Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-simila...
Saved in:
| Published in | Chinese physics B Vol. 26; no. 4; pp. 66 - 74 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Chinese Physical Society and IOP Publishing Ltd
01.04.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
| DOI | 10.1088/1674-1056/26/4/040202 |
Cover
| Abstract | The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained.K-index,P-index,O-index,and complexity index are introduced to contribute to performance analysis.Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order,these rational approximation impedance functions calculated by the iterating function meet computational rationality,positive reality,and operational validity.Then they are capable of having the operational performance of fractional operators and being physical realization.The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited. |
|---|---|
| AbstractList | The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary order, is presented in this paper. The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained. K-index, P-index, O-index, and complexity index are introduced to contribute to performance analysis. Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order, these rational approximation impedance functions calculated by the iterating function meet computational rationality, positive reality, and operational validity. Then they are capable of having the operational performance of fractional operators and being physical realization. The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited. |
| Author | 何秋燕 余波 袁晓 |
| AuthorAffiliation | College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China |
| Author_xml | – sequence: 1 fullname: 何秋燕 余波 袁晓 |
| BookMark | eNqFkE1rwzAMhs3oYG23nzAwu2exHceJ2WmUfUFhl-1sHMduXdI4kzO2_vslbelhl56EQI-k95mhSRtai9AtJfeUlGVKRcETSnKRMpHylHDCCLtAU0byMsnKjE_Q9DRzhWYxbggRlLBsirYLDU0MLfa9Bd37doXHElrdYN11EH79dt9j3da4s-ACbHVr7NDrZhd9xMFhB9ocodCNewLgH9-vsYbK96BhhwPUFq7RpdNNtDfHOkefz08fi9dk-f7ytnhcJiZjrE9cZVhFauOckCR3BZeGMl5nheSSFYVmOtfM5ZZzJmsunRBCV1Jzl1kpzZBrjvLDXgMhRrBOdTDkgJ2iRI3O1OhDjT4UE4qrg7OBe_jHGd_v4w8hfHOWpgfah05twjcMPuJZ5u54cR3a1dfg__SqKKgkImdF9gf7rZB2 |
| CitedBy_id | crossref_primary_10_3390_fractalfract6070388 crossref_primary_10_7498_aps_67_20171671 crossref_primary_10_1080_00207217_2020_1727030 crossref_primary_10_1142_S0218126620500838 crossref_primary_10_3390_mi13091512 |
| Cites_doi | 10.1007/s11071-004-3752-x 10.1109/TCT.1962.1086946 10.1109/TAC.1984.1103551 10.1103/PhysRevLett.55.529 10.1088/1674-1056/23/6/060503 10.1109/ACCESS.2016.2557818 10.3969/j.issn.0490-6756.2008.05.020 10.1103/PhysRevB.35.5379 10.1155/2008/369421 10.1103/PhysRevB.34.4870 10.1016/j.sigpro.2010.06.022 10.3969/j.issn.0490-6756.2006.01.019 10.1142/S0218126612500351 10.1108/00022661211237728 10.7498/aps.65.160202 10.1109/TCT.1964.1082270 10.1109/TCT.1964.1082357 10.1109/TCT.1967.1082706 10.1109/TCT.1964.1082252 10.3969/j.issn.0490-6756.2013.02.015 10.1103/PhysRevB.32.7360 |
| ContentType | Journal Article |
| Copyright | 2017 Chinese Physical Society and IOP Publishing Ltd |
| Copyright_xml | – notice: 2017 Chinese Physical Society and IOP Publishing Ltd |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
| DOI | 10.1088/1674-1056/26/4/040202 |
| DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order |
| EISSN | 2058-3834 |
| EndPage | 74 |
| ExternalDocumentID | 10_1088_1674_1056_26_4_040202 cpb_26_4_040202 671906527 |
| GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAXDM AOAED CAJEA Q-- U1G U5K AAYXX ACARI ADEQX AEINN AERVB AGQPQ ARNYC CITATION |
| ID | FETCH-LOGICAL-c322t-fbc2b0dcff6905f749c124d37949277a2a5a2f5e4429d49f666ab9a4f3e99c023 |
| IEDL.DBID | IOP |
| ISSN | 1674-1056 |
| IngestDate | Wed Oct 01 03:35:04 EDT 2025 Thu Apr 24 22:50:05 EDT 2025 Wed Aug 21 03:40:43 EDT 2024 Wed Feb 14 10:01:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-fbc2b0dcff6905f749c124d37949277a2a5a2f5e4429d49f666ab9a4f3e99c023 |
| Notes | fractional calculus; fractional operator; generalized Carlson iterating process; approximation error The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained.K-index,P-index,O-index,and complexity index are introduced to contribute to performance analysis.Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order,these rational approximation impedance functions calculated by the iterating function meet computational rationality,positive reality,and operational validity.Then they are capable of having the operational performance of fractional operators and being physical realization.The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited. Qiu-Yan He1, Bo Yu2, and Xiao Yuan1(1 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China 2College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China) 11-5639/O4 |
| PageCount | 9 |
| ParticipantIDs | iop_journals_10_1088_1674_1056_26_4_040202 chongqing_primary_671906527 crossref_citationtrail_10_1088_1674_1056_26_4_040202 crossref_primary_10_1088_1674_1056_26_4_040202 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chinese Physics |
| PublicationYear | 2017 |
| Publisher | Chinese Physical Society and IOP Publishing Ltd |
| Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
| References | 22 Hu K X (1) 2009; 26 26 27 28 29 Zu Y X (25) 2007 Kumar R (2) 2013; 22 Yu B (5) 2015; 37 Yuan X (7) 2015 10 11 Ghany H A (3) 2014; 23 12 13 14 15 16 17 18 19 Wang F Q (4) 2013; 22 Valkenburg V M E (24) 1982 Editorial Board (23) 2002 6 8 9 20 21 |
| References_xml | – year: 2002 ident: 23 publication-title: Mathematics Dictionary – ident: 18 doi: 10.1007/s11071-004-3752-x – ident: 8 doi: 10.1109/TCT.1962.1086946 – start-page: 222 year: 1982 ident: 24 publication-title: Network Synthesis – ident: 20 doi: 10.1109/TAC.1984.1103551 – ident: 26 doi: 10.1103/PhysRevLett.55.529 – volume: 23 issn: 1674-1056 year: 2014 ident: 3 publication-title: Chin. Phys. doi: 10.1088/1674-1056/23/6/060503 – ident: 6 doi: 10.1109/ACCESS.2016.2557818 – volume: 22 issn: 1674-1056 year: 2013 ident: 4 publication-title: Chin. Phys. – ident: 14 doi: 10.3969/j.issn.0490-6756.2008.05.020 – ident: 29 doi: 10.1103/PhysRevB.35.5379 – volume: 37 start-page: 21 year: 2015 ident: 5 publication-title: J. Electr. Inf. Technol. – ident: 15 doi: 10.1155/2008/369421 – ident: 28 doi: 10.1103/PhysRevB.34.4870 – ident: 16 doi: 10.1016/j.sigpro.2010.06.022 – ident: 13 doi: 10.3969/j.issn.0490-6756.2006.01.019 – volume: 26 issn: 0256-307X year: 2009 ident: 1 publication-title: Chin. Phys. Lett. – ident: 17 doi: 10.1142/S0218126612500351 – ident: 19 doi: 10.1108/00022661211237728 – ident: 22 doi: 10.7498/aps.65.160202 – start-page: 218 year: 2015 ident: 7 publication-title: mathematical Principles of Fractance Approximation Circuits – ident: 9 doi: 10.1109/TCT.1964.1082270 – ident: 11 doi: 10.1109/TCT.1964.1082357 – ident: 12 doi: 10.1109/TCT.1967.1082706 – volume: 22 issn: 1674-1056 year: 2013 ident: 2 publication-title: Chin. Phys. – start-page: 111 year: 2007 ident: 25 publication-title: Network Analysis and Synthesis – ident: 10 doi: 10.1109/TCT.1964.1082252 – ident: 21 doi: 10.3969/j.issn.0490-6756.2013.02.015 – ident: 27 doi: 10.1103/PhysRevB.32.7360 |
| SSID | ssj0061023 |
| Score | 2.1237419 |
| Snippet | The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary... The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary... |
| SourceID | crossref iop chongqing |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 66 |
| SubjectTerms | approximation error fractional calculus fractional operator generalized Carlson iterating process |
| Title | Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order |
| URI | http://lib.cqvip.com/qk/85823A/201704/671906527.html https://iopscience.iop.org/article/10.1088/1674-1056/26/4/040202 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Ebz4Lc6p5OBJ6NaladocZThE8OOg4C0kaaJDbWedIP71vjTtnIKKeGtpXkjea95H8t4vCB1wMHv9VOmARIYF1MowkJqbINSJSk0_kx6u6eycnVzT05v4ZqaKf1SMa9XfhUcPFOxZWCfEpT2XNx-4C-N7hPVoL3QRECjhhSgF79iV8F1cNrqYOWACF3I1JE0Nz3fdOISFuyK_fQK78clSzcNoZgzPcAXJZsg-3-S--zJRXf32Bc3xP3NaRcu1V4qPfPs1NGfydbRYZYfq5w30OJClQ3XEHoMZRo3LehMRV6DkryNfAYllnuHxRy0CvHvME1xYbEtfRAFExdhUx_vYbQNjWapRVf2PKyDQTXQ9PL4anAT1PQ2BBnUwCazSRIWZthZC7dgmlGvwGrIIljonSSKJjCWxsaFg-zLKLURMUnFJbWQ41yChLdTKi9xsI0xUlEEAGaooge9SpXHKbOYOS7nWlvXbqDOVjxh7PA7BEvBqWEySNqKNxISuIc7dTRsPojpqT1Ph-CwcnwVhggrP5zbqTsmaPn8hOARBinq1P__ceOcvjTtoiTi_oUoN2kWtSfli9sDrmaj96sd-B8Ua87I |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IVAvpeUhlkLxgRNSNlnHceIjalm1BdoeqNSbZTt2qYAkTbcS6q9nbCfLQ4IKcUsUj2XPxJ4Zz8xngFcC1d6s0iahueUJcypLlBE2yUypKzurVYRr-nDMD87Y0XlxvgL7y1qYthu2_ik-RqDgyMIhIa5Kfd584i-MTylPWZp5D4imXe1WYT2AlfgyvpPTcT_mHpzAu10j2VjH86euPMrCp7a5uELd8Yu2WsUR_aR85g_AjsOOOSefpzcLPTW3vyE6_u-8tmBzsE7Jm0izDSu2eQj3QpaouX4EX_dU79EdScRixpGTfjhMJAGc_NtlrIQkqqlJ96MmAd8j9glpHXF9LKZAorazIcxP_HEwUb2-DCgAJACCPoaz-duPewfJcF9DYnBbWCROG6qz2jiHLnfhSiYMWg91jkte0LJUVBWKusIy1IE1Ew49J6WFYi63QhiU0hNYa9rGPgVCdV6jI5npvMTvSldFxV3tg6bCGMdnE9hZykh2EZdD8hKtG17QcgJslJo0A9S5v3Hjiwwh96qSntfS81pSLpmMvJ7AdEk29nkHwWsUphxW_fXfGz_7l8Yv4f7p_ly-Pzx-twMb1JsSIVvoOawt-hv7Ag2hhd4N__l3Wy35Ew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carlson+iterating+rational+approximation+and+performance+analysis+of+fractional+operator+with+arbitrary+order&rft.jtitle=Chinese+physics+B&rft.au=He%2C+Qiu-Yan&rft.au=Yu%2C+Bo&rft.au=Yuan%2C+Xiao&rft.date=2017-04-01&rft.issn=1674-1056&rft.volume=26&rft.issue=4&rft.spage=40202&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F4%2F040202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_26_4_040202 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |