BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors

Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-base...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 2; p. 339
Main Authors Maskeliūnas, Rytis, Damaševičius, Robertas, Blažauskas, Tomas, Canbulut, Cenker, Adomavičienė, Aušra, Griškevičius, Julius
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12020339

Cover

Abstract Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness.
AbstractList Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill. Rehabilitation requires the exact and medically correct completion of physiotherapy activities. This paper presents BiomacVR, a virtual reality (VR)-based rehabilitation system that combines a VR physical training monitoring environment with upper limb rehabilitation technology for accurate interaction and increasing patients’ engagement in rehabilitation training. The system utilises a deep learning motion identification model called Convolutional Pose Machine (CPM) that uses a stacked hourglass network. The model is trained to precisely locate critical places in the human body using image sequences collected by depth sensors to identify correct and wrong human motions and to assess the effectiveness of physical training based on the scenarios presented. This paper presents the findings of the eight most-frequently used physical training exercise situations from post-stroke rehabilitation methodology. Depth sensors were able to accurately identify key parameters of the posture of a person performing different rehabilitation exercises. The average response time was 23 ms, which allows the system to be used in real-time applications. Furthermore, the skeleton features obtained by the system are useful for discriminating between healthy (normal) subjects and subjects suffering from lower back pain. Our results confirm that the proposed system with motion recognition methodology can be used to evaluate the quality of the physiotherapy exercises of the patient and monitor the progress of rehabilitation and assess its effectiveness.
Author Damaševičius, Robertas
Adomavičienė, Aušra
Griškevičius, Julius
Maskeliūnas, Rytis
Blažauskas, Tomas
Canbulut, Cenker
Author_xml – sequence: 1
  givenname: Rytis
  orcidid: 0000-0002-2809-2213
  surname: Maskeliūnas
  fullname: Maskeliūnas, Rytis
– sequence: 2
  givenname: Robertas
  orcidid: 0000-0001-9990-1084
  surname: Damaševičius
  fullname: Damaševičius, Robertas
– sequence: 3
  givenname: Tomas
  orcidid: 0000-0003-2858-328X
  surname: Blažauskas
  fullname: Blažauskas, Tomas
– sequence: 4
  givenname: Cenker
  surname: Canbulut
  fullname: Canbulut, Cenker
– sequence: 5
  givenname: Aušra
  orcidid: 0000-0002-5946-6265
  surname: Adomavičienė
  fullname: Adomavičienė, Aušra
– sequence: 6
  givenname: Julius
  orcidid: 0000-0003-1184-1641
  surname: Griškevičius
  fullname: Griškevičius, Julius
BookMark eNqNUE1P40AMHa1A2i70F-xlpD1nmY-kyeytsHxJIBAFrpE7deigdKY7ngjyB_jdBMphhZDAF1u23_N7_sG2fPDI2E8pfmttxB62aFMM3lmSSigxNL-xkRKlyYwyauu_-jsbE92LIYzUlRYj9rTvwgrs7dUfPuW3LqYOWn6F0LrUZ_tAuOCznhKueBMiv4xoHSE_6Vbg-WWg1EXk4Bf8PCQXPJ96aHtyxJ0fWJYwdwMRvI4OHzG-gInfkPN3_C-u05LP0FOItMu2G2gJx295h90cHV4fnGRnF8enB9OzzGqlUoaT0oCqbCmEBNXYoijsotG51XPd5HJRVRaaqpBzRBATK5tSaZBFLuYGc2lQ77B8w9v5NfQP0Lb1OroVxL6Won55Z_3BOwfYrw1sHcO_DinV96GLg1eqVTkp1SCnLIYts9myMRBFbGr7Zj5FcO0nF_Q77Fd0PQNCbKCs
CitedBy_id crossref_primary_10_1109_JSEN_2024_3522105
crossref_primary_10_1016_j_iswa_2023_200262
crossref_primary_10_3390_electronics12153244
crossref_primary_10_3390_technologies11020036
crossref_primary_10_3390_s25051586
crossref_primary_10_1007_s12541_024_01102_8
crossref_primary_10_1016_j_optlastec_2025_112439
crossref_primary_10_3390_s23198058
crossref_primary_10_2147_POR_S396198
crossref_primary_10_1109_LES_2023_3289810
crossref_primary_10_3389_fnins_2024_1353257
crossref_primary_10_3390_s24154894
crossref_primary_10_3390_s24217049
crossref_primary_10_3390_app15020906
crossref_primary_10_3390_electronics12051134
crossref_primary_10_1016_j_jer_2025_01_007
crossref_primary_10_1038_s41598_025_93553_w
crossref_primary_10_3390_s24206585
crossref_primary_10_1371_journal_pone_0315130
crossref_primary_10_3390_ani14121774
crossref_primary_10_3390_s23031680
Cites_doi 10.7717/peerj-cs.442
10.3390/jcm10245728
10.1016/j.mser.2019.100523
10.3390/info10010003
10.1155/2020/8817419
10.1080/10833196.2022.2139060
10.3390/electronics11030334
10.1186/s13673-020-00256-4
10.1109/JTEHM.2018.2829208
10.1016/j.jjcc.2021.01.010
10.1080/09638288.2019.1666431
10.3390/app112411600
10.1007/s13042-018-0887-5
10.3390/app10186497
10.1016/j.rehab.2021.101609
10.1017/S0033291719000151
10.1007/978-3-319-46484-8_29
10.1371/journal.pone.0225150
10.1016/j.medntd.2021.100110
10.1016/j.ijmedinf.2018.11.001
10.1016/j.bspc.2021.103197
10.3390/s21175926
10.1016/S1474-4422(19)30415-6
10.1177/15501477211024846
10.1109/ACCESS.2020.3045935
10.3390/ijerph17010113
10.3390/electronics9091357
10.3390/app11136073
10.4137/BII.S31559
10.1080/09638280600756257
10.2340/16501977-2763
10.1136/annrheumdis-2020-218986
10.1186/s12984-015-0006-8
10.1186/s12984-021-00922-3
10.1080/10803548.2015.1017940
10.1002/VIW.20200077
10.1109/ACCESS.2019.2953228
10.1007/s11370-020-00319-6
10.1186/s12938-020-00762-7
10.3390/mti4020014
10.3390/electronics10232946
10.1109/CVPR46437.2021.01584
10.1155/2018/3846892
10.2196/rehab.7511
10.1093/ptj/pzaa025
10.3390/s18082439
10.1016/j.medengphy.2018.10.001
10.1136/bjsports-2017-098983
10.1016/j.imu.2018.06.002
10.1080/09593985.2019.1655822
10.1007/978-3-319-40238-3_39
10.1007/s11063-022-10744-6
10.1007/s12008-020-00728-y
10.1111/j.1369-7625.2011.00668.x
10.3390/s21123945
10.1111/papr.12846
10.1038/s41746-021-00514-4
10.1109/JSEN.2021.3079983
10.3390/app8071161
10.1109/JBHI.2016.2558540
10.3390/s22134987
10.1016/j.pcad.2019.01.004
10.3390/s22020573
10.3389/fnbot.2021.753924
10.3390/jpm12050829
10.1109/TNSRE.2019.2923060
10.1016/j.gaitpost.2019.03.008
10.1109/COM-IT-CON54601.2022.9850512
10.2139/ssrn.3461916
10.1016/j.eswa.2018.06.036
10.1016/j.techfore.2021.120636
10.1007/978-3-030-58520-4_45
10.1016/j.jstrokecerebrovasdis.2018.05.013
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/electronics12020339
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physical Therapy
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics12020339
10_3390_electronics12020339
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Oct 26 03:39:22 EDT 2025
Mon Jul 14 09:45:34 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Thu Oct 16 04:41:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-e679a28c7001a2fc555cdf34c3b3f41d88caf851beea06c1f723a1540b9e419e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2809-2213
0000-0001-9990-1084
0000-0003-2858-328X
0000-0002-5946-6265
0000-0003-1184-1641
OpenAccessLink https://www.proquest.com/docview/2767200175?pq-origsite=%requestingapplication%&accountid=15518
PQID 2767200175
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics12020339
proquest_journals_2767200175
crossref_citationtrail_10_3390_electronics12020339
crossref_primary_10_3390_electronics12020339
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Peretti (ref_10) 2017; 4
Cranen (ref_67) 2011; 15
ref_58
ref_57
ref_56
Sarsfield (ref_37) 2019; 121
ref_55
Uccheddu (ref_11) 2021; 15
ref_54
Wang (ref_36) 2019; 7
ref_19
ref_17
Sarfo (ref_63) 2018; 27
Nott (ref_76) 2019; 43
Xiao (ref_38) 2022; 13
Roth (ref_62) 2021; 166
Milosevic (ref_14) 2020; 19
Petit (ref_61) 2015; 21
Su (ref_27) 2021; 21
Straczkiewicz (ref_21) 2021; 4
Embrechts (ref_5) 2018; 14
ref_24
ref_23
Lou (ref_77) 2020; 140
ref_64
Kikuchi (ref_6) 2021; 78
ref_29
Vanagas (ref_12) 2018; 2018
ref_28
Li (ref_16) 2021; 17
Capecci (ref_35) 2019; 27
He (ref_41) 2020; 2020
Kiper (ref_75) 2020; 52
Ryselis (ref_25) 2020; 10
Zhou (ref_52) 2018; 112
Junata (ref_40) 2021; 18
Taylor (ref_74) 2019; 62
Leightley (ref_44) 2017; 21
Valdez (ref_46) 2020; 13
Meegahapola (ref_20) 2021; 9
Schepers (ref_60) 2007; 29
ref_33
ref_32
ref_31
Moonen (ref_66) 2020; 1
ref_30
ref_73
Tagliaferri (ref_70) 2019; 20
Luo (ref_51) 2016; 8
ref_39
Camalan (ref_26) 2018; 25
Melin (ref_71) 2019; 37
Kulikajevas (ref_15) 2021; 7
Shatte (ref_50) 2019; 49
Clark (ref_22) 2015; 12
Smith (ref_48) 2018; 62
Smith (ref_68) 2018; 53
Okuyama (ref_13) 2021; 100
Ayar (ref_49) 2018; 13
ref_47
Ritschl (ref_72) 2020; 80
ref_45
ref_43
Srivastava (ref_53) 2014; 15
ref_1
ref_3
Wang (ref_42) 2021; 15
ref_2
Stinear (ref_59) 2020; 19
Pournajaf (ref_7) 2022; 65
Bavan (ref_69) 2019; 70
ref_9
ref_8
Boukhennoufa (ref_18) 2022; 71
Saini (ref_34) 2018; 10
Lee (ref_65) 2018; 6
ref_4
References_xml – volume: 7
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: Detection of sitting posture using hierarchical image composition and deep learning
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.442
– ident: ref_9
  doi: 10.3390/jcm10245728
– volume: 140
  start-page: 100523
  year: 2020
  ident: ref_77
  article-title: Reviews of wearable healthcare systems: Materials, devices and system integration
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2019.100523
– ident: ref_17
  doi: 10.3390/info10010003
– volume: 2020
  start-page: 8817419
  year: 2020
  ident: ref_41
  article-title: A New Kinect-Based Posture Recognition Method in Physical Sports Training Based on Urban Data
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2020/8817419
– ident: ref_73
  doi: 10.1080/10833196.2022.2139060
– ident: ref_29
  doi: 10.3390/electronics11030334
– volume: 10
  start-page: 51
  year: 2020
  ident: ref_25
  article-title: Multiple Kinect based system to monitor and analyze key performance indicators of physical training
  publication-title: Hum.-Centric Comput. Inf. Sci.
  doi: 10.1186/s13673-020-00256-4
– volume: 6
  start-page: 1
  year: 2018
  ident: ref_65
  article-title: Enabling Stroke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2829208
– volume: 78
  start-page: 66
  year: 2021
  ident: ref_6
  article-title: Feasibility of home-based cardiac rehabilitation using an integrated telerehabilitation platform in elderly patients with heart failure: A pilot study
  publication-title: J. Cardiol.
  doi: 10.1016/j.jjcc.2021.01.010
– volume: 43
  start-page: 1410
  year: 2019
  ident: ref_76
  article-title: Stroke self-management and the role of self-efficacy
  publication-title: Disabil. Rehabil.
  doi: 10.1080/09638288.2019.1666431
– ident: ref_30
  doi: 10.3390/app112411600
– volume: 10
  start-page: 2529
  year: 2018
  ident: ref_34
  article-title: Kinect sensor-based interaction monitoring system using the BLSTM neural network in healthcare
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0887-5
– ident: ref_56
  doi: 10.3390/app10186497
– volume: 65
  start-page: 101609
  year: 2022
  ident: ref_7
  article-title: Effect of balance training using virtual reality-based serious games in individuals with total knee replacement: A randomized controlled trial
  publication-title: Ann. Phys. Rehabil. Med.
  doi: 10.1016/j.rehab.2021.101609
– volume: 49
  start-page: 1426
  year: 2019
  ident: ref_50
  article-title: Machine learning in mental health: A scoping review of methods and applications
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291719000151
– ident: ref_57
  doi: 10.1007/978-3-319-46484-8_29
– ident: ref_64
  doi: 10.1371/journal.pone.0225150
– volume: 13
  start-page: 100110
  year: 2022
  ident: ref_38
  article-title: Design of a virtual reality rehabilitation system for upper limbs that inhibits compensatory movement
  publication-title: Med. Nov. Technol. Devices
  doi: 10.1016/j.medntd.2021.100110
– volume: 121
  start-page: 30
  year: 2019
  ident: ref_37
  article-title: Clinical assessment of depth sensor based pose estimation algorithms for technology supervised rehabilitation applications
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.11.001
– volume: 14
  start-page: 2
  year: 2018
  ident: ref_5
  article-title: Combining the benefits of tele-rehabilitation and virtual reality-based balance training: A systematic review on feasibility and effectiveness
  publication-title: Disabil. Rehabil. Assist. Technol.
– volume: 71
  start-page: 103197
  year: 2022
  ident: ref_18
  article-title: Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.103197
– ident: ref_32
  doi: 10.3390/s21175926
– volume: 19
  start-page: 348
  year: 2020
  ident: ref_59
  article-title: Advances and challenges in stroke rehabilitation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30415-6
– volume: 17
  start-page: 15501477211024846
  year: 2021
  ident: ref_16
  article-title: Sitsen: Passive sitting posture sensing based on wireless devices
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/15501477211024846
– volume: 9
  start-page: 3374
  year: 2021
  ident: ref_20
  article-title: Smartphone Sensing for the Well-Being of Young Adults: A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3045935
– ident: ref_58
  doi: 10.3390/ijerph17010113
– ident: ref_28
  doi: 10.3390/electronics9091357
– ident: ref_33
  doi: 10.3390/app11136073
– volume: 8
  start-page: BII.S31559
  year: 2016
  ident: ref_51
  article-title: Big Data Application in Biomedical Research and Health Care: A Literature Review
  publication-title: Biomed. Inform. Insights
  doi: 10.4137/BII.S31559
– volume: 29
  start-page: 221
  year: 2007
  ident: ref_60
  article-title: Comparing contents of functional outcome measures in stroke rehabilitation using the International Classification of Functioning, Disability and Health
  publication-title: Disabil. Rehabil.
  doi: 10.1080/09638280600756257
– volume: 52
  start-page: jrm00122
  year: 2020
  ident: ref_75
  article-title: Functional changes in the lower extremity after non-immersive virtual reality and physiotherapy following stroke
  publication-title: J. Rehabil. Med.
  doi: 10.2340/16501977-2763
– volume: 80
  start-page: 707
  year: 2020
  ident: ref_72
  article-title: 2020 EULAR points to consider for the prevention, screening, assessment and management of non-adherence to treatment in people with rheumatic and musculoskeletal diseases for use in clinical practice
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2020-218986
– volume: 12
  start-page: 15
  year: 2015
  ident: ref_22
  article-title: Instrumenting gait assessment using the Kinect in people living with stroke: Reliability and association with balance tests
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0006-8
– volume: 18
  start-page: 150
  year: 2021
  ident: ref_40
  article-title: Kinect-based rapid movement training to improve balance recovery for stroke fall prevention: A randomized controlled trial
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-021-00922-3
– volume: 21
  start-page: 15
  year: 2015
  ident: ref_61
  article-title: Low back pain, intervertebral disc and occupational diseases
  publication-title: Int. J. Occup. Saf. Ergon.
  doi: 10.1080/10803548.2015.1017940
– volume: 1
  start-page: 20200077
  year: 2020
  ident: ref_66
  article-title: Wearable sweat sensing for prolonged, semicontinuous, and nonobtrusive health monitoring
  publication-title: View
  doi: 10.1002/VIW.20200077
– volume: 7
  start-page: 165985
  year: 2019
  ident: ref_36
  article-title: Feature Evaluation of Upper Limb Exercise Rehabilitation Interactive System Based on Kinect
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953228
– volume: 13
  start-page: 365
  year: 2020
  ident: ref_46
  article-title: Kinematic and dynamic design and optimization of a parallel rehabilitation robot
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-020-00319-6
– volume: 19
  start-page: 25
  year: 2020
  ident: ref_14
  article-title: Kinect and wearable inertial sensors for motor rehabilitation programs at home: State of the art and an experimental comparison
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-020-00762-7
– ident: ref_23
  doi: 10.3390/mti4020014
– ident: ref_45
  doi: 10.3390/electronics10232946
– ident: ref_54
  doi: 10.1109/CVPR46437.2021.01584
– volume: 2018
  start-page: 3846892
  year: 2018
  ident: ref_12
  article-title: eHealth Solutions for the Integrated Healthcare
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/3846892
– volume: 4
  start-page: e7
  year: 2017
  ident: ref_10
  article-title: Telerehabilitation: Review of the State-of-the-Art and Areas of Application
  publication-title: JMIR Rehabil. Assist. Technol.
  doi: 10.2196/rehab.7511
– volume: 100
  start-page: 870
  year: 2021
  ident: ref_13
  article-title: Depth sensor-based assessment of reachable work space for visualizing and quantifying paretic upper extremity motor function in people with stroke
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/pzaa025
– ident: ref_43
  doi: 10.3390/s18082439
– volume: 62
  start-page: 36
  year: 2018
  ident: ref_48
  article-title: Rapid calculation of bespoke body segment parameters using 3D infra-red scanning
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2018.10.001
– volume: 53
  start-page: 907
  year: 2018
  ident: ref_68
  article-title: Musculoskeletal pain and exercise—Challenging existing paradigms and introducing new
  publication-title: Br. J. Sport. Med.
  doi: 10.1136/bjsports-2017-098983
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_53
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 167
  year: 2018
  ident: ref_49
  article-title: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2018.06.002
– volume: 37
  start-page: 863
  year: 2019
  ident: ref_71
  article-title: Goal-setting in physiotherapy: Exploring a person-centered perspective
  publication-title: Physiother. Theory Pract.
  doi: 10.1080/09593985.2019.1655822
– ident: ref_3
  doi: 10.1007/978-3-319-40238-3_39
– ident: ref_39
  doi: 10.1007/s11063-022-10744-6
– volume: 15
  start-page: 99
  year: 2021
  ident: ref_11
  article-title: Home physiotherapy rehabilitation based on RGB-D sensors: A hybrid approach to the joints angular range of motion estimation
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-020-00728-y
– volume: 15
  start-page: 339
  year: 2011
  ident: ref_67
  article-title: An exploration of chronic pain patients’ perceptions of home telerehabilitation services
  publication-title: Health Expect.
  doi: 10.1111/j.1369-7625.2011.00668.x
– ident: ref_24
  doi: 10.3390/s21123945
– volume: 20
  start-page: 211
  year: 2019
  ident: ref_70
  article-title: Domains of Chronic Low Back Pain and Assessing Treatment Effectiveness: A Clinical Perspective
  publication-title: Pain Pract.
  doi: 10.1111/papr.12846
– ident: ref_2
– volume: 4
  start-page: 148
  year: 2021
  ident: ref_21
  article-title: A systematic review of smartphone-based human activity recognition methods for health research
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-021-00514-4
– volume: 21
  start-page: 16990
  year: 2021
  ident: ref_27
  article-title: A Projection-Based Human Motion Recognition Algorithm Based on Depth Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3079983
– volume: 25
  start-page: 253
  year: 2018
  ident: ref_26
  article-title: Gender detection using 3d anthropometric measurements by kinect
  publication-title: Metrol. Meas. Syst.
– ident: ref_31
  doi: 10.3390/app8071161
– volume: 21
  start-page: 939
  year: 2017
  ident: ref_44
  article-title: Automated Analysis and Quantification of Human Mobility Using a Depth Sensor
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2558540
– ident: ref_55
  doi: 10.3390/s22134987
– volume: 62
  start-page: 140
  year: 2019
  ident: ref_74
  article-title: Guidelines for the delivery and monitoring of high intensity interval training in clinical populations
  publication-title: Prog. Cardiovasc. Dis.
  doi: 10.1016/j.pcad.2019.01.004
– ident: ref_19
  doi: 10.3390/s22020573
– volume: 15
  start-page: 753924
  year: 2021
  ident: ref_42
  article-title: Measurement Method of Human Lower Limb Joint Range of Motion through Human-Machine Interaction Based on Machine Vision
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2021.753924
– ident: ref_8
  doi: 10.3390/jpm12050829
– volume: 27
  start-page: 1436
  year: 2019
  ident: ref_35
  article-title: The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2923060
– volume: 70
  start-page: 211
  year: 2019
  ident: ref_69
  article-title: Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2019.03.008
– ident: ref_1
  doi: 10.1109/COM-IT-CON54601.2022.9850512
– ident: ref_4
  doi: 10.2139/ssrn.3461916
– volume: 112
  start-page: 99
  year: 2018
  ident: ref_52
  article-title: Random forest for label ranking
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.036
– volume: 166
  start-page: 120636
  year: 2021
  ident: ref_62
  article-title: The Great Reset. Restratification for lives, livelihoods, and the planet
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2021.120636
– ident: ref_47
  doi: 10.1007/978-3-030-58520-4_45
– volume: 27
  start-page: 2306
  year: 2018
  ident: ref_63
  article-title: Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2018.05.013
SSID ssj0000913830
Score 2.443324
Snippet Remote patient monitoring is one of the most reliable choices for the availability of health care services for the elderly and/or chronically ill....
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 339
SubjectTerms Algorithms
Cameras
Deep learning
Effectiveness
Expenditures
Human motion
Information technology
Machine learning
Medical research
Mobility
Motion perception
Neural networks
Older people
Parameter identification
Patients
Personal computers
Physical therapy
Physical training
Posture
Rehabilitation
Remote monitoring
Remote sensors
Response time
Sensors
Smartphones
Stroke
Telemedicine
Virtual reality
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6gPIlFko1B464SewkTrhUW2hVIbWqCluVU-Q4jrpiya422SL4Af3djBOnXVUVKtxysC1HHnvejMfvAbyzYYZQtJF4KCULc65YqqKQmaBIIpUoPzc2NXB0HB-Ow8_n0blLuNWurJJC8Ul7SHNfpoz8N_cC7nFPiNSbF-XupcskBbEUhN7jNHkA6zF9-ANYHx-fjL5ZRbm-b0c1RH1970ZZpg64vYKzEuGr7ugGYz5cVnP166eaTlfczcETyPqJdlUm33eWTb6jf9_icPz_P9mExw6J4qgznaewZqpnsLHCT_gcrvYmsx9Kn51-wBGeTRb2rQmemha6sz3yfwV2jOdI0BdPLFFGbbC9F0CrArxcGFRVgUetVBD2BCg4qWiUVYZw3HfKTzW2NQz4ycybC_xCMfZsUb-A8cH-14-HzAk3ME3nQ8NMLFPFE23vtBUvdRRFuihFqEUuypCsINGqJKiXG6P8WAel5EIRlvPz1IRBasRLGFSzyrwCVBTOCF8lMqVItsgpYG856yOfF0aaQA6B9-uXaTdnK64xzSi6sYue3bHoQ3h_3WnekXr8vflWbxiZ2-F1xmUsbT2ajIbAro3lPsO9_sf2b-CR1bjv8j5bMGgWS_OWkFCTbztz_wNojwa1
  priority: 102
  providerName: Unpaywall
Title BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors
URI https://www.proquest.com/docview/2767200175
https://www.mdpi.com/2079-9292/12/2/339/pdf?version=1673259698
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFH606WHbYeu6lWX9wTvsOFFbsiN7UEayJi2DhJA1pTsZWZZpIHWyOGHs0uP-7ur5R5JDKT0KbCH09OP7nqTvA_hCNEMoO5G4JyXzYq5YqHyPGTcJfBUoJzaUGugPWldj7-etf7sDg_otDF2rrNfEYqFOZppy5GdctiTd_5H-9_kfRq5RdLpaW2ioylohOS8kxnZhj5MyVgP2Ot3BcLTOupAKZiCcUn5IWL5_tnGbyV1Ox3JkG769RW1w56tVNlf__qrpdGsL6u3D2wo7YrsM9nvYMdkBvNlSFDyAd8Oq3_G6lAv4AP87k9m90jejb9jGm8mCHozgyBT4m3XsJpZgKVuOFr_ikNQucoNFch_Jyne1MKiyBPuF3w_WKiY4yWwt2zLf2K3sm3IsLiLghZkv7_CXJcqzRf4Rxr3u9Y8rVrkvMG0n-ZKZlgwVDzQdTCueat_3dZIKT4tYpJ4NZaBVavFabIxyWtpNJRfKAjInDo3nhkYcQiObZeYToLKcRDgqkKGlo0lsWXchPO87PDHSuLIJvO7wSFdtJoeMaWQpCkUpeiJKTfi6_mleKnM8__lxHcmomqZ5tBlUTWDr6L6kus_PV3cEr8mXvszVHENjuViZE4telvEp7Aa9y9NqYNpS_6FrS-PBsP37EceX9h8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9lA4UCggAqXMAW6sau_aWRupqpo2VUqbKApp1Zu7Xq9FpOCEOFHVP8DP4rcx648kB1Rx6d07Wnlmd-fN7L4H8MnCDKFoIXFPSubFXLFQ-R4zbhL4KlBObGxpoNtrdq68bzf-zQb8qd_C2GuV9Z5YbNTJRNsa-QGXTWnv_0j_aPqLWdUo212tJTRUJa2QHBYUY9XDjgtzf0cQLj88PyV_f-b8rD086bBKZYBpCuY5M00ZKh5o24BVPNW-7-skFZ4WsUg9mnKgVUp5SWyMcpraTSUXihIPJw6N54ZGkN0nsOUJLyTwt9Vq9_qDZZXHsm4GwinpjoQInYOVuk3uctsGtDLl60fiKs_dXmRTdX-nxuO1I-_sBTyvclU8LoPrJWyYbBeerTEY7sJOv_IzDkt6glfwuzWa_FT6evAVj_F6NLMPVHBginyftejQTLCkSUfKl7Fv2TVyg0UzAa108GJmUGUJdgt9IaxZU3CUkZV1WnFsV3JRORYXH_DUTOc_8DsB88ksfw1Xj-KHN7CZTTLzFlARBhKOCmRI8DeJCeUXRPe-wxMjjSsbwOsfHulqzlaRYxwRJLJeiv7hpQZ8WQ6alkwgD3--V3syqraFPFoFcQPY0rv_Y-7dw-Y-wnZn2L2MLs97F-_hKQ0SZZ1oDzbns4X5QJnTPN6vwhPh9rFXxF9ecS_D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIkF7KFBABArMAW5YsXftrI2EUEsaWkqrqLRVb-56vVYjBSeNE1V9gT4UT8eMf5IcUMWld-9o5ZnZnb_9PoAPnGZITY4kfKUcPxHaiXTgO9ZLw0CH2k0slwYOjzp7p_6P8-B8Bf40b2F4rLI5E8uDOh0ZrpG3heoonv9RQTurxyL63d7X8ZXDDFLcaW3oNCoTObA315S-FV_2u6Trj0L0dk--7Tk1w4BjyJCnju2oSIvQcPNVi8wEQWDSTPpGJjLzabuh0RnFJIm12u0YL1NCago63CSyvhdZSXIfwEPFKO78Sr33fV7fYbzNULoV0JGUkdte8NoUnuAGIBOUL1-Giwj38Swf65trPRwuXXa9p7BRR6m4XZnVM1ix-SasL2EXbsKTfq1hPKmACZ7D7c5g9Fubs-PPuI1ngwk_TcFjW0b6zg5dlylWAOlIkTL2GVejsFi2EZBJg2cTizpP8bBkFsIGLwUHOUlZBhTH3ZooqsBy5AG7djy9xF-Uko8mxQs4vRctvITVfJTbV4Cash_p6lBFlPimCeX3JcR94IrUKuupFojmh8em3jNzcQxjSoZYS_E_tNSCT_NF4woD5O7PtxpNxvWBUMQL822BM9fu_4h7fbe49_CI_CD-uX908AbWaI2sCkRbsDqdzOxbCpmmybvSNhEu7tsZ_gIlNC1d
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6gPIlFko1B464SewkTrhUW2hVIbWqCluVU-Q4jrpiya422SL4Af3djBOnXVUVKtxysC1HHnvejMfvAbyzYYZQtJF4KCULc65YqqKQmaBIIpUoPzc2NXB0HB-Ow8_n0blLuNWurJJC8Ul7SHNfpoz8N_cC7nFPiNSbF-XupcskBbEUhN7jNHkA6zF9-ANYHx-fjL5ZRbm-b0c1RH1970ZZpg64vYKzEuGr7ugGYz5cVnP166eaTlfczcETyPqJdlUm33eWTb6jf9_icPz_P9mExw6J4qgznaewZqpnsLHCT_gcrvYmsx9Kn51-wBGeTRb2rQmemha6sz3yfwV2jOdI0BdPLFFGbbC9F0CrArxcGFRVgUetVBD2BCg4qWiUVYZw3HfKTzW2NQz4ycybC_xCMfZsUb-A8cH-14-HzAk3ME3nQ8NMLFPFE23vtBUvdRRFuihFqEUuypCsINGqJKiXG6P8WAel5EIRlvPz1IRBasRLGFSzyrwCVBTOCF8lMqVItsgpYG856yOfF0aaQA6B9-uXaTdnK64xzSi6sYue3bHoQ3h_3WnekXr8vflWbxiZ2-F1xmUsbT2ajIbAro3lPsO9_sf2b-CR1bjv8j5bMGgWS_OWkFCTbztz_wNojwa1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiomacVR%3A+A+Virtual+Reality-Based+System+for+Precise+Human+Posture+and+Motion+Analysis+in+Rehabilitation+Exercises+Using+Depth+Sensors&rft.jtitle=Electronics+%28Basel%29&rft.au=Maskeli%C5%ABnas%2C+Rytis&rft.au=Dama%C5%A1evi%C4%8Dius%2C+Robertas&rft.au=Bla%C5%BEauskas%2C+Tomas&rft.au=Canbulut%2C+Cenker&rft.date=2023-01-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=2&rft.spage=339&rft_id=info:doi/10.3390%2Felectronics12020339&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12020339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon