/TVT.2012.2205284 – ident: S0219649223500570BIB036 doi: 10.1007/s11831-021-09585-8 – ident: S0219649223500570BIB001 doi: 10.1109/ACCESS.2021.3107230 – ident: S0219649223500570BIB026 doi: 10.1155/2022/5497120 – volume: 412 start-page: 155 volume-title: Computational Intelligence, Cyber Security and Computational Models year: 2015 ident: S0219649223500570BIB013 doi: 10.1007/978-981-10-0251-9_16 – ident: S0219649223500570BIB031 doi: 10.1016/j.jksuci.2020.10.012 – ident: S0219649223500570BIB029 doi: 10.1177/14759217211073335 – ident: S0219649223500570BIB020 doi: 10.1007/s11276-015-1063-4 – ident: S0219649223500570BIB018 doi: 10.1109/TIFS.2016.2570740 – ident: S0219649223500570BIB004 doi: 10.1093/comjnl/bxy133 – ident: S0219649223500570BIB009 doi: 10.1007/s11277-017-4914-8 – ident: S0219649223500570BIB023 doi: 10.14445/22315381/IJETT-V49P240 – ident: S0219649223500570BIB030 doi: 10.1002/stc.2690 – ident: S0219649223500570BIB002 doi: 10.1109/ACCESS.2018.2865909 – ident: S0219649223500570BIB003 doi: 10.1016/j.pmcj.2019.05.010 – ident: S0219649223500570BIB034 doi: 10.1109/ACCESS.2020.3010313 – ident: S0219649223500570BIB012 doi: 10.1016/j.euromechsol.2017.06.003 – ident: S0219649223500570BIB024 doi: 10.1109/TEM.2019.2953889 – ident: S0219649223500570BIB005 doi: 10.1109/ACCESS.2019.2955993 – ident: S0219649223500570BIB027 doi: 10.1007/s11277-020-07469-x – ident: S0219649223500570BIB025 doi: 10.1186/s40537-022-00592-5 – ident: S0219649223500570BIB028 doi: 10.1016/j.asoc.2019.01.034 – ident: S0219649223500570BIB033 doi: 10.1007/978-3-030-28364-3_17 – ident: S0219649223500570BIB008 doi: 10.1109/JCN.2013.000073 – ident: S0219649223500570BIB022 doi: 10.1016/j.adhoc.2021.102766 – ident: S0219649223500570BIB035 doi: 10.1109/ACCESS.2019.2942321 – volume: 118 start-page: 1 issue: 24 year: 2018 ident: S0219649223500570BIB015 publication-title: International Journal of Pure and Applied Mathematics – ident: S0219649223500570BIB019 doi: 10.1016/j.adhoc.2020.102317 – ident: S0219649223500570BIB007 doi: 10.1109/TSUSC.2020.2976096 – ident: S0219649223500570BIB006 doi: 10.1016/j.jksuci.2015.11.001 – ident: S0219649223500570BIB010 doi: 10.1109/ACCESS.2020.3022285 – ident: S0219649223500570BIB021 doi: 10.1016/j.knosys.2020.106711 – ident: S0219649223500570BIB032 doi: 10.1016/j.jksuci.2019.11.009 – ident: S0219649223500570BIB014 doi: 10.1109/ICACCI.2013.6637376 – ident: S0219649223500570BIB016 doi: 10.1109/ACCESS.2019.2934889  | 
    
| SSID | ssj0025346 | 
    
| Score | 2.2789004 | 
    
| Snippet | Energy efficiency and security have become prominent aspects of Wireless Sensor Networks (WSNs) for transmitting data. The major challenge is to increase the... | 
    
| SourceID | proquest crossref worldscientific  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Algorithms Clustering Data transmission Energy conservation Energy efficiency Industrial development Multiple objective analysis Neural networks Nodes Optimization Quality of service architectures Routing (telecommunications) Sensors Trustworthiness Weather forecasting Wireless sensor networks  | 
    
| Title | Hybrid Multi-Objective-Derived Horse Herd and Dragonfly Algorithm-Based Energy-Efficient Secured Routing in WSN | 
    
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0219649223500570 https://www.proquest.com/docview/3165677552  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1793-6926 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0025346 issn: 0219-6492 databaseCode: ADMLS dateStart: 20050301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyFeJj5FYSA_8AKVS2LHSf1YWFEFbCBtE3uL7MQZnUaL0g4xfj3XH3FDwyTGS1QlqRP5npx7bd9zjdALXo2LWBaaCMEpSRLNiEgzRsA7GIcxFqWVjx0cprOT5P0pP-31frayli7XalT8-quu5H-sCufArkYlewPLhkbhBPwG-8IRLAzHf7Lx7MrorYZWREs-qXNHXmQfnv0DAsnZsl5pcCx16RKOa3lmRCBXw8nF2bKer79-I2_AiZXDqRUAkqktJ2GSA-wsPFww-UJe9PLl6PCaQNbXXg1ACtN0PjW2nVvzQV4A_bg1JrMZdz0PiDuHF7IXPo_aUxE0abKXG8Kz6T-Wk2yeU3smrctuQJUkTdxGeCPt2BfIgqTCSegbenZy5DYMu6yfULvuTE11MQEBDzca22jj4kLiYeeeW2iHgj-I-mhnsn_w8SgM1jlzIq_mNf2KODzqdaeRP2OazUBl11a9XYUOaUUux3fRrrcUnjj83EM9vbiPbjeKhwdo6WCEr4ERtjDCBkYYYIQDjPAWjPA2jLCHEfYwwvMFBhg9RCfvpsdvZ8Tvw0EKBiNUUsEnpyrBIJSR40oyiFFjLnVWslTqOE2FUMDsOhZFFakiFioq4gwGxlUkSppqyh6h_mK50I8RBtCocZkJW9ZSq1JWSoo4kZpV8D_OB-hV05P5d1duJXfSeZp3un2A9pq-zv1XucqZKSeVZZzTAXq51f-hyU5TT25w71N0ZwP-PdRf15f6GUSma_Xcg-g3ZcOLow | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Multi-Objective-Derived+Horse+Herd+and+Dragonfly+Algorithm-Based+Energy-Efficient+Secured+Routing+in+WSN&rft.jtitle=Journal+of+information+%26+knowledge+management&rft.au=Kalpana%2C+Dingari&rft.au=Ajitha%2C+P.&rft.date=2024-02-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0219-6492&rft.eissn=1793-6926&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1142%2FS0219649223500570&rft.externalDocID=S0219649223500570 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6492&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6492&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6492&client=summon |