On the role of gradients for machine learning of molecular energies and forces

The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of predict...

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 1; no. 4; pp. 45018 - 45031
Main Authors Christensen, Anders S, von Lilienfeld, O Anatole
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2020
Subjects
Online AccessGet full text
ISSN2632-2153
2632-2153
DOI10.1088/2632-2153/abba6f

Cover

Abstract The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of prediction errors of quantum machine learning models for organic molecules trained on energy and force labels, two common data types in molecular simulations. When training models for the potential energy surface of a single molecule, we find that the inclusion of atomic forces in the training data increases the accuracy of the predicted energies and forces 7-fold, compared to models trained on energy only. Surprisingly, for models trained on sets of organic molecules of varying size and composition in non-equilibrium conformations, inclusion of forces in the training does not improve the predicted energies of unseen molecules in new conformations. Predicted forces, however, improve about 7-fold. For the systems studied, we find that force labels and energy labels contribute equally per label to the convergence of the prediction errors. The optimal choice of what type of training data to include depends on several factors: the computational cost of acquiring the force and energy labels for training, the application domain, the property of interest and the complexity of the machine learning model. Based on our observations we describe key considerations for the creation of new datasets for potential energy surfaces of molecules which maximize the efficiency of the resulting machine learning models.
AbstractList The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of prediction errors of quantum machine learning models for organic molecules trained on energy and force labels, two common data types in molecular simulations. When training models for the potential energy surface of a single molecule, we find that the inclusion of atomic forces in the training data increases the accuracy of the predicted energies and forces 7-fold, compared to models trained on energy only. Surprisingly, for models trained on sets of organic molecules of varying size and composition in non-equilibrium conformations, inclusion of forces in the training does not improve the predicted energies of unseen molecules in new conformations. Predicted forces, however, improve about 7-fold. For the systems studied, we find that force labels and energy labels contribute equally per label to the convergence of the prediction errors. The optimal choice of what type of training data to include depends on several factors: the computational cost of acquiring the force and energy labels for training, the application domain, the property of interest and the complexity of the machine learning model. Based on our observations we describe key considerations for the creation of new datasets for potential energy surfaces of molecules which maximize the efficiency of the resulting machine learning models.
Author Christensen, Anders S
von Lilienfeld, O Anatole
Author_xml – sequence: 1
  givenname: Anders S
  orcidid: 0000-0002-7253-6897
  surname: Christensen
  fullname: Christensen, Anders S
  organization: Institute of Physical Chemistry National Center for Computational Design and Discovery of Novel Materials (MARVEL) , Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
– sequence: 2
  givenname: O Anatole
  surname: von Lilienfeld
  fullname: von Lilienfeld, O Anatole
  email: anatole.vonlilienfeld@unibas.ch
  organization: Institute of Physical Chemistry National Center for Computational Design and Discovery of Novel Materials (MARVEL) , Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
BookMark eNqNkFtLAzEQhYNUsNa--5gf4NpcyF4epXiDYl_0OcxmZ9uUNCnJFum_d5cVEUHxaYbD-YY555JMfPBIyDVnt5yV5ULkUmSCK7mAuoa8PSPTL2nybb8g85R2jDGhuFSCTcnL2tNuizQGhzS0dBOhsei7RNsQ6R7M1nqkDiF66zeDY987zdFBpOgxbiwmCr4Z7AbTFTlvwSWcf84ZeXu4f10-Zav14_PybpUZKUSX1QVUUhloCtWYCvK6KAENy0vRABeA_XMsV4UwspT1oHBRqLZQHCtjACs5I3y8e_QHOL2Dc_oQ7R7iSXOmh070EFoPofXYSc-wkTExpBSx_Q-S_0CM7aCzwXcRrPsLvBlBGw56F47R9238bv8AeF2HKw
CODEN MLSTCK
CitedBy_id crossref_primary_10_1038_s41597_023_01998_3
crossref_primary_10_1063_5_0030764
crossref_primary_10_1002_med_22008
crossref_primary_10_1021_acs_jpca_0c09762
crossref_primary_10_1088_2632_2153_ace418
crossref_primary_10_1002_qua_26984
crossref_primary_10_1021_acs_jctc_1c00647
crossref_primary_10_1515_revce_2024_0028
crossref_primary_10_1021_acscatal_2c02291
crossref_primary_10_1063_5_0080506
crossref_primary_10_1088_1361_648X_ac9d7d
crossref_primary_10_1016_j_bpj_2022_08_045
crossref_primary_10_1021_acs_jctc_4c01570
crossref_primary_10_1111_jace_19934
crossref_primary_10_1073_pnas_2205221119
crossref_primary_10_1063_5_0150379
crossref_primary_10_1038_s41597_022_01882_6
crossref_primary_10_1063_5_0108967
crossref_primary_10_1038_s42256_023_00740_3
crossref_primary_10_1063_5_0112856
crossref_primary_10_1038_s41524_022_00773_z
crossref_primary_10_1088_2632_2153_ac9955
crossref_primary_10_1063_5_0138367
crossref_primary_10_1063_5_0158075
crossref_primary_10_1103_PhysRevResearch_4_L042019
crossref_primary_10_1021_acs_jctc_2c00546
crossref_primary_10_1021_acs_jctc_2c01038
crossref_primary_10_1371_journal_pone_0297502
crossref_primary_10_1021_acs_jpca_4c02028
crossref_primary_10_1088_2632_2153_ad9709
crossref_primary_10_1103_PhysRevLett_131_028001
crossref_primary_10_1063_5_0155322
crossref_primary_10_1063_5_0147023
crossref_primary_10_1063_5_0231265
crossref_primary_10_1002_kin_21759
crossref_primary_10_1021_acs_estlett_1c00997
crossref_primary_10_1103_PhysRevMaterials_6_013804
crossref_primary_10_1021_acsnano_4c03094
crossref_primary_10_1063_5_0208746
crossref_primary_10_1063_5_0124363
crossref_primary_10_1063_5_0202647
crossref_primary_10_1080_00268976_2024_2348110
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1063_5_0033778
crossref_primary_10_1038_s41524_023_01180_8
crossref_primary_10_1021_acs_jpcb_3c07187
crossref_primary_10_1021_acs_jpclett_3c03080
crossref_primary_10_1063_5_0152215
crossref_primary_10_1007_s41061_021_00339_5
crossref_primary_10_1021_acs_jctc_4c00054
crossref_primary_10_1021_acs_jctc_4c00977
crossref_primary_10_1038_s41467_022_34436_w
crossref_primary_10_1021_acs_jctc_2c01290
crossref_primary_10_1063_5_0163882
crossref_primary_10_1038_s41524_022_00739_1
crossref_primary_10_1088_2632_2153_ac7d3c
crossref_primary_10_1103_PhysRevX_14_021036
crossref_primary_10_1038_s41524_024_01277_8
crossref_primary_10_1021_acs_jctc_3c01203
crossref_primary_10_1021_acs_jctc_3c00710
crossref_primary_10_1021_acs_chemrev_0c01111
crossref_primary_10_1039_D1CP04422B
crossref_primary_10_1063_5_0156307
crossref_primary_10_1063_5_0106617
crossref_primary_10_1002_jcc_27313
crossref_primary_10_1021_acs_chemrev_0c01303
crossref_primary_10_1063_5_0142590
crossref_primary_10_1103_PhysRevB_103_174114
crossref_primary_10_1021_acs_jpca_2c05904
crossref_primary_10_1063_5_0035530
crossref_primary_10_1021_acs_jpca_3c07872
crossref_primary_10_1088_2632_2153_abfd96
crossref_primary_10_1088_2632_2153_ad8f13
Cites_doi 10.1103/PhysRevLett.98.146401
10.1016/j.jcp.2014.12.018
10.1016/j.cplett.2004.07.076
10.1063/1.5126701
10.1063/1.5053562
10.1103/PhysRevB.95.214302
10.1021/acs.jpclett.5b00831
10.1021/acs.jctc.6b00553
10.1103/PhysRevB.97.184307
10.1103/PhysRevB.92.094306
10.1039/C9CP06471K
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.104.136403
10.1039/b508541a
10.1162/neco.1996.8.5.1085
10.1063/1.5020710
10.1063/1.5005095
10.1103/PhysRevLett.120.143001
10.1103/PhysRevLett.95.153002
10.1103/PhysRevLett.120.036002
10.1109/MCSE.2007.55
10.1021/acs.jctc.8b00908
10.1103/PhysRevResearch.2.023220
10.1126/sciadv.1603015
10.1063/1.5023802
10.1038/s41524-017-0042-y
10.1002/qua.24927
10.1038/s41467-018-06169-2
10.1002/qua.24836
10.1039/b810189b
10.1063/1.5011181
10.1103/PhysRevLett.125.166001
10.1038/s41597-020-0473-z
10.1038/ncomms13890
10.1063/1.4966192
10.1038/sdata.2017.193
10.1021/ct400195d
10.1021/acs.jpcc.6b10908
10.1002/qua.24375
10.1002/anie.201709686
10.1063/1.5019779
10.1039/C6SC05720A
10.1103/PhysRevLett.114.096405
10.1021/acs.jctc.9b00181
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/2632-2153/abba6f
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Computer Science
DocumentTitleAlternate On the role of gradients for machine learning of molecular energies and forces
EISSN 2632-2153
ExternalDocumentID 10.1088/2632-2153/abba6f
10_1088_2632_2153_abba6f
mlstabba6f
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: ERC-CoG grant QML).
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 407540_167186 NFP 75 Big Data
  funderid: http://dx.doi.org/10.13039/501100001711
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c322t-b7a935cad75dc9a6b78aec0682da12ae13506572c383ba12a1275f751e9ccae93
IEDL.DBID O3W
ISSN 2632-2153
IngestDate Sun Oct 26 04:08:48 EDT 2025
Wed Oct 01 03:35:03 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Wed Aug 21 03:38:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-b7a935cad75dc9a6b78aec0682da12ae13506572c383ba12a1275f751e9ccae93
Notes MLST-100193.R1
ORCID 0000-0002-7253-6897
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/abba6f
PageCount 14
ParticipantIDs crossref_citationtrail_10_1088_2632_2153_abba6f
iop_journals_10_1088_2632_2153_abba6f
unpaywall_primary_10_1088_2632_2153_abba6f
crossref_primary_10_1088_2632_2153_abba6f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 45
48
Waskom M (49) 2017
Cortes C (30) 1994
Rasmussen C E (35) 2006
Himmelblau D M (32) 1972
51
52
53
10
54
11
55
12
56
13
Vapnik V (28) 2013
14
15
16
17
18
19
Frank N (50) 2017; 8
1
Oliphant T (57) 2019
2
3
4
5
6
7
8
Christensen A S (47) 2017
9
20
21
22
23
24
Mathias S (39) 2015
25
26
27
29
Barker J (44) 2016
Solak E (34) 2003
31
33
Pedregosa F (46) 2011; 12
36
37
38
OpenMP Architecture Review Board (58) 2008
40
41
42
43
References_xml – ident: 3
  doi: 10.1103/PhysRevLett.98.146401
– ident: 12
  doi: 10.1016/j.jcp.2014.12.018
– start-page: 25
  year: 2016
  ident: 44
– ident: 2
  doi: 10.1016/j.cplett.2004.07.076
– year: 2017
  ident: 49
  publication-title: mwaskom/seaborn: v0.8.1 (september 2017) September
– ident: 22
  doi: 10.1063/1.5126701
– ident: 38
  doi: 10.1063/1.5053562
– ident: 13
  doi: 10.1103/PhysRevB.95.214302
– ident: 41
  doi: 10.1021/acs.jpclett.5b00831
– year: 1972
  ident: 32
  publication-title: Applied Nonlinear Programming
– ident: 36
  doi: 10.1021/acs.jctc.6b00553
– ident: 14
  doi: 10.1103/PhysRevB.97.184307
– ident: 6
  doi: 10.1103/PhysRevB.92.094306
– ident: 56
  doi: 10.1039/C9CP06471K
– ident: 51
  doi: 10.1103/PhysRevLett.77.3865
– ident: 37
  doi: 10.1103/PhysRevLett.104.136403
– year: 2006
  ident: 35
  publication-title: Gaussian Processes for Machine Learning
– ident: 52
  doi: 10.1039/b508541a
– ident: 31
  doi: 10.1162/neco.1996.8.5.1085
– year: 2017
  ident: 47
  publication-title: Qml: A Python Toolkit for Quantum Machine Learning
– ident: 43
  doi: 10.1063/1.5020710
– ident: 11
  doi: 10.1063/1.5005095
– volume: 8
  start-page: e1327
  year: 2017
  ident: 50
  publication-title: Wiley. Interdiscip. Rev. Comput. Mol. Sci.
– ident: 18
  doi: 10.1103/PhysRevLett.120.143001
– year: 2013
  ident: 28
  publication-title: The Nature of Statistical Learning Theory
– ident: 54
  doi: 10.1103/PhysRevLett.95.153002
– ident: 17
  doi: 10.1103/PhysRevLett.120.036002
– ident: 48
  doi: 10.1109/MCSE.2007.55
– ident: 16
  doi: 10.1021/acs.jctc.8b00908
– ident: 55
  doi: 10.1103/PhysRevResearch.2.023220
– ident: 20
  doi: 10.1126/sciadv.1603015
– ident: 26
  doi: 10.1063/1.5023802
– ident: 9
  doi: 10.1038/s41524-017-0042-y
– ident: 1
  doi: 10.1002/qua.24927
– ident: 21
  doi: 10.1038/s41467-018-06169-2
– ident: 7
  doi: 10.1002/qua.24836
– start-page: 1057
  year: 2003
  ident: 34
  publication-title: Advances in Neural Information Processing Systems 15
– ident: 53
  doi: 10.1039/b810189b
– ident: 23
  doi: 10.1063/1.5011181
– ident: 45
  doi: 10.1103/PhysRevLett.125.166001
– start-page: 327
  year: 1994
  ident: 30
  publication-title: Advances in Neural Information Processing Systems
– year: 2015
  ident: 39
  publication-title: Master’s thesis Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn
– ident: 27
  doi: 10.1038/s41597-020-0473-z
– volume: 12
  start-page: 2825
  year: 2011
  ident: 46
  publication-title: J. Mach. Learn. Res.
– ident: 24
  doi: 10.1038/ncomms13890
– ident: 4
  doi: 10.1063/1.4966192
– ident: 25
  doi: 10.1038/sdata.2017.193
– ident: 33
  doi: 10.1021/ct400195d
– ident: 8
  doi: 10.1021/acs.jpcc.6b10908
– ident: 40
  doi: 10.1002/qua.24375
– ident: 42
  doi: 10.1063/1.5020710
– year: 2008
  ident: 58
  publication-title: OpenMP application program interface version 3.0
– ident: 29
  doi: 10.1002/anie.201709686
– ident: 15
  doi: 10.1063/1.5019779
– ident: 5
  doi: 10.1039/C6SC05720A
– year: 2019
  ident: 57
  publication-title: NumPy: A guide to NumPy
– ident: 10
  doi: 10.1103/PhysRevLett.114.096405
– ident: 19
  doi: 10.1021/acs.jctc.9b00181
SSID ssj0002513520
Score 2.546433
Snippet The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the...
SourceID unpaywall
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 45018
SubjectTerms chemistry
machine learning
quantum mechanics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO6gH5yfOL3LQg0Jm0zb9OA5xDMHpwcE8lSRNh7h1Y-sQ_evNa9PhRKZey0sJ7yV9v_S9_H4InQvqAv9jQJSeJnGpDIgIrZjEjsNtK7Qsnl-Pvu96nZ5712d9878D7sIs1e_14QzoxIlOSw5oa3EvqaCaxzTqrqJar_vYegbtuNLEVCF_GraUdSov48kmWp-nE_7-xofDLwmlXS_YjWY5DyH0kbw255loyo9vLI1_mes22jKoEreKZbCD1lS6i-qlYgM2G3gPdR9SrBEfhp5CPE7wYJp3fGUzrLErHuWNlQobJYkBWIxK-VwM_NTAKYF5GoO5_sDso1779ummQ4yiApF642ZE-Dx0mOSxz2IZck_4AVfS8gI75tTmijpMQxLflvrcKuAJ0L8nPqMq1JFWoXOAquk4VYcI84SJRCUeo0LoBMcDyoQd65Sr8SCVodtA16XHI2noxkH1YhjlZe8giMBdEbgrKtzVQJeLEZOCamOF7YUOYmT222yF3dUizL--9Og_xsdow4ajd97ZcoKq2XSuTjU-ycSZWZqfYMzepA
  priority: 102
  providerName: Unpaywall
Title On the role of gradients for machine learning of molecular energies and forces
URI https://iopscience.iop.org/article/10.1088/2632-2153/abba6f
https://doi.org/10.1088/2632-2153/abba6f
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) - journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: IOP
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB11ORQOLAVEWSof4ABSaPZFnKqqVUHqcqCinCI7cXpp06pNhbjw7YwTJwIJFS5RFI0daxx7nuPxewA3TDMF_6OrcGymYmqBqzBPDZXQMKiueqpK0-PRg6Hdn5jPU2tagsfiLMxyJaf-B7zNiIIzF8qEOLclGMYVjFSGkNuidlSGqtjdEsT5I-O1-MGCgRvBhSq3Jn8r-CMUlfF1-1Dbxiv68U7n829RpncEBxIeknbWmGMo8bgOtU6uylaHw1yGgchReQLDUUwQxhGRKEiWEZmt0zSuZEMQkJJFmi3JiZSHmAmLRa6JSwTptCCKIDQOhTnOGqcw6XVfOn1FyiQoAY7GRGEO9QwroKFjhYFHbea4lAeq7eoh1XTK0Q2IMxw9wMUoE08Ep3vkWBr3sPu4Z5xBJV7G_BwIjSwW8ci2NMYwalFXs5geYhxFkKcFntmAVu4xP5Ac4kLKYu6ne9mu6wsf-8LHfubjBtwVJVYZf8YO21vsBF8Oos0Ou_uim_6s9OKflV7Cni6W0mmmyhVUkvWWXyPeSFgzXafj9Wk0xuvgs9tMv7QmVCfDcfvtC6o41NQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1RkCgcKBQQOz7AAaS02ZcjAqqytT1QqbdgO04PlLRqUyH4esaJUwFCBYlbZI0dZ7zMOJ55D-CEGbbEf_Q1gd3UbIP7Ggv0SIssi5p6oOs0S49-aLnNrn3bc3qK5zTLhRmO1NZfw8ccKDhXoQqI8-sSYVxDS2VJui3qxvVRFJdgKcMpkRl87c7sJwsabyzV1fXkT5W_mKMSvnIVytNkRN9e6WDwydI0KvBU9DEPMHmuTVNW4-_f4Bv_8RHrsKa8UHKRi2_AgkiqUL4syN-qUCnYHoha_JvQaicEvUUi4xHJMCb9cRYtlk4I-r3kJQvKFESxUPSlxEtBvUsktrXEoyA0iaQ4bk5b0G1cP142NcXGoHFc9KnGPBpYDqeR50Q8oC7zfCq47vpmRA2TCtQ0ujOeyfHMy2SJhI6PPccQAc4SEVjbsJgME7EDhMYOi0XsOgZjaBypbzjMjNBcoy9p8MDehXoxKCFXUOWSMWMQZlfmvh9K9YVSfWGuvl04m9UY5TAdc2RPcVRCtVYnc-TOZzPh10b3_tjoMSx3rhrh_U3rbh9WTHl4z2JjDmAxHU_FIXo4KTvKZvEHZG304w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO6gH5yfOL3LQg0Jm0zb9OA5xDMHpwcE8lSRNh7h1Y-sQ_evNa9PhRKZey0sJ7yV9v_S9_H4InQvqAv9jQJSeJnGpDIgIrZjEjsNtK7Qsnl-Pvu96nZ5712d9878D7sIs1e_14QzoxIlOSw5oa3EvqaCaxzTqrqJar_vYegbtuNLEVCF_GraUdSov48kmWp-nE_7-xofDLwmlXS_YjWY5DyH0kbw255loyo9vLI1_mes22jKoEreKZbCD1lS6i-qlYgM2G3gPdR9SrBEfhp5CPE7wYJp3fGUzrLErHuWNlQobJYkBWIxK-VwM_NTAKYF5GoO5_sDso1779ummQ4yiApF642ZE-Dx0mOSxz2IZck_4AVfS8gI75tTmijpMQxLflvrcKuAJ0L8nPqMq1JFWoXOAquk4VYcI84SJRCUeo0LoBMcDyoQd65Sr8SCVodtA16XHI2noxkH1YhjlZe8giMBdEbgrKtzVQJeLEZOCamOF7YUOYmT222yF3dUizL--9Og_xsdow4ajd97ZcoKq2XSuTjU-ycSZWZqfYMzepA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+gradients+for+machine+learning+of+molecular+energies+and+forces&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Christensen%2C+Anders+S&rft.au=von+Lilienfeld%2C+O+Anatole&rft.date=2020-12-01&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=1&rft.issue=4&rft.spage=45018&rft_id=info:doi/10.1088%2F2632-2153%2Fabba6f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_abba6f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon