Rule-Based DSL for Continuous Features and ML Models Selection in Multiple Sclerosis Research
Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment optimization. However, the complexity of developing and deploying ML models poses challenges for domain experts without extensive programmin...
Saved in:
| Published in | Applied sciences Vol. 14; no. 14; p. 6193 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app14146193 |
Cover
| Abstract | Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment optimization. However, the complexity of developing and deploying ML models poses challenges for domain experts without extensive programming knowledge. We propose a novel domain-specific language (DSL) that simplifies the process of selecting features, choosing appropriate ML models, and defining training rules for MS research. The DSL offers three approaches: AutoML for automated model and feature selection, manual selection for expert-guided customization, and a customizable mode allowing for fine-grained control. The DSL was implemented and evaluated using real-world MS data. By establishing task-specific DSLs, we have successfully identified workflows that enhance the filtering of ML models and features. This method is crucial in determining the T2-related MRI features that accurately predict both process speed time and walk speed. We assess the effectiveness of using our DSL to enhance ML models and identify feature importance within our private data, aiming to reveal the relationships between features. The proposed DSL empowers domain experts to leverage ML in MS research without extensive programming knowledge. By integrating MLOps practices, it streamlines the ML lifecycle, promoting trustworthy AI through explainability, interpretability, and collaboration. This work demonstrates the potential of DSLs in democratizing ML in MS and paves the way for future research in adaptive and evolving DSL architectures. |
|---|---|
| AbstractList | Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment optimization. However, the complexity of developing and deploying ML models poses challenges for domain experts without extensive programming knowledge. We propose a novel domain-specific language (DSL) that simplifies the process of selecting features, choosing appropriate ML models, and defining training rules for MS research. The DSL offers three approaches: AutoML for automated model and feature selection, manual selection for expert-guided customization, and a customizable mode allowing for fine-grained control. The DSL was implemented and evaluated using real-world MS data. By establishing task-specific DSLs, we have successfully identified workflows that enhance the filtering of ML models and features. This method is crucial in determining the T2-related MRI features that accurately predict both process speed time and walk speed. We assess the effectiveness of using our DSL to enhance ML models and identify feature importance within our private data, aiming to reveal the relationships between features. The proposed DSL empowers domain experts to leverage ML in MS research without extensive programming knowledge. By integrating MLOps practices, it streamlines the ML lifecycle, promoting trustworthy AI through explainability, interpretability, and collaboration. This work demonstrates the potential of DSLs in democratizing ML in MS and paves the way for future research in adaptive and evolving DSL architectures. |
| Author | Ziemssen, Tjalf Wendt, Karsten Aßmann, Uwe Zhao, Wanqi |
| Author_xml | – sequence: 1 givenname: Wanqi orcidid: 0000-0001-5357-2748 surname: Zhao fullname: Zhao, Wanqi – sequence: 2 givenname: Karsten orcidid: 0000-0001-9373-6751 surname: Wendt fullname: Wendt, Karsten – sequence: 3 givenname: Tjalf orcidid: 0000-0001-8799-8202 surname: Ziemssen fullname: Ziemssen, Tjalf – sequence: 4 givenname: Uwe orcidid: 0000-0002-3513-6448 surname: Aßmann fullname: Aßmann, Uwe |
| BookMark | eNp9kMFu1DAQhi3USpS2J17AEkcI2LHj2EfYUqi0q0rdckTWxB5DVsYOdiLUtyd0EeqJuczI_vRp5n9BTlJOSMhLzt4KYdg7mCYuuVTciGfkrGW9aoTk_cmT-Tm5rPXA1jJcaM7OyNe7JWLzASp6erXf0pAL3eQ0j2nJS6XXCPNSsFJInu62dJc9xkr3GNHNY050THS3xHmcItK9i1hyHSu9w4pQ3PcLchogVrz828_Jl-uP95vPzfb2083m_bZxom3nJoDiKIIT2gknBaquVQDrl-HSD4MRUgeF3aCRMam09CG4vg-DQy_Bu0Gck5uj12c42KmMP6A82AyjfXzI5ZuFMo_rflaLDpQHo1rtpedBK2G4740D6DqNYnW9ObqWNMHDL4jxn5Az-ydp-yTpFX91xKeSfy5YZ3vIS0nrtVYwLXtl5CP1-ki5NaBaMPzX-RtOC4za |
| Cites_doi | 10.1371/journal.pone.0021138 10.1016/j.autrev.2023.103358 10.1111/ene.13819 10.3389/fnins.2020.582046 10.1016/j.cola.2023.101209 10.1371/journal.pone.0174866 10.1177/1352458517690823 10.1016/j.msard.2021.102989 10.1007/978-3-030-05318-5 10.1007/978-3-319-31204-0_9 10.1109/ACCESS.2023.3262138 10.1007/s10994-020-05872-w 10.3389/fimmu.2021.669811 10.3390/healthcare10030541 10.3390/diagnostics12071771 10.1002/ett.3454 10.1038/s41746-020-00338-8 10.1016/j.neuroimage.2011.12.070 10.1016/j.nicl.2014.11.021 10.1145/1118890.1118892 10.1186/1471-2377-11-67 10.1016/j.jbi.2018.07.004 10.1145/3550355.3552401 10.3390/life11020122 10.1161/CIRCOUTCOMES.120.006556 10.1001/jama.2020.26858 10.1016/S1474-4422(21)00095-8 10.3389/fneur.2020.00135 10.1038/srep41473 10.1371/journal.pone.0230219 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app14146193 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_835a6da9628d4d1f86391d79caa558e3 10.3390/app14146193 10_3390_app14146193 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-fa61e3fc38c3c43e6526aa322914dbb9348f6e5b8e004684dffc77fbced4adcb3 |
| IEDL.DBID | UNPAY |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 15:14:53 EDT 2025 Sun Sep 07 11:17:53 EDT 2025 Mon Jun 30 17:25:54 EDT 2025 Thu Oct 16 04:32:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-fa61e3fc38c3c43e6526aa322914dbb9348f6e5b8e004684dffc77fbced4adcb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5357-2748 0000-0002-3513-6448 0000-0001-9373-6751 0000-0001-8799-8202 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/app14146193 |
| PQID | 3084769493 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_835a6da9628d4d1f86391d79caa558e3 unpaywall_primary_10_3390_app14146193 proquest_journals_3084769493 crossref_primary_10_3390_app14146193 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Filippi (ref_11) 2018; 4 ref_36 ref_34 ref_32 Kuwajima (ref_37) 2020; 109 Pedregosa (ref_28) 2011; 12 Bendfeldt (ref_30) 2012; 60 Kreuzberger (ref_8) 2023; 11 ref_19 ref_17 ref_16 Cabot (ref_35) 2023; 76 Feng (ref_13) 2013; 14 Zhao (ref_20) 2020; 3 Bejarano (ref_18) 2011; 11 Dobson (ref_12) 2018; 26 Lopez (ref_33) 2018; 85 Voigt (ref_2) 2023; 22 ref_25 Lim (ref_7) 2017; 7 Wattjes (ref_3) 2021; 20 Motl (ref_14) 2017; 23 Wottschel (ref_21) 2015; 7 Peng (ref_6) 2021; 53 ref_22 ref_1 Mernik (ref_24) 2005; 37 Stevens (ref_23) 2020; 13 ref_29 Ghasemi (ref_10) 2016; 19 ref_27 ref_26 Boesen (ref_15) 2018; 25 McGinley (ref_9) 2021; 325 8 ref_5 Haider (ref_31) 2018; 29 ref_4 |
| References_xml | – ident: ref_34 doi: 10.1371/journal.pone.0021138 – volume: 22 start-page: 103358 year: 2023 ident: ref_2 article-title: Building a monitoring matrix for the management of multiple sclerosis publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2023.103358 – volume: 26 start-page: 27 year: 2018 ident: ref_12 article-title: Multiple sclerosis—A review publication-title: Eur. J. Neurol. doi: 10.1111/ene.13819 – ident: ref_5 doi: 10.3389/fnins.2020.582046 – volume: 76 start-page: 101209 year: 2023 ident: ref_35 article-title: A domain-specific language for describing machine learning datasets publication-title: J. Comput. Lang. doi: 10.1016/j.cola.2023.101209 – volume: 25 start-page: 1653 year: 2018 ident: ref_15 article-title: Can we trust self-reported walking distance when determining EDSS scores in patients with multiple sclerosis? The Danish MS hospitals rehabilitation study publication-title: Mult. Scler. J. – ident: ref_26 – ident: ref_32 doi: 10.1371/journal.pone.0174866 – volume: 23 start-page: 704 year: 2017 ident: ref_14 article-title: Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis publication-title: Mult. Scler. doi: 10.1177/1352458517690823 – volume: 53 start-page: 102989 year: 2021 ident: ref_6 article-title: Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: A machine learning approach publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2021.102989 – volume: 4 start-page: 1 year: 2018 ident: ref_11 article-title: Multiple sclerosis publication-title: Nat. Rev. Dis. Prim. – ident: ref_25 doi: 10.1007/978-3-030-05318-5 – ident: ref_29 doi: 10.1007/978-3-319-31204-0_9 – volume: 11 start-page: 31866 year: 2023 ident: ref_8 article-title: Machine Learning Operations (MLOps): Overview, Definition, and Architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3262138 – volume: 109 start-page: 1103 year: 2020 ident: ref_37 article-title: Engineering problems in machine learning systems publication-title: Mach. Learn. doi: 10.1007/s10994-020-05872-w – ident: ref_16 doi: 10.3389/fimmu.2021.669811 – ident: ref_1 doi: 10.3390/healthcare10030541 – ident: ref_19 doi: 10.3390/diagnostics12071771 – volume: 29 start-page: e3454 year: 2018 ident: ref_31 article-title: Utilizing a 5G spectrum for health care to detect the tremors and breathing activity for multiple sclerosis publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3454 – ident: ref_27 – volume: 12 start-page: 2825 year: 2011 ident: ref_28 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 135 year: 2020 ident: ref_20 article-title: Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-00338-8 – volume: 60 start-page: 400 year: 2012 ident: ref_30 article-title: Multivariate pattern classification of gray matter pathology in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.070 – volume: 7 start-page: 281 year: 2015 ident: ref_21 article-title: Predicting outcome in clinically isolated syndrome using machine learning publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.11.021 – volume: 37 start-page: 316 year: 2005 ident: ref_24 article-title: When and How to Develop Domain-Specific Languages publication-title: ACM Comput. Surv. doi: 10.1145/1118890.1118892 – volume: 11 start-page: 1 year: 2011 ident: ref_18 article-title: Computational classifiers for predicting the short-term course of Multiple sclerosis publication-title: BMC Neurol. doi: 10.1186/1471-2377-11-67 – volume: 19 start-page: 1 year: 2016 ident: ref_10 article-title: Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy publication-title: Cell J. (Yakhteh) – volume: 14 start-page: 58 year: 2013 ident: ref_13 article-title: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis publication-title: BMC Neurol. – volume: 85 start-page: 30 year: 2018 ident: ref_33 article-title: An unsupervised machine learning method for discovering patient clusters based on genetic signatures publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.004 – ident: ref_36 doi: 10.1145/3550355.3552401 – ident: ref_17 doi: 10.3390/life11020122 – volume: 13 start-page: e006556 year: 2020 ident: ref_23 article-title: Recommendations for reporting machine learning analyses in clinical research publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.120.006556 – volume: 325 8 start-page: 765 year: 2021 ident: ref_9 article-title: Diagnosis and Treatment of Multiple Sclerosis: A Review publication-title: JAMA doi: 10.1001/jama.2020.26858 – volume: 20 start-page: 653 year: 2021 ident: ref_3 article-title: 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(21)00095-8 – ident: ref_4 doi: 10.3389/fneur.2020.00135 – volume: 7 start-page: 41473 year: 2017 ident: ref_7 article-title: Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression publication-title: Sci. Rep. doi: 10.1038/srep41473 – ident: ref_22 doi: 10.1371/journal.pone.0230219 |
| SSID | ssj0000913810 |
| Score | 2.2979121 |
| Snippet | Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 6193 |
| SubjectTerms | Accuracy Artificial intelligence Collaboration Decision making Decision trees domain-specific language (DSL) Feature selection machine learning (ML) Medical research Multiple sclerosis multiple sclerosis (MS) Nervous system R&D Regression analysis Research & development Subject specialists |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iRT2Im4rTKTlM0ENxadI0OTp1DNk8OAe7SMmvwmDU4VbE_96XthvdRS9e20Ie72v6vo--fA-hDuBqwyiMAsuIDJhlLJDKykCHsstsyjgj_rzz6IUPJux5Gk1ro758T1hpD1wm7g4YguJWSR4KyyxJBZRUYmNplIoi4Qqfz66QNTFVfIMl8dZV5YE8Crre_w8mzA-xlnSrBBVO_Vv0ci_PFur7S83ntUrTP0KHFUXE92VoDbTjsiY6qBkHNlGj2pJLfFP5Rt8eo_fXfO6CHpQlix_HQwx0FHvzqVmWg7zHnuzlIK6xyiweDbGfgjZf4nExCAfQwbMMj6r2QjyGlSH42RKvW_NO0KT_9PYwCKrpCYGBTboKUsWJo6mhwlDDqONRyJWCW5Iwq7WkTKTcRVo4r5EFAJOaOE61cZYpazQ9RbvZR-bOEA41EZobFYOWZpY6DTQtgu8iIZZIZmgLddYJTRalSUYC4sLnPanlvYV6PtmbR7yzdXEB8E4qvJO_8G6h9hqqpNpuy4R2ochCbH6N6w18v8Vy_h-xXKD9EDhO2b3bRrurz9xdAkdZ6avidfwBGn7jIQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6N7gF4QGyAKAzkhyHBg0UdO679gBCFTRNaK7QyaS8osn3OVKlKy9po2r_nnCale9lrEjnWne_8nX33HcAx6RWzPMs5KmG5QqW4dWi5z-xAYam0EqneeTzRZ5fq51V-tQeTrhYmpVV2PrFx1LgI6Yz8sxyQH9VWWfl1-ZenrlHpdrVroeHa1gr4paEYewT7WWLG6sH-6GTy62J76pJYMI0YbAr1JMX76Z5YqNTc2sp7W1PD4H8Pdj6uq6W7u3Xz-c4OdPocnrXQkX3b6PoA9mJ1CE93CAUP4aA11RX72PJJf3oBfy7qeeQj2q6Q_ZieM4KpLJFSzaqawn6WQGBNQTdzFbLxOUvd0eYrNm0a5JDW2Kxi4zbtkE3pzzT52Yp1KXsv4fL05Pf3M952VeCBjHfNS6dFlGWQJsigZNR5pp2jV1Yo9N5KZUodc29iip0NKawMw2HpQ0TlMHj5CnrVooqvgWVeGK-DG1KMrVBGT_AtJ38pBAqrguzDcSfQYrkhzygo6EhyL3bk3odREvb2k8R43TxY3FwXrQEVhBSdRmd1ZlChKA1BK4FDG5zLcxNpkKNOVUVrhqvi_6Lpw4et-h6ay5uHh3kLTzJCNZt83SPorW_q-I5Qydq_b5faP5s24Vg priority: 102 providerName: ProQuest |
| Title | Rule-Based DSL for Continuous Features and ML Models Selection in Multiple Sclerosis Research |
| URI | https://www.proquest.com/docview/3084769493 https://doi.org/10.3390/app14146193 https://doaj.org/article/835a6da9628d4d1f86391d79caa558e3 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t7QPwwNgAMdgqSwwJHjzNsePYj-u2MqG1mlYqjQcU-VekiiqbSCMEfz3nJpm6PQxeEyc-3fl838nn7wAO0K4-SZOUesE0FV4Iqo3X1Cb6SPhCSMHifefxRJ7PxJfr9HoD3nd3YdbO7zmm4_EYl4nYe1rzTejLFAF3D_qzyeXxt9g2DrNwivtw1ty8e_jFvVizouS_hyOf1OWt-f3LLBZrIWW0BaedME0lyY_DemkP3Z8HPI3_kPYFPG8hJTlu1sA2bIRyB56tEQ3uwHbrwhX52PJMf3oJ36_qRaBDDGOenE4vCMJXEsmq5mV9U1ckgsMak3FiSk_GFyR2TVtUZLpqnIPWJPOSjNtyRDLFmVEH84p0pXyvYDY6-3pyTttuC9ShUy9pYSQLvHBcOe4EDzJNpDH4SjPhrdVcqEKG1KoQc2qFhixclhXWBS-Md5a_hl55U4Y3QBLLlJXOZJh7C8-DRViX4j7KmGdaOL4LB51d8tuGVCPHZCSqMF9T4S4Mo83uhkQm7NUDVHneOlaOCNJIb7RMlBeeFQohF_OZdsakqQr4k73O4nnrnlXOjzAoo2xxjg93q-AxWd7-57h38DRB2NMU9O5Bb_mzDvsIW5Z2AJtq9HkA_eHZ5PJqsEr-B-1S_gsa1ut1 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeKqCtmpbSPYDUHqxmveuN94CqhodCSaKKgMSlMvtyFSlyUhwL8ef62zrrrEO4cONqW2t7Znb2m92Z-QD2Ua82TuIkspzKiFvOI6msjHQs29zmXHDq650HQ9G74j-vk-s1-NfUwvi0ysYn1o7aTo3fI__G2uhHheSSfZ_9jTxrlD9dbSg0VKBWsId1i7FQ2HHu7u8whCsPz45R3wdxfHpyedSLAstAZNCY51GuBHUsNyw1zHDmRBILpfCWpNxqLRlPc-ESnTofS6b4A7npdHJtnOXKGs1w3BewwRmXGPxtdE-Gvy6Wuzy-62ZK24vCQMZk259LU-7JtCV7tBTWjAGPYO5mVczU_Z2aTFZWvNMteB2gKvmxsK1tWHPFDrxaaWC4A9vBNZTkS-hf_fUN_L6oJi7q4vJoyfGoTxAWE98Ea1xU06okHnRWGOQTVVgy6BPPxjYpyagm5EErIeOCDEKaIxnhm_HjxyVpUgTfwtWzyPcdrBfTwr0HEmuaamFUB2N6bpnTCBcT9M-UWiq5YS3YbwSazRbNOjIMcrzcsxW5t6Drhb18xHfYri9Mb_9kYcJmiEyVsEqKOLXc0jxFKEdtRxqlkiR1OMhuo6osTPsyezDSFhws1ffUt3x4epjPsNm7HPSz_tnw_CO8jBFRLXKFd2F9flu5T4iI5novmB2Bm-e29P8yKCBf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IFpABArsoZXgYDX78Np7QBUlhJYmFSJU6gWZfRlFipxQx6r61_h1nfUjpJfeerWt9Wrm29lvducBsIt6dSxmceQEVZFwQkRKOxUZpvrC5UIKGvKdx6fy6Ex8O4_PN-BflwsTwio7m1gbaje34Yx8n_fRjkolFN_P27CI74PhweJvFDpIhZvWrp1GA5ETf3WJ7lv58XiAut5jbPjl5-ejqO0wEFkE8jLKtaSe55anllvBvYyZ1BpfKSqcMYqLNJc-NqkPfmSKk89tkuTGeie0s4bjuPfgfhKquIcs9eHX1flOqLeZ0n6TEsi56ocbaSpCG23Fb2yCda-AGwT3YVUs9NWlns3W9rrhU3jSklTyqUHVFmz4Yhser5Uu3Iat1iiU5H1bufrDM_j1o5r56BA3RkcGkxFBQkxC-atpUc2rkgS6WaF7T3ThyHhEQh-2WUkmdSsexAeZFmTcBjiSCf4ZJz8tSRcc-BzO7kS6L2CzmBf-JRBmaGqk1Ql688Jxb5AoxmiZKXVUCct7sNsJNFs0ZToydG-C3LM1uffgMAh79UmorV0_mF_8ydqlmiEn1dJpJVnqhKN5iiSOukRZreM49TjITqeqrF3wZfYfnj3YW6nvtrm8un2Yd_AA8Z2Njk9PXsMjhlSqCRLegc3lReXfIBVamrc15gj8vmuQXwNdvB35 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bcig9tOWl8qoslUrlYITjR-IjlCJUsQixXQkOKPIr0opVQGQjRH89402CFg7Qa-LEoxmP5xt5_A3ADtrVJzKR1AumqfBCUG28pjbR-8IXQgkW7zv3z9TJUPy5lJdz8L27CzNzfs8xHY_HuEzE3tOaz8OCkgi4e7AwPDs_uIpt4zALp7gPp83Nu9dfvIg1U0r-FzjyQ13emccHMx7PhJTjz3DUCdNUktzs1RO75_694ml8R9ov8KmFlOSgWQNLMBfKZfg4QzS4DEutC1fkZ8szvbsC1xf1ONBDDGOeHA1OCcJXEsmqRmV9W1ckgsMak3FiSk_6pyR2TRtXZDBtnIPWJKOS9NtyRDLAmVEHo4p0pXyrMDz-_ffXCW27LVCHTj2hhVEs8MLxzHEneFAyUcbgK82Et1ZzkRUqSJuFmFNnaMjCpWlhXfDCeGf5GvTK2zJ8BZJYllnlTIq5t_A8WIR1EvdRxjzTwvF12Onskt81pBo5JiNRhfmMCtfhMNrseUhkwp4-QJXnrWPliCCN8karJPPCsyJDyMV8qp0xUmYBf7LVWTxv3bPK-T4GZZQtzvHjeRW8JcvGf47bhMUEYU9T0LsFvcl9HbYRtkzst3bZPgHfs-gA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rule-Based+DSL+for+Continuous+Features+and+ML+Models+Selection+in+Multiple+Sclerosis+Research&rft.jtitle=Applied+sciences&rft.au=Zhao%2C+Wanqi&rft.au=Wendt%2C+Karsten&rft.au=Ziemssen%2C+Tjalf&rft.au=A%C3%9Fmann%2C+Uwe&rft.date=2024-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=14&rft.spage=6193&rft_id=info:doi/10.3390%2Fapp14146193&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14146193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |