Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order

The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-simila...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 4; pp. 66 - 74
Main Author 何秋燕 余波 袁晓
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.04.2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/4/040202

Cover

Abstract The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained.K-index,P-index,O-index,and complexity index are introduced to contribute to performance analysis.Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order,these rational approximation impedance functions calculated by the iterating function meet computational rationality,positive reality,and operational validity.Then they are capable of having the operational performance of fractional operators and being physical realization.The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited.
AbstractList The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary order, is presented in this paper. The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained. K-index, P-index, O-index, and complexity index are introduced to contribute to performance analysis. Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order, these rational approximation impedance functions calculated by the iterating function meet computational rationality, positive reality, and operational validity. Then they are capable of having the operational performance of fractional operators and being physical realization. The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited.
Author 何秋燕 余波 袁晓
AuthorAffiliation College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China
Author_xml – sequence: 1
  fullname: 何秋燕 余波 袁晓
BookMark eNqFkE1rwzAMhs3oYG23nzAwu2exHceJ2WmUfUFhl-1sHMduXdI4kzO2_vslbelhl56EQI-k95mhSRtai9AtJfeUlGVKRcETSnKRMpHylHDCCLtAU0byMsnKjE_Q9DRzhWYxbggRlLBsirYLDU0MLfa9Bd37doXHElrdYN11EH79dt9j3da4s-ACbHVr7NDrZhd9xMFhB9ocodCNewLgH9-vsYbK96BhhwPUFq7RpdNNtDfHOkefz08fi9dk-f7ytnhcJiZjrE9cZVhFauOckCR3BZeGMl5nheSSFYVmOtfM5ZZzJmsunRBCV1Jzl1kpzZBrjvLDXgMhRrBOdTDkgJ2iRI3O1OhDjT4UE4qrg7OBe_jHGd_v4w8hfHOWpgfah05twjcMPuJZ5u54cR3a1dfg__SqKKgkImdF9gf7rZB2
CitedBy_id crossref_primary_10_3390_fractalfract6070388
crossref_primary_10_7498_aps_67_20171671
crossref_primary_10_1080_00207217_2020_1727030
crossref_primary_10_1142_S0218126620500838
crossref_primary_10_3390_mi13091512
Cites_doi 10.1007/s11071-004-3752-x
10.1109/TCT.1962.1086946
10.1109/TAC.1984.1103551
10.1103/PhysRevLett.55.529
10.1088/1674-1056/23/6/060503
10.1109/ACCESS.2016.2557818
10.3969/j.issn.0490-6756.2008.05.020
10.1103/PhysRevB.35.5379
10.1155/2008/369421
10.1103/PhysRevB.34.4870
10.1016/j.sigpro.2010.06.022
10.3969/j.issn.0490-6756.2006.01.019
10.1142/S0218126612500351
10.1108/00022661211237728
10.7498/aps.65.160202
10.1109/TCT.1964.1082270
10.1109/TCT.1964.1082357
10.1109/TCT.1967.1082706
10.1109/TCT.1964.1082252
10.3969/j.issn.0490-6756.2013.02.015
10.1103/PhysRevB.32.7360
ContentType Journal Article
Copyright 2017 Chinese Physical Society and IOP Publishing Ltd
Copyright_xml – notice: 2017 Chinese Physical Society and IOP Publishing Ltd
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/26/4/040202
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
EISSN 2058-3834
EndPage 74
ExternalDocumentID 10_1088_1674_1056_26_4_040202
cpb_26_4_040202
671906527
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAXDM
AOAED
CAJEA
Q--
U1G
U5K
AAYXX
ACARI
ADEQX
AEINN
AERVB
AGQPQ
ARNYC
CITATION
ID FETCH-LOGICAL-c322t-fbc2b0dcff6905f749c124d37949277a2a5a2f5e4429d49f666ab9a4f3e99c023
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Wed Oct 01 03:35:04 EDT 2025
Thu Apr 24 22:50:05 EDT 2025
Wed Aug 21 03:40:43 EDT 2024
Wed Feb 14 10:01:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-fbc2b0dcff6905f749c124d37949277a2a5a2f5e4429d49f666ab9a4f3e99c023
Notes fractional calculus; fractional operator; generalized Carlson iterating process; approximation error
The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary order,is presented in this paper.The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained.K-index,P-index,O-index,and complexity index are introduced to contribute to performance analysis.Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order,these rational approximation impedance functions calculated by the iterating function meet computational rationality,positive reality,and operational validity.Then they are capable of having the operational performance of fractional operators and being physical realization.The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited.
Qiu-Yan He1, Bo Yu2, and Xiao Yuan1(1 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China 2College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China)
11-5639/O4
PageCount 9
ParticipantIDs iop_journals_10_1088_1674_1056_26_4_040202
chongqing_primary_671906527
crossref_citationtrail_10_1088_1674_1056_26_4_040202
crossref_primary_10_1088_1674_1056_26_4_040202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2017
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References 22
Hu K X (1) 2009; 26
26
27
28
29
Zu Y X (25) 2007
Kumar R (2) 2013; 22
Yu B (5) 2015; 37
Yuan X (7) 2015
10
11
Ghany H A (3) 2014; 23
12
13
14
15
16
17
18
19
Wang F Q (4) 2013; 22
Valkenburg V M E (24) 1982
Editorial Board (23) 2002
6
8
9
20
21
References_xml – year: 2002
  ident: 23
  publication-title: Mathematics Dictionary
– ident: 18
  doi: 10.1007/s11071-004-3752-x
– ident: 8
  doi: 10.1109/TCT.1962.1086946
– start-page: 222
  year: 1982
  ident: 24
  publication-title: Network Synthesis
– ident: 20
  doi: 10.1109/TAC.1984.1103551
– ident: 26
  doi: 10.1103/PhysRevLett.55.529
– volume: 23
  issn: 1674-1056
  year: 2014
  ident: 3
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/23/6/060503
– ident: 6
  doi: 10.1109/ACCESS.2016.2557818
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 4
  publication-title: Chin. Phys.
– ident: 14
  doi: 10.3969/j.issn.0490-6756.2008.05.020
– ident: 29
  doi: 10.1103/PhysRevB.35.5379
– volume: 37
  start-page: 21
  year: 2015
  ident: 5
  publication-title: J. Electr. Inf. Technol.
– ident: 15
  doi: 10.1155/2008/369421
– ident: 28
  doi: 10.1103/PhysRevB.34.4870
– ident: 16
  doi: 10.1016/j.sigpro.2010.06.022
– ident: 13
  doi: 10.3969/j.issn.0490-6756.2006.01.019
– volume: 26
  issn: 0256-307X
  year: 2009
  ident: 1
  publication-title: Chin. Phys. Lett.
– ident: 17
  doi: 10.1142/S0218126612500351
– ident: 19
  doi: 10.1108/00022661211237728
– ident: 22
  doi: 10.7498/aps.65.160202
– start-page: 218
  year: 2015
  ident: 7
  publication-title: mathematical Principles of Fractance Approximation Circuits
– ident: 9
  doi: 10.1109/TCT.1964.1082270
– ident: 11
  doi: 10.1109/TCT.1964.1082357
– ident: 12
  doi: 10.1109/TCT.1967.1082706
– volume: 22
  issn: 1674-1056
  year: 2013
  ident: 2
  publication-title: Chin. Phys.
– start-page: 111
  year: 2007
  ident: 25
  publication-title: Network Analysis and Synthesis
– ident: 10
  doi: 10.1109/TCT.1964.1082252
– ident: 21
  doi: 10.3969/j.issn.0490-6756.2013.02.015
– ident: 27
  doi: 10.1103/PhysRevB.32.7360
SSID ssj0061023
Score 2.1237419
Snippet The performance analysis of the generalized Carlson iterating process,which can realize the rational approximation of fractional operator with arbitrary...
The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary...
SourceID crossref
iop
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms approximation error
fractional calculus
fractional operator
generalized Carlson iterating process
Title Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
URI http://lib.cqvip.com/qk/85823A/201704/671906527.html
https://iopscience.iop.org/article/10.1088/1674-1056/26/4/040202
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Ebz4Lc6p5OBJ6NaladocZThE8OOg4C0kaaJDbWedIP71vjTtnIKKeGtpXkjea95H8t4vCB1wMHv9VOmARIYF1MowkJqbINSJSk0_kx6u6eycnVzT05v4ZqaKf1SMa9XfhUcPFOxZWCfEpT2XNx-4C-N7hPVoL3QRECjhhSgF79iV8F1cNrqYOWACF3I1JE0Nz3fdOISFuyK_fQK78clSzcNoZgzPcAXJZsg-3-S--zJRXf32Bc3xP3NaRcu1V4qPfPs1NGfydbRYZYfq5w30OJClQ3XEHoMZRo3LehMRV6DkryNfAYllnuHxRy0CvHvME1xYbEtfRAFExdhUx_vYbQNjWapRVf2PKyDQTXQ9PL4anAT1PQ2BBnUwCazSRIWZthZC7dgmlGvwGrIIljonSSKJjCWxsaFg-zLKLURMUnFJbWQ41yChLdTKi9xsI0xUlEEAGaooge9SpXHKbOYOS7nWlvXbqDOVjxh7PA7BEvBqWEySNqKNxISuIc7dTRsPojpqT1Ph-CwcnwVhggrP5zbqTsmaPn8hOARBinq1P__ceOcvjTtoiTi_oUoN2kWtSfli9sDrmaj96sd-B8Ua87I
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IVAvpeUhlkLxgRNSNlnHceIjalm1BdoeqNSbZTt2qYAkTbcS6q9nbCfLQ4IKcUsUj2XPxJ4Zz8xngFcC1d6s0iahueUJcypLlBE2yUypKzurVYRr-nDMD87Y0XlxvgL7y1qYthu2_ik-RqDgyMIhIa5Kfd584i-MTylPWZp5D4imXe1WYT2AlfgyvpPTcT_mHpzAu10j2VjH86euPMrCp7a5uELd8Yu2WsUR_aR85g_AjsOOOSefpzcLPTW3vyE6_u-8tmBzsE7Jm0izDSu2eQj3QpaouX4EX_dU79EdScRixpGTfjhMJAGc_NtlrIQkqqlJ96MmAd8j9glpHXF9LKZAorazIcxP_HEwUb2-DCgAJACCPoaz-duPewfJcF9DYnBbWCROG6qz2jiHLnfhSiYMWg91jkte0LJUVBWKusIy1IE1Ew49J6WFYi63QhiU0hNYa9rGPgVCdV6jI5npvMTvSldFxV3tg6bCGMdnE9hZykh2EZdD8hKtG17QcgJslJo0A9S5v3Hjiwwh96qSntfS81pSLpmMvJ7AdEk29nkHwWsUphxW_fXfGz_7l8Yv4f7p_ly-Pzx-twMb1JsSIVvoOawt-hv7Ag2hhd4N__l3Wy35Ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carlson+iterating+rational+approximation+and+performance+analysis+of+fractional+operator+with+arbitrary+order&rft.jtitle=Chinese+physics+B&rft.au=He%2C+Qiu-Yan&rft.au=Yu%2C+Bo&rft.au=Yuan%2C+Xiao&rft.date=2017-04-01&rft.issn=1674-1056&rft.volume=26&rft.issue=4&rft.spage=40202&rft_id=info:doi/10.1088%2F1674-1056%2F26%2F4%2F040202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_26_4_040202
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg