BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors
Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-base...
Saved in:
| Published in | Electronics (Basel) Vol. 12; no. 2; p. 339 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics12020339 |
Cover
| Abstract | Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness. |
|---|---|
| AbstractList | Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness. |
| Author | Damaševičius, Robertas Adomavičienė, Aušra Griškevičius, Julius Maskeliūnas, Rytis Blažauskas, Tomas Canbulut, Cenker |
| Author_xml | – sequence: 1 givenname: Rytis orcidid: 0000-0002-2809-2213 surname: Maskeliūnas fullname: Maskeliūnas, Rytis – sequence: 2 givenname: Robertas orcidid: 0000-0001-9990-1084 surname: Damaševičius fullname: Damaševičius, Robertas – sequence: 3 givenname: Tomas orcidid: 0000-0003-2858-328X surname: Blažauskas fullname: Blažauskas, Tomas – sequence: 4 givenname: Cenker surname: Canbulut fullname: Canbulut, Cenker – sequence: 5 givenname: Aušra orcidid: 0000-0002-5946-6265 surname: Adomavičienė fullname: Adomavičienė, Aušra – sequence: 6 givenname: Julius orcidid: 0000-0003-1184-1641 surname: Griškevičius fullname: Griškevičius, Julius |
| BookMark | eNqNUE1P40AMHa1A2i70F-xlpD1nmY-kyeytsHxJIBAFrpE7deigdKY7ngjyB_jdBMphhZDAF1u23_N7_sG2fPDI2E8pfmttxB62aFMM3lmSSigxNL-xkRKlyYwyauu_-jsbE92LIYzUlRYj9rTvwgrs7dUfPuW3LqYOWn6F0LrUZ_tAuOCznhKueBMiv4xoHSE_6Vbg-WWg1EXk4Bf8PCQXPJ96aHtyxJ0fWJYwdwMRvI4OHzG-gInfkPN3_C-u05LP0FOItMu2G2gJx295h90cHV4fnGRnF8enB9OzzGqlUoaT0oCqbCmEBNXYoijsotG51XPd5HJRVRaaqpBzRBATK5tSaZBFLuYGc2lQ77B8w9v5NfQP0Lb1OroVxL6Won55Z_3BOwfYrw1sHcO_DinV96GLg1eqVTkp1SCnLIYts9myMRBFbGr7Zj5FcO0nF_Q77Fd0PQNCbKCs |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3522105 crossref_primary_10_1016_j_iswa_2023_200262 crossref_primary_10_3390_electronics12153244 crossref_primary_10_3390_technologies11020036 crossref_primary_10_3390_s25051586 crossref_primary_10_1007_s12541_024_01102_8 crossref_primary_10_1016_j_optlastec_2025_112439 crossref_primary_10_3390_s23198058 crossref_primary_10_2147_POR_S396198 crossref_primary_10_1109_LES_2023_3289810 crossref_primary_10_3389_fnins_2024_1353257 crossref_primary_10_3390_s24154894 crossref_primary_10_3390_s24217049 crossref_primary_10_3390_app15020906 crossref_primary_10_3390_electronics12051134 crossref_primary_10_1016_j_jer_2025_01_007 crossref_primary_10_1038_s41598_025_93553_w crossref_primary_10_3390_s24206585 crossref_primary_10_1371_journal_pone_0315130 crossref_primary_10_3390_ani14121774 crossref_primary_10_3390_s23031680 |
| Cites_doi | 10.7717/peerj-cs.442 10.3390/jcm10245728 10.1016/j.mser.2019.100523 10.3390/info10010003 10.1155/2020/8817419 10.1080/10833196.2022.2139060 10.3390/electronics11030334 10.1186/s13673-020-00256-4 10.1109/JTEHM.2018.2829208 10.1016/j.jjcc.2021.01.010 10.1080/09638288.2019.1666431 10.3390/app112411600 10.1007/s13042-018-0887-5 10.3390/app10186497 10.1016/j.rehab.2021.101609 10.1017/S0033291719000151 10.1007/978-3-319-46484-8_29 10.1371/journal.pone.0225150 10.1016/j.medntd.2021.100110 10.1016/j.ijmedinf.2018.11.001 10.1016/j.bspc.2021.103197 10.3390/s21175926 10.1016/S1474-4422(19)30415-6 10.1177/15501477211024846 10.1109/ACCESS.2020.3045935 10.3390/ijerph17010113 10.3390/electronics9091357 10.3390/app11136073 10.4137/BII.S31559 10.1080/09638280600756257 10.2340/16501977-2763 10.1136/annrheumdis-2020-218986 10.1186/s12984-015-0006-8 10.1186/s12984-021-00922-3 10.1080/10803548.2015.1017940 10.1002/VIW.20200077 10.1109/ACCESS.2019.2953228 10.1007/s11370-020-00319-6 10.1186/s12938-020-00762-7 10.3390/mti4020014 10.3390/electronics10232946 10.1109/CVPR46437.2021.01584 10.1155/2018/3846892 10.2196/rehab.7511 10.1093/ptj/pzaa025 10.3390/s18082439 10.1016/j.medengphy.2018.10.001 10.1136/bjsports-2017-098983 10.1016/j.imu.2018.06.002 10.1080/09593985.2019.1655822 10.1007/978-3-319-40238-3_39 10.1007/s11063-022-10744-6 10.1007/s12008-020-00728-y 10.1111/j.1369-7625.2011.00668.x 10.3390/s21123945 10.1111/papr.12846 10.1038/s41746-021-00514-4 10.1109/JSEN.2021.3079983 10.3390/app8071161 10.1109/JBHI.2016.2558540 10.3390/s22134987 10.1016/j.pcad.2019.01.004 10.3390/s22020573 10.3389/fnbot.2021.753924 10.3390/jpm12050829 10.1109/TNSRE.2019.2923060 10.1016/j.gaitpost.2019.03.008 10.1109/COM-IT-CON54601.2022.9850512 10.2139/ssrn.3461916 10.1016/j.eswa.2018.06.036 10.1016/j.techfore.2021.120636 10.1007/978-3-030-58520-4_45 10.1016/j.jstrokecerebrovasdis.2018.05.013 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/electronics12020339 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physical Therapy |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics12020339 10_3390_electronics12020339 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 03:39:22 EDT 2025 Mon Jul 14 09:45:34 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Thu Oct 16 04:41:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2809-2213 0000-0001-9990-1084 0000-0003-2858-328X 0000-0002-5946-6265 0000-0003-1184-1641 |
| OpenAccessLink | https://www.proquest.com/docview/2767200175?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2767200175 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics12020339 proquest_journals_2767200175 crossref_citationtrail_10_3390_electronics12020339 crossref_primary_10_3390_electronics12020339 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Peretti (ref_10) 2017; 4 Cranen (ref_67) 2011; 15 ref_58 ref_57 ref_56 Sarsfield (ref_37) 2019; 121 ref_55 Uccheddu (ref_11) 2021; 15 ref_54 Wang (ref_36) 2019; 7 ref_19 ref_17 Sarfo (ref_63) 2018; 27 Nott (ref_76) 2019; 43 Xiao (ref_38) 2022; 13 Roth (ref_62) 2021; 166 Milosevic (ref_14) 2020; 19 Petit (ref_61) 2015; 21 Su (ref_27) 2021; 21 Straczkiewicz (ref_21) 2021; 4 Embrechts (ref_5) 2018; 14 ref_24 ref_23 Lou (ref_77) 2020; 140 ref_64 Kikuchi (ref_6) 2021; 78 ref_29 Vanagas (ref_12) 2018; 2018 ref_28 Li (ref_16) 2021; 17 Capecci (ref_35) 2019; 27 He (ref_41) 2020; 2020 Kiper (ref_75) 2020; 52 Ryselis (ref_25) 2020; 10 Zhou (ref_52) 2018; 112 Junata (ref_40) 2021; 18 Taylor (ref_74) 2019; 62 Leightley (ref_44) 2017; 21 Valdez (ref_46) 2020; 13 Meegahapola (ref_20) 2021; 9 Schepers (ref_60) 2007; 29 ref_33 ref_32 ref_31 Moonen (ref_66) 2020; 1 ref_30 ref_73 Tagliaferri (ref_70) 2019; 20 Luo (ref_51) 2016; 8 ref_39 Camalan (ref_26) 2018; 25 Melin (ref_71) 2019; 37 Kulikajevas (ref_15) 2021; 7 Shatte (ref_50) 2019; 49 Clark (ref_22) 2015; 12 Smith (ref_48) 2018; 62 Smith (ref_68) 2018; 53 Okuyama (ref_13) 2021; 100 Ayar (ref_49) 2018; 13 ref_47 Ritschl (ref_72) 2020; 80 ref_45 ref_43 Srivastava (ref_53) 2014; 15 ref_1 ref_3 Wang (ref_42) 2021; 15 ref_2 Stinear (ref_59) 2020; 19 Pournajaf (ref_7) 2022; 65 Bavan (ref_69) 2019; 70 ref_9 ref_8 Boukhennoufa (ref_18) 2022; 71 Saini (ref_34) 2018; 10 Lee (ref_65) 2018; 6 ref_4 |
| References_xml | – volume: 7 start-page: 1 year: 2021 ident: ref_15 article-title: Detection of sitting posture using hierarchical image composition and deep learning publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.442 – ident: ref_9 doi: 10.3390/jcm10245728 – volume: 140 start-page: 100523 year: 2020 ident: ref_77 article-title: Reviews of wearable healthcare systems: Materials, devices and system integration publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2019.100523 – ident: ref_17 doi: 10.3390/info10010003 – volume: 2020 start-page: 8817419 year: 2020 ident: ref_41 article-title: A New Kinect-Based Posture Recognition Method in Physical Sports Training Based on Urban Data publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2020/8817419 – ident: ref_73 doi: 10.1080/10833196.2022.2139060 – ident: ref_29 doi: 10.3390/electronics11030334 – volume: 10 start-page: 51 year: 2020 ident: ref_25 article-title: Multiple Kinect based system to monitor and analyze key performance indicators of physical training publication-title: Hum.-Centric Comput. Inf. Sci. doi: 10.1186/s13673-020-00256-4 – volume: 6 start-page: 1 year: 2018 ident: ref_65 article-title: Enabling Stroke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2018.2829208 – volume: 78 start-page: 66 year: 2021 ident: ref_6 article-title: Feasibility of home-based cardiac rehabilitation using an integrated telerehabilitation platform in elderly patients with heart failure: A pilot study publication-title: J. Cardiol. doi: 10.1016/j.jjcc.2021.01.010 – volume: 43 start-page: 1410 year: 2019 ident: ref_76 article-title: Stroke self-management and the role of self-efficacy publication-title: Disabil. Rehabil. doi: 10.1080/09638288.2019.1666431 – ident: ref_30 doi: 10.3390/app112411600 – volume: 10 start-page: 2529 year: 2018 ident: ref_34 article-title: Kinect sensor-based interaction monitoring system using the BLSTM neural network in healthcare publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-0887-5 – ident: ref_56 doi: 10.3390/app10186497 – volume: 65 start-page: 101609 year: 2022 ident: ref_7 article-title: Effect of balance training using virtual reality-based serious games in individuals with total knee replacement: A randomized controlled trial publication-title: Ann. Phys. Rehabil. Med. doi: 10.1016/j.rehab.2021.101609 – volume: 49 start-page: 1426 year: 2019 ident: ref_50 article-title: Machine learning in mental health: A scoping review of methods and applications publication-title: Psychol. Med. doi: 10.1017/S0033291719000151 – ident: ref_57 doi: 10.1007/978-3-319-46484-8_29 – ident: ref_64 doi: 10.1371/journal.pone.0225150 – volume: 13 start-page: 100110 year: 2022 ident: ref_38 article-title: Design of a virtual reality rehabilitation system for upper limbs that inhibits compensatory movement publication-title: Med. Nov. Technol. Devices doi: 10.1016/j.medntd.2021.100110 – volume: 121 start-page: 30 year: 2019 ident: ref_37 article-title: Clinical assessment of depth sensor based pose estimation algorithms for technology supervised rehabilitation applications publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.11.001 – volume: 14 start-page: 2 year: 2018 ident: ref_5 article-title: Combining the benefits of tele-rehabilitation and virtual reality-based balance training: A systematic review on feasibility and effectiveness publication-title: Disabil. Rehabil. Assist. Technol. – volume: 71 start-page: 103197 year: 2022 ident: ref_18 article-title: Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.103197 – ident: ref_32 doi: 10.3390/s21175926 – volume: 19 start-page: 348 year: 2020 ident: ref_59 article-title: Advances and challenges in stroke rehabilitation publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30415-6 – volume: 17 start-page: 15501477211024846 year: 2021 ident: ref_16 article-title: Sitsen: Passive sitting posture sensing based on wireless devices publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/15501477211024846 – volume: 9 start-page: 3374 year: 2021 ident: ref_20 article-title: Smartphone Sensing for the Well-Being of Young Adults: A Review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3045935 – ident: ref_58 doi: 10.3390/ijerph17010113 – ident: ref_28 doi: 10.3390/electronics9091357 – ident: ref_33 doi: 10.3390/app11136073 – volume: 8 start-page: BII.S31559 year: 2016 ident: ref_51 article-title: Big Data Application in Biomedical Research and Health Care: A Literature Review publication-title: Biomed. Inform. Insights doi: 10.4137/BII.S31559 – volume: 29 start-page: 221 year: 2007 ident: ref_60 article-title: Comparing contents of functional outcome measures in stroke rehabilitation using the International Classification of Functioning, Disability and Health publication-title: Disabil. Rehabil. doi: 10.1080/09638280600756257 – volume: 52 start-page: jrm00122 year: 2020 ident: ref_75 article-title: Functional changes in the lower extremity after non-immersive virtual reality and physiotherapy following stroke publication-title: J. Rehabil. Med. doi: 10.2340/16501977-2763 – volume: 80 start-page: 707 year: 2020 ident: ref_72 article-title: 2020 EULAR points to consider for the prevention, screening, assessment and management of non-adherence to treatment in people with rheumatic and musculoskeletal diseases for use in clinical practice publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2020-218986 – volume: 12 start-page: 15 year: 2015 ident: ref_22 article-title: Instrumenting gait assessment using the Kinect in people living with stroke: Reliability and association with balance tests publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-015-0006-8 – volume: 18 start-page: 150 year: 2021 ident: ref_40 article-title: Kinect-based rapid movement training to improve balance recovery for stroke fall prevention: A randomized controlled trial publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-021-00922-3 – volume: 21 start-page: 15 year: 2015 ident: ref_61 article-title: Low back pain, intervertebral disc and occupational diseases publication-title: Int. J. Occup. Saf. Ergon. doi: 10.1080/10803548.2015.1017940 – volume: 1 start-page: 20200077 year: 2020 ident: ref_66 article-title: Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring publication-title: View doi: 10.1002/VIW.20200077 – volume: 7 start-page: 165985 year: 2019 ident: ref_36 article-title: Feature Evaluation of Upper Limb Exercise Rehabilitation Interactive System Based on Kinect publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953228 – volume: 13 start-page: 365 year: 2020 ident: ref_46 article-title: Kinematic and dynamic design and optimization of a parallel rehabilitation robot publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-020-00319-6 – volume: 19 start-page: 25 year: 2020 ident: ref_14 article-title: Kinect and wearable inertial sensors for motor rehabilitation programs at home: State of the art and an experimental comparison publication-title: BioMed. Eng. OnLine doi: 10.1186/s12938-020-00762-7 – ident: ref_23 doi: 10.3390/mti4020014 – ident: ref_45 doi: 10.3390/electronics10232946 – ident: ref_54 doi: 10.1109/CVPR46437.2021.01584 – volume: 2018 start-page: 3846892 year: 2018 ident: ref_12 article-title: eHealth Solutions for the Integrated Healthcare publication-title: J. Healthc. Eng. doi: 10.1155/2018/3846892 – volume: 4 start-page: e7 year: 2017 ident: ref_10 article-title: Telerehabilitation: Review of the State-of-the-Art and Areas of Application publication-title: JMIR Rehabil. Assist. Technol. doi: 10.2196/rehab.7511 – volume: 100 start-page: 870 year: 2021 ident: ref_13 article-title: Depth sensor-based assessment of reachable work space for visualizing and quantifying paretic upper extremity motor function in people with stroke publication-title: Phys. Ther. doi: 10.1093/ptj/pzaa025 – ident: ref_43 doi: 10.3390/s18082439 – volume: 62 start-page: 36 year: 2018 ident: ref_48 article-title: Rapid calculation of bespoke body segment parameters using 3D infra-red scanning publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2018.10.001 – volume: 53 start-page: 907 year: 2018 ident: ref_68 article-title: Musculoskeletal pain and exercise—Challenging existing paradigms and introducing new publication-title: Br. J. Sport. Med. doi: 10.1136/bjsports-2017-098983 – volume: 15 start-page: 1929 year: 2014 ident: ref_53 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 167 year: 2018 ident: ref_49 article-title: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2018.06.002 – volume: 37 start-page: 863 year: 2019 ident: ref_71 article-title: Goal-setting in physiotherapy: Exploring a person-centered perspective publication-title: Physiother. Theory Pract. doi: 10.1080/09593985.2019.1655822 – ident: ref_3 doi: 10.1007/978-3-319-40238-3_39 – ident: ref_39 doi: 10.1007/s11063-022-10744-6 – volume: 15 start-page: 99 year: 2021 ident: ref_11 article-title: Home physiotherapy rehabilitation based on RGB-D sensors: A hybrid approach to the joints angular range of motion estimation publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-020-00728-y – volume: 15 start-page: 339 year: 2011 ident: ref_67 article-title: An exploration of chronic pain patients’ perceptions of home telerehabilitation services publication-title: Health Expect. doi: 10.1111/j.1369-7625.2011.00668.x – ident: ref_24 doi: 10.3390/s21123945 – volume: 20 start-page: 211 year: 2019 ident: ref_70 article-title: Domains of Chronic Low Back Pain and Assessing Treatment Effectiveness: A Clinical Perspective publication-title: Pain Pract. doi: 10.1111/papr.12846 – ident: ref_2 – volume: 4 start-page: 148 year: 2021 ident: ref_21 article-title: A systematic review of smartphone-based human activity recognition methods for health research publication-title: npj Digit. Med. doi: 10.1038/s41746-021-00514-4 – volume: 21 start-page: 16990 year: 2021 ident: ref_27 article-title: A Projection-Based Human Motion Recognition Algorithm Based on Depth Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3079983 – volume: 25 start-page: 253 year: 2018 ident: ref_26 article-title: Gender detection using 3d anthropometric measurements by kinect publication-title: Metrol. Meas. Syst. – ident: ref_31 doi: 10.3390/app8071161 – volume: 21 start-page: 939 year: 2017 ident: ref_44 article-title: Automated Analysis and Quantification of Human Mobility Using a Depth Sensor publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2558540 – ident: ref_55 doi: 10.3390/s22134987 – volume: 62 start-page: 140 year: 2019 ident: ref_74 article-title: Guidelines for the delivery and monitoring of high intensity interval training in clinical populations publication-title: Prog. Cardiovasc. Dis. doi: 10.1016/j.pcad.2019.01.004 – ident: ref_19 doi: 10.3390/s22020573 – volume: 15 start-page: 753924 year: 2021 ident: ref_42 article-title: Measurement Method of Human Lower Limb Joint Range of Motion through Human-Machine Interaction Based on Machine Vision publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2021.753924 – ident: ref_8 doi: 10.3390/jpm12050829 – volume: 27 start-page: 1436 year: 2019 ident: ref_35 article-title: The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2923060 – volume: 70 start-page: 211 year: 2019 ident: ref_69 article-title: Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study publication-title: Gait Posture doi: 10.1016/j.gaitpost.2019.03.008 – ident: ref_1 doi: 10.1109/COM-IT-CON54601.2022.9850512 – ident: ref_4 doi: 10.2139/ssrn.3461916 – volume: 112 start-page: 99 year: 2018 ident: ref_52 article-title: Random forest for label ranking publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.036 – volume: 166 start-page: 120636 year: 2021 ident: ref_62 article-title: The Great Reset. Restratification for lives, livelihoods, and the planet publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2021.120636 – ident: ref_47 doi: 10.1007/978-3-030-58520-4_45 – volume: 27 start-page: 2306 year: 2018 ident: ref_63 article-title: Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.013 |
| SSID | ssj0000913830 |
| Score | 2.443324 |
| Snippet | Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill.... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 339 |
| SubjectTerms | Algorithms Cameras Deep learning Effectiveness Expenditures Human motion Information technology Machine learning Medical research Mobility Motion perception Neural networks Older people Parameter identification Patients Personal computers Physical therapy Physical training Posture Rehabilitation Remote monitoring Remote sensors Response time Sensors Smartphones Stroke Telemedicine Virtual reality |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6gPIlFko1B464SewkTrhUW2hVIbWqCluVU-Q4jrpiya422SL4Af3djBOnXVUVKtxysC1HHnvejMfvAbyzYYZQtJF4KCULc65YqqKQmaBIIpUoPzc2NXB0HB-Ow8_n0blLuNWurJJC8Ul7SHNfpoz8N_cC7nFPiNSbF-XupcskBbEUhN7jNHkA6zF9-ANYHx-fjL5ZRbm-b0c1RH1970ZZpg64vYKzEuGr7ugGYz5cVnP166eaTlfczcETyPqJdlUm33eWTb6jf9_icPz_P9mExw6J4qgznaewZqpnsLHCT_gcrvYmsx9Kn51-wBGeTRb2rQmemha6sz3yfwV2jOdI0BdPLFFGbbC9F0CrArxcGFRVgUetVBD2BCg4qWiUVYZw3HfKTzW2NQz4ycybC_xCMfZsUb-A8cH-14-HzAk3ME3nQ8NMLFPFE23vtBUvdRRFuihFqEUuypCsINGqJKiXG6P8WAel5EIRlvPz1IRBasRLGFSzyrwCVBTOCF8lMqVItsgpYG856yOfF0aaQA6B9-uXaTdnK64xzSi6sYue3bHoQ3h_3WnekXr8vflWbxiZ2-F1xmUsbT2ajIbAro3lPsO9_sf2b-CR1bjv8j5bMGgWS_OWkFCTbztz_wNojwa1 priority: 102 providerName: Unpaywall |
| Title | BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors |
| URI | https://www.proquest.com/docview/2767200175 https://www.mdpi.com/2079-9292/12/2/339/pdf?version=1673259698 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFH606WHbYeu6lWX9wTvsOFFbsiN7UEayJi2DhJA1pTsZWZZpIHWyOGHs0uP-7ur5R5JDKT0KbCH09OP7nqTvA_hCNEMoO5G4JyXzYq5YqHyPGTcJfBUoJzaUGugPWldj7-etf7sDg_otDF2rrNfEYqFOZppy5GdctiTd_5H-9_kfRq5RdLpaW2ioylohOS8kxnZhj5MyVgP2Ot3BcLTOupAKZiCcUn5IWL5_tnGbyV1Ox3JkG769RW1w56tVNlf__qrpdGsL6u3D2wo7YrsM9nvYMdkBvNlSFDyAd8Oq3_G6lAv4AP87k9m90jejb9jGm8mCHozgyBT4m3XsJpZgKVuOFr_ikNQucoNFch_Jyne1MKiyBPuF3w_WKiY4yWwt2zLf2K3sm3IsLiLghZkv7_CXJcqzRf4Rxr3u9Y8rVrkvMG0n-ZKZlgwVDzQdTCueat_3dZIKT4tYpJ4NZaBVavFabIxyWtpNJRfKAjInDo3nhkYcQiObZeYToLKcRDgqkKGlo0lsWXchPO87PDHSuLIJvO7wSFdtJoeMaWQpCkUpeiJKTfi6_mleKnM8__lxHcmomqZ5tBlUTWDr6L6kus_PV3cEr8mXvszVHENjuViZE4telvEp7Aa9y9NqYNpS_6FrS-PBsP37EceX9h8 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9lA4UCggAqXMAW6sau_aWRupqpo2VUqbKApp1Zu7Xq9FpOCEOFHVP8DP4rcx648kB1Rx6d07Wnlmd-fN7L4H8MnCDKFoIXFPSubFXLFQ-R4zbhL4KlBObGxpoNtrdq68bzf-zQb8qd_C2GuV9Z5YbNTJRNsa-QGXTWnv_0j_aPqLWdUo212tJTRUJa2QHBYUY9XDjgtzf0cQLj88PyV_f-b8rD086bBKZYBpCuY5M00ZKh5o24BVPNW-7-skFZ4WsUg9mnKgVUp5SWyMcpraTSUXihIPJw6N54ZGkN0nsOUJLyTwt9Vq9_qDZZXHsm4GwinpjoQInYOVuk3uctsGtDLl60fiKs_dXmRTdX-nxuO1I-_sBTyvclU8LoPrJWyYbBeerTEY7sJOv_IzDkt6glfwuzWa_FT6evAVj_F6NLMPVHBginyftejQTLCkSUfKl7Fv2TVyg0UzAa108GJmUGUJdgt9IaxZU3CUkZV1WnFsV3JRORYXH_DUTOc_8DsB88ksfw1Xj-KHN7CZTTLzFlARBhKOCmRI8DeJCeUXRPe-wxMjjSsbwOsfHulqzlaRYxwRJLJeiv7hpQZ8WQ6alkwgD3--V3syqraFPFoFcQPY0rv_Y-7dw-Y-wnZn2L2MLs97F-_hKQ0SZZ1oDzbns4X5QJnTPN6vwhPh9rFXxF9ecS_D |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIkF7KFBABArMAW5YsXftrI2EUEsaWkqrqLRVb-56vVYjBSeNE1V9gT4UT8eMf5IcUMWld-9o5ZnZnb_9PoAPnGZITY4kfKUcPxHaiXTgO9ZLw0CH2k0slwYOjzp7p_6P8-B8Bf40b2F4rLI5E8uDOh0ZrpG3heoonv9RQTurxyL63d7X8ZXDDFLcaW3oNCoTObA315S-FV_2u6Trj0L0dk--7Tk1w4BjyJCnju2oSIvQcPNVi8wEQWDSTPpGJjLzabuh0RnFJIm12u0YL1NCago63CSyvhdZSXIfwEPFKO78Sr33fV7fYbzNULoV0JGUkdte8NoUnuAGIBOUL1-Giwj38Swf65trPRwuXXa9p7BRR6m4XZnVM1ix-SasL2EXbsKTfq1hPKmACZ7D7c5g9Fubs-PPuI1ngwk_TcFjW0b6zg5dlylWAOlIkTL2GVejsFi2EZBJg2cTizpP8bBkFsIGLwUHOUlZBhTH3ZooqsBy5AG7djy9xF-Uko8mxQs4vRctvITVfJTbV4Cash_p6lBFlPimCeX3JcR94IrUKuupFojmh8em3jNzcQxjSoZYS_E_tNSCT_NF4woD5O7PtxpNxvWBUMQL822BM9fu_4h7fbe49_CI_CD-uX908AbWaI2sCkRbsDqdzOxbCpmmybvSNhEu7tsZ_gIlNC1d |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6gPIlFko1B464SewkTrhUW2hVIbWqCluVU-Q4jrpiya422SL4Af3djBOnXVUVKtxysC1HHnvejMfvAbyzYYZQtJF4KCULc65YqqKQmaBIIpUoPzc2NXB0HB-Ow8_n0blLuNWurJJC8Ul7SHNfpoz8N_cC7nFPiNSbF-XupcskBbEUhN7jNHkA6zF9-ANYHx-fjL5ZRbm-b0c1RH1970ZZpg64vYKzEuGr7ugGYz5cVnP166eaTlfczcETyPqJdlUm33eWTb6jf9_icPz_P9mExw6J4qgznaewZqpnsLHCT_gcrvYmsx9Kn51-wBGeTRb2rQmemha6sz3yfwV2jOdI0BdPLFFGbbC9F0CrArxcGFRVgUetVBD2BCg4qWiUVYZw3HfKTzW2NQz4ycybC_xCMfZsUb-A8cH-14-HzAk3ME3nQ8NMLFPFE23vtBUvdRRFuihFqEUuypCsINGqJKiXG6P8WAel5EIRlvPz1IRBasRLGFSzyrwCVBTOCF8lMqVItsgpYG856yOfF0aaQA6B9-uXaTdnK64xzSi6sYue3bHoQ3h_3WnekXr8vflWbxiZ2-F1xmUsbT2ajIbAro3lPsO9_sf2b-CR1bjv8j5bMGgWS_OWkFCTbztz_wNojwa1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiomacVR%3A+A+Virtual+Reality-Based+System+for+Precise+Human+Posture+and+Motion+Analysis+in+Rehabilitation+Exercises+Using+Depth+Sensors&rft.jtitle=Electronics+%28Basel%29&rft.au=Maskeli%C5%ABnas%2C+Rytis&rft.au=Dama%C5%A1evi%C4%8Dius%2C+Robertas&rft.au=Bla%C5%BEauskas%2C+Tomas&rft.au=Canbulut%2C+Cenker&rft.date=2023-01-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=2&rft.spage=339&rft_id=info:doi/10.3390%2Felectronics12020339&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12020339 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |