Rule-Based DSL for Continuous Features and ML Models Selection in Multiple Sclerosis Research

Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment optimization. However, the complexity of developing and deploying ML models poses challenges for domain experts without extensive programmin...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 14; p. 6193
Main Authors Zhao, Wanqi, Wendt, Karsten, Ziemssen, Tjalf, Aßmann, Uwe
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14146193

Cover

Abstract Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment optimization. However, the complexity of developing and deploying ML models poses challenges for domain experts without extensive programming knowledge. We propose a novel domain-specific language (DSL) that simplifies the process of selecting features, choosing appropriate ML models, and defining training rules for MS research. The DSL offers three approaches: AutoML for automated model and feature selection, manual selection for expert-guided customization, and a customizable mode allowing for fine-grained control. The DSL was implemented and evaluated using real-world MS data. By establishing task-specific DSLs, we have successfully identified workflows that enhance the filtering of ML models and features. This method is crucial in determining the T2-related MRI features that accurately predict both process speed time and walk speed. We assess the effectiveness of using our DSL to enhance ML models and identify feature importance within our private data, aiming to reveal the relationships between features. The proposed DSL empowers domain experts to leverage ML in MS research without extensive programming knowledge. By integrating MLOps practices, it streamlines the ML lifecycle, promoting trustworthy AI through explainability, interpretability, and collaboration. This work demonstrates the potential of DSLs in democratizing ML in MS and paves the way for future research in adaptive and evolving DSL architectures.
AbstractList Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment optimization. However, the complexity of developing and deploying ML models poses challenges for domain experts without extensive programming knowledge. We propose a novel domain-specific language (DSL) that simplifies the process of selecting features, choosing appropriate ML models, and defining training rules for MS research. The DSL offers three approaches: AutoML for automated model and feature selection, manual selection for expert-guided customization, and a customizable mode allowing for fine-grained control. The DSL was implemented and evaluated using real-world MS data. By establishing task-specific DSLs, we have successfully identified workflows that enhance the filtering of ML models and features. This method is crucial in determining the T2-related MRI features that accurately predict both process speed time and walk speed. We assess the effectiveness of using our DSL to enhance ML models and identify feature importance within our private data, aiming to reveal the relationships between features. The proposed DSL empowers domain experts to leverage ML in MS research without extensive programming knowledge. By integrating MLOps practices, it streamlines the ML lifecycle, promoting trustworthy AI through explainability, interpretability, and collaboration. This work demonstrates the potential of DSLs in democratizing ML in MS and paves the way for future research in adaptive and evolving DSL architectures.
Author Ziemssen, Tjalf
Wendt, Karsten
Aßmann, Uwe
Zhao, Wanqi
Author_xml – sequence: 1
  givenname: Wanqi
  orcidid: 0000-0001-5357-2748
  surname: Zhao
  fullname: Zhao, Wanqi
– sequence: 2
  givenname: Karsten
  orcidid: 0000-0001-9373-6751
  surname: Wendt
  fullname: Wendt, Karsten
– sequence: 3
  givenname: Tjalf
  orcidid: 0000-0001-8799-8202
  surname: Ziemssen
  fullname: Ziemssen, Tjalf
– sequence: 4
  givenname: Uwe
  orcidid: 0000-0002-3513-6448
  surname: Aßmann
  fullname: Aßmann, Uwe
BookMark eNp9kMFu1DAQhi3USpS2J17AEkcI2LHj2EfYUqi0q0rdckTWxB5DVsYOdiLUtyd0EeqJuczI_vRp5n9BTlJOSMhLzt4KYdg7mCYuuVTciGfkrGW9aoTk_cmT-Tm5rPXA1jJcaM7OyNe7JWLzASp6erXf0pAL3eQ0j2nJS6XXCPNSsFJInu62dJc9xkr3GNHNY050THS3xHmcItK9i1hyHSu9w4pQ3PcLchogVrz828_Jl-uP95vPzfb2083m_bZxom3nJoDiKIIT2gknBaquVQDrl-HSD4MRUgeF3aCRMam09CG4vg-DQy_Bu0Gck5uj12c42KmMP6A82AyjfXzI5ZuFMo_rflaLDpQHo1rtpedBK2G4740D6DqNYnW9ObqWNMHDL4jxn5Az-ydp-yTpFX91xKeSfy5YZ3vIS0nrtVYwLXtl5CP1-ki5NaBaMPzX-RtOC4za
Cites_doi 10.1371/journal.pone.0021138
10.1016/j.autrev.2023.103358
10.1111/ene.13819
10.3389/fnins.2020.582046
10.1016/j.cola.2023.101209
10.1371/journal.pone.0174866
10.1177/1352458517690823
10.1016/j.msard.2021.102989
10.1007/978-3-030-05318-5
10.1007/978-3-319-31204-0_9
10.1109/ACCESS.2023.3262138
10.1007/s10994-020-05872-w
10.3389/fimmu.2021.669811
10.3390/healthcare10030541
10.3390/diagnostics12071771
10.1002/ett.3454
10.1038/s41746-020-00338-8
10.1016/j.neuroimage.2011.12.070
10.1016/j.nicl.2014.11.021
10.1145/1118890.1118892
10.1186/1471-2377-11-67
10.1016/j.jbi.2018.07.004
10.1145/3550355.3552401
10.3390/life11020122
10.1161/CIRCOUTCOMES.120.006556
10.1001/jama.2020.26858
10.1016/S1474-4422(21)00095-8
10.3389/fneur.2020.00135
10.1038/srep41473
10.1371/journal.pone.0230219
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app14146193
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_835a6da9628d4d1f86391d79caa558e3
10.3390/app14146193
10_3390_app14146193
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c322t-fa61e3fc38c3c43e6526aa322914dbb9348f6e5b8e004684dffc77fbced4adcb3
IEDL.DBID UNPAY
ISSN 2076-3417
IngestDate Tue Oct 14 15:14:53 EDT 2025
Sun Sep 07 11:17:53 EDT 2025
Mon Jun 30 17:25:54 EDT 2025
Thu Oct 16 04:32:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-fa61e3fc38c3c43e6526aa322914dbb9348f6e5b8e004684dffc77fbced4adcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5357-2748
0000-0002-3513-6448
0000-0001-9373-6751
0000-0001-8799-8202
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/app14146193
PQID 3084769493
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_835a6da9628d4d1f86391d79caa558e3
unpaywall_primary_10_3390_app14146193
proquest_journals_3084769493
crossref_primary_10_3390_app14146193
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Filippi (ref_11) 2018; 4
ref_36
ref_34
ref_32
Kuwajima (ref_37) 2020; 109
Pedregosa (ref_28) 2011; 12
Bendfeldt (ref_30) 2012; 60
Kreuzberger (ref_8) 2023; 11
ref_19
ref_17
ref_16
Cabot (ref_35) 2023; 76
Feng (ref_13) 2013; 14
Zhao (ref_20) 2020; 3
Bejarano (ref_18) 2011; 11
Dobson (ref_12) 2018; 26
Lopez (ref_33) 2018; 85
Voigt (ref_2) 2023; 22
ref_25
Lim (ref_7) 2017; 7
Wattjes (ref_3) 2021; 20
Motl (ref_14) 2017; 23
Wottschel (ref_21) 2015; 7
Peng (ref_6) 2021; 53
ref_22
ref_1
Mernik (ref_24) 2005; 37
Stevens (ref_23) 2020; 13
ref_29
Ghasemi (ref_10) 2016; 19
ref_27
ref_26
Boesen (ref_15) 2018; 25
McGinley (ref_9) 2021; 325 8
ref_5
Haider (ref_31) 2018; 29
ref_4
References_xml – ident: ref_34
  doi: 10.1371/journal.pone.0021138
– volume: 22
  start-page: 103358
  year: 2023
  ident: ref_2
  article-title: Building a monitoring matrix for the management of multiple sclerosis
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2023.103358
– volume: 26
  start-page: 27
  year: 2018
  ident: ref_12
  article-title: Multiple sclerosis—A review
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.13819
– ident: ref_5
  doi: 10.3389/fnins.2020.582046
– volume: 76
  start-page: 101209
  year: 2023
  ident: ref_35
  article-title: A domain-specific language for describing machine learning datasets
  publication-title: J. Comput. Lang.
  doi: 10.1016/j.cola.2023.101209
– volume: 25
  start-page: 1653
  year: 2018
  ident: ref_15
  article-title: Can we trust self-reported walking distance when determining EDSS scores in patients with multiple sclerosis? The Danish MS hospitals rehabilitation study
  publication-title: Mult. Scler. J.
– ident: ref_26
– ident: ref_32
  doi: 10.1371/journal.pone.0174866
– volume: 23
  start-page: 704
  year: 2017
  ident: ref_14
  article-title: Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis
  publication-title: Mult. Scler.
  doi: 10.1177/1352458517690823
– volume: 53
  start-page: 102989
  year: 2021
  ident: ref_6
  article-title: Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: A machine learning approach
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2021.102989
– volume: 4
  start-page: 1
  year: 2018
  ident: ref_11
  article-title: Multiple sclerosis
  publication-title: Nat. Rev. Dis. Prim.
– ident: ref_25
  doi: 10.1007/978-3-030-05318-5
– ident: ref_29
  doi: 10.1007/978-3-319-31204-0_9
– volume: 11
  start-page: 31866
  year: 2023
  ident: ref_8
  article-title: Machine Learning Operations (MLOps): Overview, Definition, and Architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3262138
– volume: 109
  start-page: 1103
  year: 2020
  ident: ref_37
  article-title: Engineering problems in machine learning systems
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-020-05872-w
– ident: ref_16
  doi: 10.3389/fimmu.2021.669811
– ident: ref_1
  doi: 10.3390/healthcare10030541
– ident: ref_19
  doi: 10.3390/diagnostics12071771
– volume: 29
  start-page: e3454
  year: 2018
  ident: ref_31
  article-title: Utilizing a 5G spectrum for health care to detect the tremors and breathing activity for multiple sclerosis
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3454
– ident: ref_27
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_28
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 135
  year: 2020
  ident: ref_20
  article-title: Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00338-8
– volume: 60
  start-page: 400
  year: 2012
  ident: ref_30
  article-title: Multivariate pattern classification of gray matter pathology in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.070
– volume: 7
  start-page: 281
  year: 2015
  ident: ref_21
  article-title: Predicting outcome in clinically isolated syndrome using machine learning
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.11.021
– volume: 37
  start-page: 316
  year: 2005
  ident: ref_24
  article-title: When and How to Develop Domain-Specific Languages
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1118890.1118892
– volume: 11
  start-page: 1
  year: 2011
  ident: ref_18
  article-title: Computational classifiers for predicting the short-term course of Multiple sclerosis
  publication-title: BMC Neurol.
  doi: 10.1186/1471-2377-11-67
– volume: 19
  start-page: 1
  year: 2016
  ident: ref_10
  article-title: Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy
  publication-title: Cell J. (Yakhteh)
– volume: 14
  start-page: 58
  year: 2013
  ident: ref_13
  article-title: Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis
  publication-title: BMC Neurol.
– volume: 85
  start-page: 30
  year: 2018
  ident: ref_33
  article-title: An unsupervised machine learning method for discovering patient clusters based on genetic signatures
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.004
– ident: ref_36
  doi: 10.1145/3550355.3552401
– ident: ref_17
  doi: 10.3390/life11020122
– volume: 13
  start-page: e006556
  year: 2020
  ident: ref_23
  article-title: Recommendations for reporting machine learning analyses in clinical research
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.120.006556
– volume: 325 8
  start-page: 765
  year: 2021
  ident: ref_9
  article-title: Diagnosis and Treatment of Multiple Sclerosis: A Review
  publication-title: JAMA
  doi: 10.1001/jama.2020.26858
– volume: 20
  start-page: 653
  year: 2021
  ident: ref_3
  article-title: 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(21)00095-8
– ident: ref_4
  doi: 10.3389/fneur.2020.00135
– volume: 7
  start-page: 41473
  year: 2017
  ident: ref_7
  article-title: Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression
  publication-title: Sci. Rep.
  doi: 10.1038/srep41473
– ident: ref_22
  doi: 10.1371/journal.pone.0230219
SSID ssj0000913810
Score 2.2979121
Snippet Machine learning (ML) has emerged as a powerful tool in multiple sclerosis (MS) research, enabling more accurate diagnosis, prognosis prediction, and treatment...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6193
SubjectTerms Accuracy
Artificial intelligence
Collaboration
Decision making
Decision trees
domain-specific language (DSL)
Feature selection
machine learning (ML)
Medical research
Multiple sclerosis
multiple sclerosis (MS)
Nervous system
R&D
Regression analysis
Research & development
Subject specialists
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iRT2Im4rTKTlM0ENxadI0OTp1DNk8OAe7SMmvwmDU4VbE_96XthvdRS9e20Ie72v6vo--fA-hDuBqwyiMAsuIDJhlLJDKykCHsstsyjgj_rzz6IUPJux5Gk1ro758T1hpD1wm7g4YguJWSR4KyyxJBZRUYmNplIoi4Qqfz66QNTFVfIMl8dZV5YE8Crre_w8mzA-xlnSrBBVO_Vv0ci_PFur7S83ntUrTP0KHFUXE92VoDbTjsiY6qBkHNlGj2pJLfFP5Rt8eo_fXfO6CHpQlix_HQwx0FHvzqVmWg7zHnuzlIK6xyiweDbGfgjZf4nExCAfQwbMMj6r2QjyGlSH42RKvW_NO0KT_9PYwCKrpCYGBTboKUsWJo6mhwlDDqONRyJWCW5Iwq7WkTKTcRVo4r5EFAJOaOE61cZYpazQ9RbvZR-bOEA41EZobFYOWZpY6DTQtgu8iIZZIZmgLddYJTRalSUYC4sLnPanlvYV6PtmbR7yzdXEB8E4qvJO_8G6h9hqqpNpuy4R2ochCbH6N6w18v8Vy_h-xXKD9EDhO2b3bRrurz9xdAkdZ6avidfwBGn7jIQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6N7gF4QGyAKAzkhyHBg0UdO679gBCFTRNaK7QyaS8osn3OVKlKy9po2r_nnCale9lrEjnWne_8nX33HcAx6RWzPMs5KmG5QqW4dWi5z-xAYam0EqneeTzRZ5fq51V-tQeTrhYmpVV2PrFx1LgI6Yz8sxyQH9VWWfl1-ZenrlHpdrVroeHa1gr4paEYewT7WWLG6sH-6GTy62J76pJYMI0YbAr1JMX76Z5YqNTc2sp7W1PD4H8Pdj6uq6W7u3Xz-c4OdPocnrXQkX3b6PoA9mJ1CE93CAUP4aA11RX72PJJf3oBfy7qeeQj2q6Q_ZieM4KpLJFSzaqawn6WQGBNQTdzFbLxOUvd0eYrNm0a5JDW2Kxi4zbtkE3pzzT52Yp1KXsv4fL05Pf3M952VeCBjHfNS6dFlGWQJsigZNR5pp2jV1Yo9N5KZUodc29iip0NKawMw2HpQ0TlMHj5CnrVooqvgWVeGK-DG1KMrVBGT_AtJ38pBAqrguzDcSfQYrkhzygo6EhyL3bk3odREvb2k8R43TxY3FwXrQEVhBSdRmd1ZlChKA1BK4FDG5zLcxNpkKNOVUVrhqvi_6Lpw4et-h6ay5uHh3kLTzJCNZt83SPorW_q-I5Qydq_b5faP5s24Vg
  priority: 102
  providerName: ProQuest
Title Rule-Based DSL for Continuous Features and ML Models Selection in Multiple Sclerosis Research
URI https://www.proquest.com/docview/3084769493
https://doi.org/10.3390/app14146193
https://doaj.org/article/835a6da9628d4d1f86391d79caa558e3
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t7QPwwNgAMdgqSwwJHjzNsePYj-u2MqG1mlYqjQcU-VekiiqbSCMEfz3nJpm6PQxeEyc-3fl838nn7wAO0K4-SZOUesE0FV4Iqo3X1Cb6SPhCSMHifefxRJ7PxJfr9HoD3nd3YdbO7zmm4_EYl4nYe1rzTejLFAF3D_qzyeXxt9g2DrNwivtw1ty8e_jFvVizouS_hyOf1OWt-f3LLBZrIWW0BaedME0lyY_DemkP3Z8HPI3_kPYFPG8hJTlu1sA2bIRyB56tEQ3uwHbrwhX52PJMf3oJ36_qRaBDDGOenE4vCMJXEsmq5mV9U1ckgsMak3FiSk_GFyR2TVtUZLpqnIPWJPOSjNtyRDLFmVEH84p0pXyvYDY6-3pyTttuC9ShUy9pYSQLvHBcOe4EDzJNpDH4SjPhrdVcqEKG1KoQc2qFhixclhXWBS-Md5a_hl55U4Y3QBLLlJXOZJh7C8-DRViX4j7KmGdaOL4LB51d8tuGVCPHZCSqMF9T4S4Mo83uhkQm7NUDVHneOlaOCNJIb7RMlBeeFQohF_OZdsakqQr4k73O4nnrnlXOjzAoo2xxjg93q-AxWd7-57h38DRB2NMU9O5Bb_mzDvsIW5Z2AJtq9HkA_eHZ5PJqsEr-B-1S_gsa1ut1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeKqCtmpbSPYDUHqxmveuN94CqhodCSaKKgMSlMvtyFSlyUhwL8ef62zrrrEO4cONqW2t7Znb2m92Z-QD2Ua82TuIkspzKiFvOI6msjHQs29zmXHDq650HQ9G74j-vk-s1-NfUwvi0ysYn1o7aTo3fI__G2uhHheSSfZ_9jTxrlD9dbSg0VKBWsId1i7FQ2HHu7u8whCsPz45R3wdxfHpyedSLAstAZNCY51GuBHUsNyw1zHDmRBILpfCWpNxqLRlPc-ESnTofS6b4A7npdHJtnOXKGs1w3BewwRmXGPxtdE-Gvy6Wuzy-62ZK24vCQMZk259LU-7JtCV7tBTWjAGPYO5mVczU_Z2aTFZWvNMteB2gKvmxsK1tWHPFDrxaaWC4A9vBNZTkS-hf_fUN_L6oJi7q4vJoyfGoTxAWE98Ea1xU06okHnRWGOQTVVgy6BPPxjYpyagm5EErIeOCDEKaIxnhm_HjxyVpUgTfwtWzyPcdrBfTwr0HEmuaamFUB2N6bpnTCBcT9M-UWiq5YS3YbwSazRbNOjIMcrzcsxW5t6Drhb18xHfYri9Mb_9kYcJmiEyVsEqKOLXc0jxFKEdtRxqlkiR1OMhuo6osTPsyezDSFhws1ffUt3x4epjPsNm7HPSz_tnw_CO8jBFRLXKFd2F9flu5T4iI5novmB2Bm-e29P8yKCBf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IFpABArsoZXgYDX78Np7QBUlhJYmFSJU6gWZfRlFipxQx6r61_h1nfUjpJfeerWt9Wrm29lvducBsIt6dSxmceQEVZFwQkRKOxUZpvrC5UIKGvKdx6fy6Ex8O4_PN-BflwsTwio7m1gbaje34Yx8n_fRjkolFN_P27CI74PhweJvFDpIhZvWrp1GA5ETf3WJ7lv58XiAut5jbPjl5-ejqO0wEFkE8jLKtaSe55anllvBvYyZ1BpfKSqcMYqLNJc-NqkPfmSKk89tkuTGeie0s4bjuPfgfhKquIcs9eHX1flOqLeZ0n6TEsi56ocbaSpCG23Fb2yCda-AGwT3YVUs9NWlns3W9rrhU3jSklTyqUHVFmz4Yhser5Uu3Iat1iiU5H1bufrDM_j1o5r56BA3RkcGkxFBQkxC-atpUc2rkgS6WaF7T3ThyHhEQh-2WUkmdSsexAeZFmTcBjiSCf4ZJz8tSRcc-BzO7kS6L2CzmBf-JRBmaGqk1Ql688Jxb5AoxmiZKXVUCct7sNsJNFs0ZToydG-C3LM1uffgMAh79UmorV0_mF_8ydqlmiEn1dJpJVnqhKN5iiSOukRZreM49TjITqeqrF3wZfYfnj3YW6nvtrm8un2Yd_AA8Z2Njk9PXsMjhlSqCRLegc3lReXfIBVamrc15gj8vmuQXwNdvB35
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bcig9tOWl8qoslUrlYITjR-IjlCJUsQixXQkOKPIr0opVQGQjRH89402CFg7Qa-LEoxmP5xt5_A3ADtrVJzKR1AumqfBCUG28pjbR-8IXQgkW7zv3z9TJUPy5lJdz8L27CzNzfs8xHY_HuEzE3tOaz8OCkgi4e7AwPDs_uIpt4zALp7gPp83Nu9dfvIg1U0r-FzjyQ13emccHMx7PhJTjz3DUCdNUktzs1RO75_694ml8R9ov8KmFlOSgWQNLMBfKZfg4QzS4DEutC1fkZ8szvbsC1xf1ONBDDGOeHA1OCcJXEsmqRmV9W1ckgsMak3FiSk_6pyR2TRtXZDBtnIPWJKOS9NtyRDLAmVEHo4p0pXyrMDz-_ffXCW27LVCHTj2hhVEs8MLxzHEneFAyUcbgK82Et1ZzkRUqSJuFmFNnaMjCpWlhXfDCeGf5GvTK2zJ8BZJYllnlTIq5t_A8WIR1EvdRxjzTwvF12Onskt81pBo5JiNRhfmMCtfhMNrseUhkwp4-QJXnrWPliCCN8karJPPCsyJDyMV8qp0xUmYBf7LVWTxv3bPK-T4GZZQtzvHjeRW8JcvGf47bhMUEYU9T0LsFvcl9HbYRtkzst3bZPgHfs-gA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rule-Based+DSL+for+Continuous+Features+and+ML+Models+Selection+in+Multiple+Sclerosis+Research&rft.jtitle=Applied+sciences&rft.au=Zhao%2C+Wanqi&rft.au=Wendt%2C+Karsten&rft.au=Ziemssen%2C+Tjalf&rft.au=A%C3%9Fmann%2C+Uwe&rft.date=2024-07-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=14&rft.spage=6193&rft_id=info:doi/10.3390%2Fapp14146193&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app14146193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon