On the role of gradients for machine learning of molecular energies and forces
The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of predict...
Saved in:
| Published in | Machine learning: science and technology Vol. 1; no. 4; pp. 45018 - 45031 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2632-2153 2632-2153 |
| DOI | 10.1088/2632-2153/abba6f |
Cover
| Abstract | The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of prediction errors of quantum machine learning models for organic molecules trained on energy and force labels, two common data types in molecular simulations. When training models for the potential energy surface of a single molecule, we find that the inclusion of atomic forces in the training data increases the accuracy of the predicted energies and forces 7-fold, compared to models trained on energy only. Surprisingly, for models trained on sets of organic molecules of varying size and composition in non-equilibrium conformations, inclusion of forces in the training does not improve the predicted energies of unseen molecules in new conformations. Predicted forces, however, improve about 7-fold. For the systems studied, we find that force labels and energy labels contribute equally per label to the convergence of the prediction errors. The optimal choice of what type of training data to include depends on several factors: the computational cost of acquiring the force and energy labels for training, the application domain, the property of interest and the complexity of the machine learning model. Based on our observations we describe key considerations for the creation of new datasets for potential energy surfaces of molecules which maximize the efficiency of the resulting machine learning models. |
|---|---|
| AbstractList | The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of prediction errors of quantum machine learning models for organic molecules trained on energy and force labels, two common data types in molecular simulations. When training models for the potential energy surface of a single molecule, we find that the inclusion of atomic forces in the training data increases the accuracy of the predicted energies and forces 7-fold, compared to models trained on energy only. Surprisingly, for models trained on sets of organic molecules of varying size and composition in non-equilibrium conformations, inclusion of forces in the training does not improve the predicted energies of unseen molecules in new conformations. Predicted forces, however, improve about 7-fold. For the systems studied, we find that force labels and energy labels contribute equally per label to the convergence of the prediction errors. The optimal choice of what type of training data to include depends on several factors: the computational cost of acquiring the force and energy labels for training, the application domain, the property of interest and the complexity of the machine learning model. Based on our observations we describe key considerations for the creation of new datasets for potential energy surfaces of molecules which maximize the efficiency of the resulting machine learning models. |
| Author | Christensen, Anders S von Lilienfeld, O Anatole |
| Author_xml | – sequence: 1 givenname: Anders S orcidid: 0000-0002-7253-6897 surname: Christensen fullname: Christensen, Anders S organization: Institute of Physical Chemistry National Center for Computational Design and Discovery of Novel Materials (MARVEL) , Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland – sequence: 2 givenname: O Anatole surname: von Lilienfeld fullname: von Lilienfeld, O Anatole email: anatole.vonlilienfeld@unibas.ch organization: Institute of Physical Chemistry National Center for Computational Design and Discovery of Novel Materials (MARVEL) , Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland |
| BookMark | eNqNkFtLAzEQhYNUsNa--5gf4NpcyF4epXiDYl_0OcxmZ9uUNCnJFum_d5cVEUHxaYbD-YY555JMfPBIyDVnt5yV5ULkUmSCK7mAuoa8PSPTL2nybb8g85R2jDGhuFSCTcnL2tNuizQGhzS0dBOhsei7RNsQ6R7M1nqkDiF66zeDY987zdFBpOgxbiwmCr4Z7AbTFTlvwSWcf84ZeXu4f10-Zav14_PybpUZKUSX1QVUUhloCtWYCvK6KAENy0vRABeA_XMsV4UwspT1oHBRqLZQHCtjACs5I3y8e_QHOL2Dc_oQ7R7iSXOmh070EFoPofXYSc-wkTExpBSx_Q-S_0CM7aCzwXcRrPsLvBlBGw56F47R9238bv8AeF2HKw |
| CODEN | MLSTCK |
| CitedBy_id | crossref_primary_10_1038_s41597_023_01998_3 crossref_primary_10_1063_5_0030764 crossref_primary_10_1002_med_22008 crossref_primary_10_1021_acs_jpca_0c09762 crossref_primary_10_1088_2632_2153_ace418 crossref_primary_10_1002_qua_26984 crossref_primary_10_1021_acs_jctc_1c00647 crossref_primary_10_1515_revce_2024_0028 crossref_primary_10_1021_acscatal_2c02291 crossref_primary_10_1063_5_0080506 crossref_primary_10_1088_1361_648X_ac9d7d crossref_primary_10_1016_j_bpj_2022_08_045 crossref_primary_10_1021_acs_jctc_4c01570 crossref_primary_10_1111_jace_19934 crossref_primary_10_1073_pnas_2205221119 crossref_primary_10_1063_5_0150379 crossref_primary_10_1038_s41597_022_01882_6 crossref_primary_10_1063_5_0108967 crossref_primary_10_1038_s42256_023_00740_3 crossref_primary_10_1063_5_0112856 crossref_primary_10_1038_s41524_022_00773_z crossref_primary_10_1088_2632_2153_ac9955 crossref_primary_10_1063_5_0138367 crossref_primary_10_1063_5_0158075 crossref_primary_10_1103_PhysRevResearch_4_L042019 crossref_primary_10_1021_acs_jctc_2c00546 crossref_primary_10_1021_acs_jctc_2c01038 crossref_primary_10_1371_journal_pone_0297502 crossref_primary_10_1021_acs_jpca_4c02028 crossref_primary_10_1088_2632_2153_ad9709 crossref_primary_10_1103_PhysRevLett_131_028001 crossref_primary_10_1063_5_0155322 crossref_primary_10_1063_5_0147023 crossref_primary_10_1063_5_0231265 crossref_primary_10_1002_kin_21759 crossref_primary_10_1021_acs_estlett_1c00997 crossref_primary_10_1103_PhysRevMaterials_6_013804 crossref_primary_10_1021_acsnano_4c03094 crossref_primary_10_1063_5_0208746 crossref_primary_10_1063_5_0124363 crossref_primary_10_1063_5_0202647 crossref_primary_10_1080_00268976_2024_2348110 crossref_primary_10_1002_adma_202305758 crossref_primary_10_1063_5_0033778 crossref_primary_10_1038_s41524_023_01180_8 crossref_primary_10_1021_acs_jpcb_3c07187 crossref_primary_10_1021_acs_jpclett_3c03080 crossref_primary_10_1063_5_0152215 crossref_primary_10_1007_s41061_021_00339_5 crossref_primary_10_1021_acs_jctc_4c00054 crossref_primary_10_1021_acs_jctc_4c00977 crossref_primary_10_1038_s41467_022_34436_w crossref_primary_10_1021_acs_jctc_2c01290 crossref_primary_10_1063_5_0163882 crossref_primary_10_1038_s41524_022_00739_1 crossref_primary_10_1088_2632_2153_ac7d3c crossref_primary_10_1103_PhysRevX_14_021036 crossref_primary_10_1038_s41524_024_01277_8 crossref_primary_10_1021_acs_jctc_3c01203 crossref_primary_10_1021_acs_jctc_3c00710 crossref_primary_10_1021_acs_chemrev_0c01111 crossref_primary_10_1039_D1CP04422B crossref_primary_10_1063_5_0156307 crossref_primary_10_1063_5_0106617 crossref_primary_10_1002_jcc_27313 crossref_primary_10_1021_acs_chemrev_0c01303 crossref_primary_10_1063_5_0142590 crossref_primary_10_1103_PhysRevB_103_174114 crossref_primary_10_1021_acs_jpca_2c05904 crossref_primary_10_1063_5_0035530 crossref_primary_10_1021_acs_jpca_3c07872 crossref_primary_10_1088_2632_2153_abfd96 crossref_primary_10_1088_2632_2153_ad8f13 |
| Cites_doi | 10.1103/PhysRevLett.98.146401 10.1016/j.jcp.2014.12.018 10.1016/j.cplett.2004.07.076 10.1063/1.5126701 10.1063/1.5053562 10.1103/PhysRevB.95.214302 10.1021/acs.jpclett.5b00831 10.1021/acs.jctc.6b00553 10.1103/PhysRevB.97.184307 10.1103/PhysRevB.92.094306 10.1039/C9CP06471K 10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.104.136403 10.1039/b508541a 10.1162/neco.1996.8.5.1085 10.1063/1.5020710 10.1063/1.5005095 10.1103/PhysRevLett.120.143001 10.1103/PhysRevLett.95.153002 10.1103/PhysRevLett.120.036002 10.1109/MCSE.2007.55 10.1021/acs.jctc.8b00908 10.1103/PhysRevResearch.2.023220 10.1126/sciadv.1603015 10.1063/1.5023802 10.1038/s41524-017-0042-y 10.1002/qua.24927 10.1038/s41467-018-06169-2 10.1002/qua.24836 10.1039/b810189b 10.1063/1.5011181 10.1103/PhysRevLett.125.166001 10.1038/s41597-020-0473-z 10.1038/ncomms13890 10.1063/1.4966192 10.1038/sdata.2017.193 10.1021/ct400195d 10.1021/acs.jpcc.6b10908 10.1002/qua.24375 10.1002/anie.201709686 10.1063/1.5019779 10.1039/C6SC05720A 10.1103/PhysRevLett.114.096405 10.1021/acs.jctc.9b00181 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by IOP Publishing Ltd |
| Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1088/2632-2153/abba6f |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Computer Science |
| DocumentTitleAlternate | On the role of gradients for machine learning of molecular energies and forces |
| EISSN | 2632-2153 |
| ExternalDocumentID | 10.1088/2632-2153/abba6f 10_1088_2632_2153_abba6f mlstabba6f |
| GrantInformation_xml | – fundername: H2020 European Research Council grantid: ERC-CoG grant QML). funderid: http://dx.doi.org/10.13039/100010663 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 407540_167186 NFP 75 Big Data funderid: http://dx.doi.org/10.13039/501100001711 |
| GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX AEINN CITATION PHGZM PHGZT PQGLB PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c322t-b7a935cad75dc9a6b78aec0682da12ae13506572c383ba12a1275f751e9ccae93 |
| IEDL.DBID | O3W |
| ISSN | 2632-2153 |
| IngestDate | Sun Oct 26 04:08:48 EDT 2025 Wed Oct 01 03:35:03 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Wed Aug 21 03:38:34 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-b7a935cad75dc9a6b78aec0682da12ae13506572c383ba12a1275f751e9ccae93 |
| Notes | MLST-100193.R1 |
| ORCID | 0000-0002-7253-6897 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2632-2153/abba6f |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1088_2632_2153_abba6f iop_journals_10_1088_2632_2153_abba6f unpaywall_primary_10_1088_2632_2153_abba6f crossref_primary_10_1088_2632_2153_abba6f |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Machine learning: science and technology |
| PublicationTitleAbbrev | MLST |
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 45 48 Waskom M (49) 2017 Cortes C (30) 1994 Rasmussen C E (35) 2006 Himmelblau D M (32) 1972 51 52 53 10 54 11 55 12 56 13 Vapnik V (28) 2013 14 15 16 17 18 19 Frank N (50) 2017; 8 1 Oliphant T (57) 2019 2 3 4 5 6 7 8 Christensen A S (47) 2017 9 20 21 22 23 24 Mathias S (39) 2015 25 26 27 29 Barker J (44) 2016 Solak E (34) 2003 31 33 Pedregosa F (46) 2011; 12 36 37 38 OpenMP Architecture Review Board (58) 2008 40 41 42 43 |
| References_xml | – ident: 3 doi: 10.1103/PhysRevLett.98.146401 – ident: 12 doi: 10.1016/j.jcp.2014.12.018 – start-page: 25 year: 2016 ident: 44 – ident: 2 doi: 10.1016/j.cplett.2004.07.076 – year: 2017 ident: 49 publication-title: mwaskom/seaborn: v0.8.1 (september 2017) September – ident: 22 doi: 10.1063/1.5126701 – ident: 38 doi: 10.1063/1.5053562 – ident: 13 doi: 10.1103/PhysRevB.95.214302 – ident: 41 doi: 10.1021/acs.jpclett.5b00831 – year: 1972 ident: 32 publication-title: Applied Nonlinear Programming – ident: 36 doi: 10.1021/acs.jctc.6b00553 – ident: 14 doi: 10.1103/PhysRevB.97.184307 – ident: 6 doi: 10.1103/PhysRevB.92.094306 – ident: 56 doi: 10.1039/C9CP06471K – ident: 51 doi: 10.1103/PhysRevLett.77.3865 – ident: 37 doi: 10.1103/PhysRevLett.104.136403 – year: 2006 ident: 35 publication-title: Gaussian Processes for Machine Learning – ident: 52 doi: 10.1039/b508541a – ident: 31 doi: 10.1162/neco.1996.8.5.1085 – year: 2017 ident: 47 publication-title: Qml: A Python Toolkit for Quantum Machine Learning – ident: 43 doi: 10.1063/1.5020710 – ident: 11 doi: 10.1063/1.5005095 – volume: 8 start-page: e1327 year: 2017 ident: 50 publication-title: Wiley. Interdiscip. Rev. Comput. Mol. Sci. – ident: 18 doi: 10.1103/PhysRevLett.120.143001 – year: 2013 ident: 28 publication-title: The Nature of Statistical Learning Theory – ident: 54 doi: 10.1103/PhysRevLett.95.153002 – ident: 17 doi: 10.1103/PhysRevLett.120.036002 – ident: 48 doi: 10.1109/MCSE.2007.55 – ident: 16 doi: 10.1021/acs.jctc.8b00908 – ident: 55 doi: 10.1103/PhysRevResearch.2.023220 – ident: 20 doi: 10.1126/sciadv.1603015 – ident: 26 doi: 10.1063/1.5023802 – ident: 9 doi: 10.1038/s41524-017-0042-y – ident: 1 doi: 10.1002/qua.24927 – ident: 21 doi: 10.1038/s41467-018-06169-2 – ident: 7 doi: 10.1002/qua.24836 – start-page: 1057 year: 2003 ident: 34 publication-title: Advances in Neural Information Processing Systems 15 – ident: 53 doi: 10.1039/b810189b – ident: 23 doi: 10.1063/1.5011181 – ident: 45 doi: 10.1103/PhysRevLett.125.166001 – start-page: 327 year: 1994 ident: 30 publication-title: Advances in Neural Information Processing Systems – year: 2015 ident: 39 publication-title: Master’s thesis Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn – ident: 27 doi: 10.1038/s41597-020-0473-z – volume: 12 start-page: 2825 year: 2011 ident: 46 publication-title: J. Mach. Learn. Res. – ident: 24 doi: 10.1038/ncomms13890 – ident: 4 doi: 10.1063/1.4966192 – ident: 25 doi: 10.1038/sdata.2017.193 – ident: 33 doi: 10.1021/ct400195d – ident: 8 doi: 10.1021/acs.jpcc.6b10908 – ident: 40 doi: 10.1002/qua.24375 – ident: 42 doi: 10.1063/1.5020710 – year: 2008 ident: 58 publication-title: OpenMP application program interface version 3.0 – ident: 29 doi: 10.1002/anie.201709686 – ident: 15 doi: 10.1063/1.5019779 – ident: 5 doi: 10.1039/C6SC05720A – year: 2019 ident: 57 publication-title: NumPy: A guide to NumPy – ident: 10 doi: 10.1103/PhysRevLett.114.096405 – ident: 19 doi: 10.1021/acs.jctc.9b00181 |
| SSID | ssj0002513520 |
| Score | 2.546433 |
| Snippet | The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the... |
| SourceID | unpaywall crossref iop |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 45018 |
| SubjectTerms | chemistry machine learning quantum mechanics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO6gH5yfOL3LQg0Jm0zb9OA5xDMHpwcE8lSRNh7h1Y-sQ_evNa9PhRKZey0sJ7yV9v_S9_H4InQvqAv9jQJSeJnGpDIgIrZjEjsNtK7Qsnl-Pvu96nZ5712d9878D7sIs1e_14QzoxIlOSw5oa3EvqaCaxzTqrqJar_vYegbtuNLEVCF_GraUdSov48kmWp-nE_7-xofDLwmlXS_YjWY5DyH0kbw255loyo9vLI1_mes22jKoEreKZbCD1lS6i-qlYgM2G3gPdR9SrBEfhp5CPE7wYJp3fGUzrLErHuWNlQobJYkBWIxK-VwM_NTAKYF5GoO5_sDso1779ummQ4yiApF642ZE-Dx0mOSxz2IZck_4AVfS8gI75tTmijpMQxLflvrcKuAJ0L8nPqMq1JFWoXOAquk4VYcI84SJRCUeo0LoBMcDyoQd65Sr8SCVodtA16XHI2noxkH1YhjlZe8giMBdEbgrKtzVQJeLEZOCamOF7YUOYmT222yF3dUizL--9Og_xsdow4ajd97ZcoKq2XSuTjU-ycSZWZqfYMzepA priority: 102 providerName: Unpaywall |
| Title | On the role of gradients for machine learning of molecular energies and forces |
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/abba6f https://doi.org/10.1088/2632-2153/abba6f |
| UnpaywallVersion | publishedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics (IOP) - journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: IOP dateStart: 20200301 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB11ORQOLAVEWSof4ABSaPZFnKqqVUHqcqCinCI7cXpp06pNhbjw7YwTJwIJFS5RFI0daxx7nuPxewA3TDMF_6OrcGymYmqBqzBPDZXQMKiueqpK0-PRg6Hdn5jPU2tagsfiLMxyJaf-B7zNiIIzF8qEOLclGMYVjFSGkNuidlSGqtjdEsT5I-O1-MGCgRvBhSq3Jn8r-CMUlfF1-1Dbxiv68U7n829RpncEBxIeknbWmGMo8bgOtU6uylaHw1yGgchReQLDUUwQxhGRKEiWEZmt0zSuZEMQkJJFmi3JiZSHmAmLRa6JSwTptCCKIDQOhTnOGqcw6XVfOn1FyiQoAY7GRGEO9QwroKFjhYFHbea4lAeq7eoh1XTK0Q2IMxw9wMUoE08Ep3vkWBr3sPu4Z5xBJV7G_BwIjSwW8ci2NMYwalFXs5geYhxFkKcFntmAVu4xP5Ac4kLKYu6ne9mu6wsf-8LHfubjBtwVJVYZf8YO21vsBF8Oos0Ou_uim_6s9OKflV7Cni6W0mmmyhVUkvWWXyPeSFgzXafj9Wk0xuvgs9tMv7QmVCfDcfvtC6o41NQ |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1RkCgcKBQQOz7AAaS02ZcjAqqytT1QqbdgO04PlLRqUyH4esaJUwFCBYlbZI0dZ7zMOJ55D-CEGbbEf_Q1gd3UbIP7Ggv0SIssi5p6oOs0S49-aLnNrn3bc3qK5zTLhRmO1NZfw8ccKDhXoQqI8-sSYVxDS2VJui3qxvVRFJdgKcMpkRl87c7sJwsabyzV1fXkT5W_mKMSvnIVytNkRN9e6WDwydI0KvBU9DEPMHmuTVNW4-_f4Bv_8RHrsKa8UHKRi2_AgkiqUL4syN-qUCnYHoha_JvQaicEvUUi4xHJMCb9cRYtlk4I-r3kJQvKFESxUPSlxEtBvUsktrXEoyA0iaQ4bk5b0G1cP142NcXGoHFc9KnGPBpYDqeR50Q8oC7zfCq47vpmRA2TCtQ0ujOeyfHMy2SJhI6PPccQAc4SEVjbsJgME7EDhMYOi0XsOgZjaBypbzjMjNBcoy9p8MDehXoxKCFXUOWSMWMQZlfmvh9K9YVSfWGuvl04m9UY5TAdc2RPcVRCtVYnc-TOZzPh10b3_tjoMSx3rhrh_U3rbh9WTHl4z2JjDmAxHU_FIXo4KTvKZvEHZG304w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uO6gH5yfOL3LQg0Jm0zb9OA5xDMHpwcE8lSRNh7h1Y-sQ_evNa9PhRKZey0sJ7yV9v_S9_H4InQvqAv9jQJSeJnGpDIgIrZjEjsNtK7Qsnl-Pvu96nZ5712d9878D7sIs1e_14QzoxIlOSw5oa3EvqaCaxzTqrqJar_vYegbtuNLEVCF_GraUdSov48kmWp-nE_7-xofDLwmlXS_YjWY5DyH0kbw255loyo9vLI1_mes22jKoEreKZbCD1lS6i-qlYgM2G3gPdR9SrBEfhp5CPE7wYJp3fGUzrLErHuWNlQobJYkBWIxK-VwM_NTAKYF5GoO5_sDso1779ummQ4yiApF642ZE-Dx0mOSxz2IZck_4AVfS8gI75tTmijpMQxLflvrcKuAJ0L8nPqMq1JFWoXOAquk4VYcI84SJRCUeo0LoBMcDyoQd65Sr8SCVodtA16XHI2noxkH1YhjlZe8giMBdEbgrKtzVQJeLEZOCamOF7YUOYmT222yF3dUizL--9Og_xsdow4ajd97ZcoKq2XSuTjU-ycSZWZqfYMzepA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+gradients+for+machine+learning+of+molecular+energies+and+forces&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Christensen%2C+Anders+S&rft.au=von+Lilienfeld%2C+O+Anatole&rft.date=2020-12-01&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=1&rft.issue=4&rft.spage=45018&rft_id=info:doi/10.1088%2F2632-2153%2Fabba6f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_abba6f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |