The magic nature of 132Sn explored through the single-particle states of 133Sn

Nuclear magic Atomic nuclei have a shell structure that allows for 'magic' numbers of neutrons and protons, analogous to the noble gases in atomic physics. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for fundamental und...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 465; no. 7297; pp. 454 - 457
Main Authors Jones, K. L., Adekola, A. S., Bardayan, D. W., Blackmon, J. C., Chae, K. Y., Chipps, K. A., Cizewski, J. A., Erikson, L., Harlin, C., Hatarik, R., Kapler, R., Kozub, R. L., Liang, J. F., Livesay, R., Ma, Z., Moazen, B. H., Nesaraja, C. D., Nunes, F. M., Pain, S. D., Patterson, N. P., Shapira, D., Shriner, J. F., Smith, M. S., Swan, T. P., Thomas, J. S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2010
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
DOI10.1038/nature09048

Cover

Abstract Nuclear magic Atomic nuclei have a shell structure that allows for 'magic' numbers of neutrons and protons, analogous to the noble gases in atomic physics. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for fundamental understanding of nuclear structure and nucleosynthesis. Using a nucleon transfer technique to add single neutrons to the short-lived tin isotope 132 Sn, to create the even-shorter-lived 133 Sn, Jones et al . have been able to confirm the closed-shell 'doubly magic' nature of 132 Sn. Measurements of the spectrum of quantum states available to the added neutron show that the characteristics of the 133 Sn nucleus are determined almost completely by this single neutron. This finding extends the validity of the shell model to neutron-rich nuclei, and provides a benchmark for predicting the properties of nuclei even farther from stability, including those involved in neutron-capture reactions in supernovae. Atomic nuclei have a shell structure that allows for 'magic numbers' of neutrons and protons, analogous to the noble gases in atomic physics. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for the fundamental understanding of nuclear structure and nucleosynthesis. Here, a nucleon-transfer technique has been used to measure the single-particle states of 133 Sn, revealing the highly magic nature of 132 Sn. Atomic nuclei have a shell structure 1 in which nuclei with ‘magic numbers’ of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important 2 , 3 , 4 , 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133 Sn that lie outside the double shell closure present at the short-lived nucleus 132 Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132 Sn.
AbstractList Nuclear magic Atomic nuclei have a shell structure that allows for 'magic' numbers of neutrons and protons, analogous to the noble gases in atomic physics. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for fundamental understanding of nuclear structure and nucleosynthesis. Using a nucleon transfer technique to add single neutrons to the short-lived tin isotope 132 Sn, to create the even-shorter-lived 133 Sn, Jones et al . have been able to confirm the closed-shell 'doubly magic' nature of 132 Sn. Measurements of the spectrum of quantum states available to the added neutron show that the characteristics of the 133 Sn nucleus are determined almost completely by this single neutron. This finding extends the validity of the shell model to neutron-rich nuclei, and provides a benchmark for predicting the properties of nuclei even farther from stability, including those involved in neutron-capture reactions in supernovae. Atomic nuclei have a shell structure that allows for 'magic numbers' of neutrons and protons, analogous to the noble gases in atomic physics. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for the fundamental understanding of nuclear structure and nucleosynthesis. Here, a nucleon-transfer technique has been used to measure the single-particle states of 133 Sn, revealing the highly magic nature of 132 Sn. Atomic nuclei have a shell structure 1 in which nuclei with ‘magic numbers’ of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important 2 , 3 , 4 , 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133 Sn that lie outside the double shell closure present at the short-lived nucleus 132 Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132 Sn.
Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lies outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.
Author Swan, T. P.
Liang, J. F.
Nesaraja, C. D.
Cizewski, J. A.
Shriner, J. F.
Smith, M. S.
Chipps, K. A.
Erikson, L.
Shapira, D.
Thomas, J. S.
Kapler, R.
Bardayan, D. W.
Jones, K. L.
Nunes, F. M.
Patterson, N. P.
Chae, K. Y.
Ma, Z.
Adekola, A. S.
Pain, S. D.
Hatarik, R.
Livesay, R.
Harlin, C.
Kozub, R. L.
Blackmon, J. C.
Moazen, B. H.
Author_xml – sequence: 1
  givenname: K. L.
  surname: Jones
  fullname: Jones, K. L.
  email: kgrzywac@utk.edu
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA, Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
– sequence: 2
  givenname: A. S.
  surname: Adekola
  fullname: Adekola, A. S.
  organization: Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
– sequence: 3
  givenname: D. W.
  surname: Bardayan
  fullname: Bardayan, D. W.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 4
  givenname: J. C.
  surname: Blackmon
  fullname: Blackmon, J. C.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 5
  givenname: K. Y.
  surname: Chae
  fullname: Chae, K. Y.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
– sequence: 6
  givenname: K. A.
  surname: Chipps
  fullname: Chipps, K. A.
  organization: Physics Department, Colorado School of Mines, Golden, Colorado 80401, USA
– sequence: 7
  givenname: J. A.
  surname: Cizewski
  fullname: Cizewski, J. A.
  organization: Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
– sequence: 8
  givenname: L.
  surname: Erikson
  fullname: Erikson, L.
  organization: Physics Department, Colorado School of Mines, Golden, Colorado 80401, USA
– sequence: 9
  givenname: C.
  surname: Harlin
  fullname: Harlin, C.
  organization: Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
– sequence: 10
  givenname: R.
  surname: Hatarik
  fullname: Hatarik, R.
  organization: Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
– sequence: 11
  givenname: R.
  surname: Kapler
  fullname: Kapler, R.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
– sequence: 12
  givenname: R. L.
  surname: Kozub
  fullname: Kozub, R. L.
  organization: Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA
– sequence: 13
  givenname: J. F.
  surname: Liang
  fullname: Liang, J. F.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 14
  givenname: R.
  surname: Livesay
  fullname: Livesay, R.
  organization: Physics Department, Colorado School of Mines, Golden, Colorado 80401, USA
– sequence: 15
  givenname: Z.
  surname: Ma
  fullname: Ma, Z.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
– sequence: 16
  givenname: B. H.
  surname: Moazen
  fullname: Moazen, B. H.
  organization: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
– sequence: 17
  givenname: C. D.
  surname: Nesaraja
  fullname: Nesaraja, C. D.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 18
  givenname: F. M.
  surname: Nunes
  fullname: Nunes, F. M.
  organization: National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
– sequence: 19
  givenname: S. D.
  surname: Pain
  fullname: Pain, S. D.
  organization: Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
– sequence: 20
  givenname: N. P.
  surname: Patterson
  fullname: Patterson, N. P.
  organization: Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
– sequence: 21
  givenname: D.
  surname: Shapira
  fullname: Shapira, D.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 22
  givenname: J. F.
  surname: Shriner
  fullname: Shriner, J. F.
  organization: Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA
– sequence: 23
  givenname: M. S.
  surname: Smith
  fullname: Smith, M. S.
  organization: Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 24
  givenname: T. P.
  surname: Swan
  fullname: Swan, T. P.
  organization: Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
– sequence: 25
  givenname: J. S.
  surname: Thomas
  fullname: Thomas, J. S.
  organization: Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22796934$$DView record in Pascal Francis
https://www.osti.gov/biblio/985782$$D View this record in Osti.gov
BookMark eNpt0E9LwzAYBvAgE9ymJ79APXjSapqkbXqU4T8Yetg8hyR922Z0yUgy0G9vRxVEdnp54fc8h2eGJtZZQOgyw3cZpvzeyrj3gCvM-AmaZqwsUlbwcoKmGBOeYk6LMzQLYYMxzrOSTdHbuoNkK1ujkzGcuCbJKFnZBD53vfNQJ7Hzbt92w4UkGNv2kO6kj0b3wx9lhDCG6Mqeo9NG9gEufu4cfTw9rhcv6fL9-XXxsEw1JSSmqpScMaWoahhlBOpaUVJrSYEomlOWFYVWqiZMqkpXUnFdMppLDpUqapwTOkdXY68L0YigTQTdaWct6Cgqnpf8YK5Hs5NBy77x0moTxM6brfRfgpCyKirKBpeNTnsXgodGDHUyGmejl6YXGRaHccWfcYfMzb_Mb-1xfTvqMCjbghcbt_d2GOgo_wYiu40S
CODEN NATUAS
CitedBy_id crossref_primary_10_1142_S021830131101840X
crossref_primary_10_1103_PhysRevC_102_044329
crossref_primary_10_1103_PhysRevC_88_031301
crossref_primary_10_1103_PhysRevLett_122_192502
crossref_primary_10_1088_0034_4885_76_6_066201
crossref_primary_10_1016_j_physletb_2024_138561
crossref_primary_10_3390_sym13101831
crossref_primary_10_1038_d41586_019_01321_4
crossref_primary_10_1103_PhysRevC_84_044611
crossref_primary_10_1016_j_ppnp_2019_04_002
crossref_primary_10_1103_RevModPhys_93_015002
crossref_primary_10_1140_epjp_s13360_023_04249_x
crossref_primary_10_1038_nphys3165
crossref_primary_10_1103_PhysRevC_105_024602
crossref_primary_10_1103_PhysRevC_108_044611
crossref_primary_10_1016_j_nima_2020_164827
crossref_primary_10_1103_PhysRevC_90_034309
crossref_primary_10_1103_PhysRevLett_124_022501
crossref_primary_10_1016_j_physletb_2019_06_035
crossref_primary_10_1016_j_nimb_2015_12_006
crossref_primary_10_1103_PhysRevC_102_051301
crossref_primary_10_1088_1361_6471_ab0849
crossref_primary_10_1007_s40766_022_00033_2
crossref_primary_10_1103_PhysRevC_96_054313
crossref_primary_10_1016_j_nima_2013_01_035
crossref_primary_10_1016_j_physletb_2024_138449
crossref_primary_10_1088_0034_4885_77_9_096302
crossref_primary_10_1016_j_phpro_2015_05_058
crossref_primary_10_1007_s11433_015_5653_z
crossref_primary_10_1038_s41586_022_04818_7
crossref_primary_10_1103_PhysRevC_95_011304
crossref_primary_10_1103_PhysRevC_87_064613
crossref_primary_10_1103_PhysRevC_108_024311
crossref_primary_10_1103_PhysRevC_84_044324
crossref_primary_10_1103_PhysRevC_88_051301
crossref_primary_10_1088_1361_6471_aa5117
crossref_primary_10_1038_s41586_023_06352_6
crossref_primary_10_1103_PhysRevC_99_041302
crossref_primary_10_1088_0954_3899_41_5_055113
crossref_primary_10_3390_physics6030068
crossref_primary_10_1088_0031_8949_2013_T152_014003
crossref_primary_10_1088_0031_8949_2013_T152_014002
crossref_primary_10_1088_1742_6596_267_1_012019
crossref_primary_10_1080_10619127_2013_855573
crossref_primary_10_1103_PhysRevC_96_014321
crossref_primary_10_1103_PhysRevC_86_031307
crossref_primary_10_1016_j_nima_2014_03_016
crossref_primary_10_1103_PhysRevLett_121_252501
crossref_primary_10_1016_j_physletb_2014_12_006
crossref_primary_10_1103_PhysRevC_87_054321
crossref_primary_10_1088_1674_1137_43_5_054101
crossref_primary_10_1103_PhysRevLett_120_152503
crossref_primary_10_1103_PhysRevC_87_024307
crossref_primary_10_1088_0954_3899_39_9_093101
crossref_primary_10_1103_PhysRevLett_131_022501
crossref_primary_10_1016_j_physletb_2022_137337
crossref_primary_10_1103_PhysRevLett_118_092503
crossref_primary_10_1088_0954_3899_43_4_043001
crossref_primary_10_1088_1361_6471_ab3698
crossref_primary_10_1103_PhysRevC_88_024311
crossref_primary_10_1088_1674_1137_accdc6
crossref_primary_10_1103_PhysRevC_109_024304
crossref_primary_10_1103_PhysRevC_93_034324
crossref_primary_10_1103_PhysRevC_98_054615
crossref_primary_10_1016_j_nds_2014_07_034
crossref_primary_10_1103_PhysRevC_86_032802
crossref_primary_10_1103_PhysRevLett_112_172701
crossref_primary_10_1103_PhysRevC_84_061303
crossref_primary_10_1103_PhysRevLett_105_162502
crossref_primary_10_1103_PhysRevC_110_014328
crossref_primary_10_1103_PhysRevLett_109_032501
crossref_primary_10_1016_j_nuclphysa_2019_03_004
crossref_primary_10_1088_0031_8949_2013_T152_014020
crossref_primary_10_1103_PhysRevC_99_064302
crossref_primary_10_1103_PhysRevC_91_024321
crossref_primary_10_1016_j_physletb_2020_135740
crossref_primary_10_1103_PhysRevC_84_024325
crossref_primary_10_1088_1742_6596_312_8_082004
crossref_primary_10_1088_0031_8949_2013_T152_014024
crossref_primary_10_1103_PhysRevC_83_034610
crossref_primary_10_1038_465430a
crossref_primary_10_1103_PhysRevC_102_024337
crossref_primary_10_1103_PhysRevC_85_014307
crossref_primary_10_1016_j_nds_2011_03_001
crossref_primary_10_1051_epjconf_202023204006
crossref_primary_10_1103_PhysRevC_98_054602
crossref_primary_10_1016_j_nimb_2023_03_017
crossref_primary_10_1038_s41567_021_01326_9
crossref_primary_10_1103_PhysRevC_91_045802
crossref_primary_10_1103_PhysRevC_95_064608
crossref_primary_10_1093_ptep_ptu003
crossref_primary_10_1088_1742_6596_381_1_012095
crossref_primary_10_1016_j_physletb_2018_08_005
crossref_primary_10_1140_epja_i2016_16347_y
crossref_primary_10_1103_PhysRevC_102_034324
crossref_primary_10_1088_1009_0630_14_7_11
crossref_primary_10_1103_PhysRevC_108_014314
crossref_primary_10_1103_PhysRevC_105_L041302
crossref_primary_10_1103_PhysRevC_88_041304
crossref_primary_10_1103_PhysRevC_99_024314
crossref_primary_10_1103_PhysRevC_87_021301
crossref_primary_10_1103_PhysRevC_99_069901
crossref_primary_10_1103_PhysRevC_99_045805
crossref_primary_10_1103_PhysRevC_89_064311
crossref_primary_10_1140_epja_s10050_021_00477_w
crossref_primary_10_1103_PhysRevC_107_014311
crossref_primary_10_1103_PhysRevC_85_044301
crossref_primary_10_1088_1402_4896_aa7353
crossref_primary_10_1103_PhysRevC_107_064305
crossref_primary_10_1103_PhysRevC_84_034601
crossref_primary_10_1051_epjconf_201612304006
crossref_primary_10_1103_PhysRevC_84_034607
crossref_primary_10_1016_j_nuclphysa_2015_07_012
crossref_primary_10_1016_j_physletb_2024_138470
crossref_primary_10_1140_epjp_i2016_16319_8
crossref_primary_10_1140_epja_i2015_15118_8
crossref_primary_10_1103_PhysRevLett_124_032502
crossref_primary_10_1016_j_physletb_2015_03_018
crossref_primary_10_1038_nphys3645
crossref_primary_10_1103_PhysRevC_99_024304
crossref_primary_10_1103_PhysRevC_92_024319
crossref_primary_10_1103_PhysRevC_91_021303
crossref_primary_10_1088_0954_3899_41_9_094002
crossref_primary_10_1088_1742_6596_403_1_012047
crossref_primary_10_1103_PhysRevC_102_014328
crossref_primary_10_1103_PhysRevLett_107_092501
crossref_primary_10_1088_1742_6596_312_4_042001
crossref_primary_10_1103_PhysRevLett_122_212502
crossref_primary_10_1103_PhysRevLett_117_172501
crossref_primary_10_1103_PhysRevLett_112_132501
crossref_primary_10_1088_1742_6596_420_1_012045
crossref_primary_10_1088_0954_3899_38_2_024002
crossref_primary_10_1088_1742_6596_321_1_012016
crossref_primary_10_1103_PhysRevC_84_014305
crossref_primary_10_1103_PhysRevC_90_014322
crossref_primary_10_1016_j_ppnp_2020_103767
crossref_primary_10_1088_1742_6596_312_9_092001
crossref_primary_10_1103_PhysRevC_92_041303
crossref_primary_10_1063_1_3480064
crossref_primary_10_1007_s41365_020_0731_y
crossref_primary_10_1103_PhysRevC_109_054317
crossref_primary_10_1016_j_ppnp_2021_103887
crossref_primary_10_1103_PhysRevC_106_054316
crossref_primary_10_1103_PhysRevC_100_011302
crossref_primary_10_1103_PhysRevC_93_041301
crossref_primary_10_1103_PhysRevC_102_054316
crossref_primary_10_1088_1674_1137_ad0b6b
crossref_primary_10_1140_epja_s10050_023_01026_3
crossref_primary_10_1051_epjconf_20123802001
crossref_primary_10_1103_PhysRevC_84_054313
crossref_primary_10_1088_1361_6471_44_3_033001
crossref_primary_10_1103_PhysRevC_83_011302
crossref_primary_10_1134_S1063778819010083
crossref_primary_10_1140_epja_i2014_14023_0
crossref_primary_10_1088_1748_0221_7_05_C05002
crossref_primary_10_1103_PhysRevC_100_024624
crossref_primary_10_3938_jkps_68_1055
crossref_primary_10_1103_PhysRevC_87_034309
crossref_primary_10_1016_j_nima_2011_01_035
crossref_primary_10_1103_PhysRevC_104_014302
crossref_primary_10_1103_PhysRevC_88_054310
crossref_primary_10_1103_PhysRevC_104_014301
crossref_primary_10_1103_PhysRevC_90_044322
crossref_primary_10_1103_PhysRevLett_118_202502
crossref_primary_10_1016_j_nuclphysa_2016_06_013
crossref_primary_10_1140_epja_s10050_023_00975_z
crossref_primary_10_1016_j_nima_2018_09_052
crossref_primary_10_1103_PhysRevLett_107_032501
crossref_primary_10_1103_PhysRevC_84_054305
crossref_primary_10_1016_j_aop_2019_168017
crossref_primary_10_1103_PhysRevC_100_064316
crossref_primary_10_1103_PhysRevC_89_054605
crossref_primary_10_1088_1674_1137_44_9_094108
crossref_primary_10_1103_PhysRevC_104_044328
crossref_primary_10_1016_j_nima_2016_08_054
crossref_primary_10_1016_j_nimb_2017_07_036
crossref_primary_10_3938_jkps_76_567
crossref_primary_10_1103_PhysRevLett_109_172501
crossref_primary_10_1088_1742_6596_420_1_012066
Cites_doi 10.1088/0034-4885/70/9/R02
10.1016/j.nima.2003.11.142
10.1007/s100500050280
10.1103/PhysRevC.79.064313
10.1103/PhysRevC.76.024313
10.1016/0029-554X(79)90734-1
10.1016/S0375-9474(97)00641-6
10.1016/0370-1573(91)90070-3
10.1103/PhysRevC.75.024601
10.1016/0167-7977(88)90005-6
10.1103/PhysRevLett.77.1020
10.1103/PhysRevC.64.014312
10.1103/PhysRevC.73.044307
10.1103/PhysRevLett.80.676
10.1016/S0375-9474(00)00379-1
10.1016/0375-9474(69)90912-9
10.1103/PhysRevC.66.054313
10.1016/0003-4916(68)90126-7
10.1103/PhysRevC.76.044302
10.1016/j.nimb.2007.04.289
10.1103/PhysRevC.16.2193
10.1103/PhysRevC.80.021305
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2010
2015 INIST-CNRS
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2010
– notice: 2015 INIST-CNRS
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Holifield Radioactive Ion Beam Facility
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
– name: Holifield Radioactive Ion Beam Facility
DBID AAYXX
CITATION
IQODW
OTOTI
DOI 10.1038/nature09048
DatabaseName CrossRef
Pascal-Francis
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 457
ExternalDocumentID 985782
22796934
10_1038_nature09048
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.HR
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3O-
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
.GJ
08P
1CY
1VW
354
3EH
41~
42X
4R4
663
79B
9M8
AAJYS
AARCD
AAVBQ
AAYOK
AAYXX
ABDPE
ABEFU
ABFSG
ACBNA
ACBTR
ACMFV
ACSTC
ACTDY
ADGHP
ADRHT
ADXHL
AETEA
AEZWR
AFANA
AFBBN
AFHIU
AFHKK
AGQPQ
AHWEU
AIXLP
AJUXI
ALPWD
ATHPR
BKOMP
CITATION
DB5
FA8
FAC
HG6
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PHGZM
PHGZT
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZGI
ZHY
ZY4
IQODW
PJZUB
PPXIY
PQGLB
08R
69O
6XO
AADEA
AADWK
AAEXX
AAGJQ
AAJMP
AAJWC
AAPBV
AAUGY
AAZLF
ABEEJ
ABGFU
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACMLT
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADZGE
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
AMRJV
B-7
F20
I-U
OTOTI
PQEST
PQUKI
U1R
XFK
ZA5
ID FETCH-LOGICAL-c322t-b7a844bb3bf4342eddb32dca3e2b3534166cbbd24ab9c9ab8c7435a8e9b6d0523
ISSN 0028-0836
IngestDate Fri May 19 00:38:32 EDT 2023
Mon Jul 21 09:11:13 EDT 2025
Tue Jul 01 02:00:20 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Fri Feb 21 02:37:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7297
Keywords Protons
Nuclear structure
Magic nuclei
Quantum numbers
Nuclear shell model
Nucleosynthesis
Neutrons
r process
Heavy element
Lifetime
Atomic nucleus
Magic number
Kinematics
Tin
Nucleons
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-b7a844bb3bf4342eddb32dca3e2b3534166cbbd24ab9c9ab8c7435a8e9b6d0523
Notes DE-AC05-00OR22725
USDOE Office of Science (SC)
PageCount 4
ParticipantIDs osti_scitechconnect_985782
pascalfrancis_primary_22796934
crossref_citationtrail_10_1038_nature09048
crossref_primary_10_1038_nature09048
springer_journals_10_1038_nature09048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KartamyshevMPEngelandTHjorth-JensenMOsnesEEffective Interactions and shell model studies of heavy tin isotopesPhys. Rev. C2007760243132007PhRvC..76b4313K10.1103/PhysRevC.76.024313
GraweHLangankeKMartínez-PinedoGNuclear structure and astrophysicsRep. Prog. Phys.200770152515822007RPPh...70.1525G1:CAS:528:DC%2BD2sXhtF2hsrbN10.1088/0034-4885/70/9/R02
CowanJJThielemannF-KTruranJWThe r-process and nucleochronologyPhys. Rep.19912082673941991PhR...208..267C1:CAS:528:DyaK38XivV2mtQ%3D%3D10.1016/0370-1573(91)90070-3
UrbanWNeutron single-particle energies in the 132Sn regionEur. Phys. J. A199952392411999EPJA....5..239U1:CAS:528:DyaK1MXkslSjurc%3D10.1007/s100500050280
ThomasJSSingle-neutron excitations in neutron-rich 83Ge and 85SePhys. Rev. C2007760443022007PhRvC..76d4302T10.1103/PhysRevC.76.044302
StrömichA(d,p) reactions on 124Sn, 130Te, 138Ba, 140Ce, 142Nd, and 208Pb below and near the Coulomb barrierPhys. Rev. C197716219322071977PhRvC..16.2193S10.1103/PhysRevC.16.2193
ReidRVLocal phenomenological nucleon–nucleon potentialsAnn. Phys.1968504114481968AnPhy..50..411R10.1016/0003-4916(68)90126-7
EllegaardCKanteleJVedelsbyPParticle–vibration coupling in 209PbNucl. Phys. A19691291131281969NuPhA.129..113E1:CAS:528:DyaF1MXktVyltbY%3D10.1016/0375-9474(69)90912-9
KozubRLNeutron single particle strengths from the (d,p) reaction on 18FPhys. Rev. C2006730443072006PhRvC..73d4307K10.1103/PhysRevC.73.044307
RehmKEStudy of the 56Ni(d,p)57Ni reaction and the astrophysical 56Ni(p,γ)57Cu reaction ratePhys. Rev. Lett.1998806766791998PhRvL..80..676R1:CAS:528:DyaK1cXlsVOqtg%3D%3D10.1103/PhysRevLett.80.676
ThompsonIJCoupled reaction channels calculations in nuclear physicsComput. Phys. Rep.198871672111988CoPhR...7..167T1:CAS:528:DyaL1cXit1OktbY%3D10.1016/0167-7977(88)90005-6
KramerGJBlokHPLapikásLA consistent analysis of (e,e′p) and (d,3He) experimentsNucl. Phys. A20016792672862001NuPhA.679..267K10.1016/S0375-9474(00)00379-1
BarbieriCHjorth-JensenMQuasiparticle and quasihole states of nuclei around 56NiPhys. Rev. C2009790643132009PhRvC..79f4313B10.1103/PhysRevC.79.064313
SarkarSSarkarMSShell model study of neutron-rich nuclei near 132SnPhys. Rev. C2001640143122001PhRvC..64a4312S10.1103/PhysRevC.64.014312
StracenerDWStatus of radioactive ion beams at the HRIBFNucl. Instrum. Methods A20045211261352004NIMPA.521..126S1:CAS:528:DC%2BD2cXitlyjsr0%3D10.1016/j.nima.2003.11.142
WizaJLMicrochannel plate detectorsNucl. Instrum. Methods19791625876011979NucIM.162..587L1:CAS:528:DyaE1MXkvFyisb4%3D10.1016/0029-554X(79)90734-1
TerasakiJEngelJNazarewiczWStoitsovMAnomalous behavior of 2+ excitations around 132SnPhys. Rev. C2002660543132002PhRvC..66e4313T10.1103/PhysRevC.66.054313
MayerMGJensenJHDTheory of Nuclear Shell Structure19550065.23203
CoraggioLCovelloAGarganoAItacoNSimilarity of nuclear structure in the 132Sn and 208Pb regions: proton–neutron multipletsPhys. Rev. C200980021305(R)2009PhRvC..80b1305C10.1103/PhysRevC.80.021305
PangDYNunesFMMukhamedzhanovAMAre spectroscopic factors from transfer reactions consistent with asymptotic normalization coefficients?Phys. Rev. C2007750246012007PhRvC..75b4601P10.1103/PhysRevC.75.024601
HirotaKAokiYOkumuraNTagishiYDeuteron elastic scattering and (d,p) reactions on 208Pb at Ed = 22 MeV and j-dependence of T20 in (d,p) reactionNucl. Phys. A19986285475791998NuPhA.628..547H10.1016/S0375-9474(97)00641-6
PainSDDevelopment of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematicsNucl. Instrum. Methods B2007261112211252007NIMPB.261.1122P1:CAS:528:DC%2BD2sXnslSmt74%3D10.1016/j.nimb.2007.04.289
HoffPSingle-neutron states in 133SnPhys. Rev. Lett.199677102010231996PhRvL..77.1020H1:CAS:528:DyaK28XltFWlsLg%3D10.1103/PhysRevLett.77.1020
KE Rehm (BFnature09048_CR13) 1998; 80
W Urban (BFnature09048_CR10) 1999; 5
JS Thomas (BFnature09048_CR12) 2007; 76
MP Kartamyshev (BFnature09048_CR3) 2007; 76
DW Stracener (BFnature09048_CR14) 2004; 521
MG Mayer (BFnature09048_CR1) 1955
A Strömich (BFnature09048_CR19) 1977; 16
C Barbieri (BFnature09048_CR2) 2009; 79
IJ Thompson (BFnature09048_CR17) 1988; 7
S Sarkar (BFnature09048_CR4) 2001; 64
JJ Cowan (BFnature09048_CR6) 1991; 208
L Coraggio (BFnature09048_CR7) 2009; 80
H Grawe (BFnature09048_CR5) 2007; 70
JL Wiza (BFnature09048_CR16) 1979; 162
DY Pang (BFnature09048_CR20) 2007; 75
RL Kozub (BFnature09048_CR11) 2006; 73
C Ellegaard (BFnature09048_CR22) 1969; 129
K Hirota (BFnature09048_CR23) 1998; 628
J Terasaki (BFnature09048_CR8) 2002; 66
SD Pain (BFnature09048_CR15) 2007; 261
GJ Kramer (BFnature09048_CR21) 2001; 679
P Hoff (BFnature09048_CR9) 1996; 77
RV Reid (BFnature09048_CR18) 1968; 50
References_xml – reference: GraweHLangankeKMartínez-PinedoGNuclear structure and astrophysicsRep. Prog. Phys.200770152515822007RPPh...70.1525G1:CAS:528:DC%2BD2sXhtF2hsrbN10.1088/0034-4885/70/9/R02
– reference: HoffPSingle-neutron states in 133SnPhys. Rev. Lett.199677102010231996PhRvL..77.1020H1:CAS:528:DyaK28XltFWlsLg%3D10.1103/PhysRevLett.77.1020
– reference: BarbieriCHjorth-JensenMQuasiparticle and quasihole states of nuclei around 56NiPhys. Rev. C2009790643132009PhRvC..79f4313B10.1103/PhysRevC.79.064313
– reference: KozubRLNeutron single particle strengths from the (d,p) reaction on 18FPhys. Rev. C2006730443072006PhRvC..73d4307K10.1103/PhysRevC.73.044307
– reference: CoraggioLCovelloAGarganoAItacoNSimilarity of nuclear structure in the 132Sn and 208Pb regions: proton–neutron multipletsPhys. Rev. C200980021305(R)2009PhRvC..80b1305C10.1103/PhysRevC.80.021305
– reference: EllegaardCKanteleJVedelsbyPParticle–vibration coupling in 209PbNucl. Phys. A19691291131281969NuPhA.129..113E1:CAS:528:DyaF1MXktVyltbY%3D10.1016/0375-9474(69)90912-9
– reference: CowanJJThielemannF-KTruranJWThe r-process and nucleochronologyPhys. Rep.19912082673941991PhR...208..267C1:CAS:528:DyaK38XivV2mtQ%3D%3D10.1016/0370-1573(91)90070-3
– reference: RehmKEStudy of the 56Ni(d,p)57Ni reaction and the astrophysical 56Ni(p,γ)57Cu reaction ratePhys. Rev. Lett.1998806766791998PhRvL..80..676R1:CAS:528:DyaK1cXlsVOqtg%3D%3D10.1103/PhysRevLett.80.676
– reference: MayerMGJensenJHDTheory of Nuclear Shell Structure19550065.23203
– reference: StracenerDWStatus of radioactive ion beams at the HRIBFNucl. Instrum. Methods A20045211261352004NIMPA.521..126S1:CAS:528:DC%2BD2cXitlyjsr0%3D10.1016/j.nima.2003.11.142
– reference: WizaJLMicrochannel plate detectorsNucl. Instrum. Methods19791625876011979NucIM.162..587L1:CAS:528:DyaE1MXkvFyisb4%3D10.1016/0029-554X(79)90734-1
– reference: ReidRVLocal phenomenological nucleon–nucleon potentialsAnn. Phys.1968504114481968AnPhy..50..411R10.1016/0003-4916(68)90126-7
– reference: ThompsonIJCoupled reaction channels calculations in nuclear physicsComput. Phys. Rep.198871672111988CoPhR...7..167T1:CAS:528:DyaL1cXit1OktbY%3D10.1016/0167-7977(88)90005-6
– reference: UrbanWNeutron single-particle energies in the 132Sn regionEur. Phys. J. A199952392411999EPJA....5..239U1:CAS:528:DyaK1MXkslSjurc%3D10.1007/s100500050280
– reference: KartamyshevMPEngelandTHjorth-JensenMOsnesEEffective Interactions and shell model studies of heavy tin isotopesPhys. Rev. C2007760243132007PhRvC..76b4313K10.1103/PhysRevC.76.024313
– reference: TerasakiJEngelJNazarewiczWStoitsovMAnomalous behavior of 2+ excitations around 132SnPhys. Rev. C2002660543132002PhRvC..66e4313T10.1103/PhysRevC.66.054313
– reference: HirotaKAokiYOkumuraNTagishiYDeuteron elastic scattering and (d,p) reactions on 208Pb at Ed = 22 MeV and j-dependence of T20 in (d,p) reactionNucl. Phys. A19986285475791998NuPhA.628..547H10.1016/S0375-9474(97)00641-6
– reference: SarkarSSarkarMSShell model study of neutron-rich nuclei near 132SnPhys. Rev. C2001640143122001PhRvC..64a4312S10.1103/PhysRevC.64.014312
– reference: PainSDDevelopment of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematicsNucl. Instrum. Methods B2007261112211252007NIMPB.261.1122P1:CAS:528:DC%2BD2sXnslSmt74%3D10.1016/j.nimb.2007.04.289
– reference: ThomasJSSingle-neutron excitations in neutron-rich 83Ge and 85SePhys. Rev. C2007760443022007PhRvC..76d4302T10.1103/PhysRevC.76.044302
– reference: PangDYNunesFMMukhamedzhanovAMAre spectroscopic factors from transfer reactions consistent with asymptotic normalization coefficients?Phys. Rev. C2007750246012007PhRvC..75b4601P10.1103/PhysRevC.75.024601
– reference: StrömichA(d,p) reactions on 124Sn, 130Te, 138Ba, 140Ce, 142Nd, and 208Pb below and near the Coulomb barrierPhys. Rev. C197716219322071977PhRvC..16.2193S10.1103/PhysRevC.16.2193
– reference: KramerGJBlokHPLapikásLA consistent analysis of (e,e′p) and (d,3He) experimentsNucl. Phys. A20016792672862001NuPhA.679..267K10.1016/S0375-9474(00)00379-1
– volume: 70
  start-page: 1525
  year: 2007
  ident: BFnature09048_CR5
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/70/9/R02
– volume: 521
  start-page: 126
  year: 2004
  ident: BFnature09048_CR14
  publication-title: Nucl. Instrum. Methods A
  doi: 10.1016/j.nima.2003.11.142
– volume: 5
  start-page: 239
  year: 1999
  ident: BFnature09048_CR10
  publication-title: Eur. Phys. J. A
  doi: 10.1007/s100500050280
– volume: 79
  start-page: 064313
  year: 2009
  ident: BFnature09048_CR2
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.79.064313
– volume: 76
  start-page: 024313
  year: 2007
  ident: BFnature09048_CR3
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.76.024313
– volume: 162
  start-page: 587
  year: 1979
  ident: BFnature09048_CR16
  publication-title: Nucl. Instrum. Methods
  doi: 10.1016/0029-554X(79)90734-1
– volume: 628
  start-page: 547
  year: 1998
  ident: BFnature09048_CR23
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(97)00641-6
– volume: 208
  start-page: 267
  year: 1991
  ident: BFnature09048_CR6
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(91)90070-3
– volume: 75
  start-page: 024601
  year: 2007
  ident: BFnature09048_CR20
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.75.024601
– volume: 7
  start-page: 167
  year: 1988
  ident: BFnature09048_CR17
  publication-title: Comput. Phys. Rep.
  doi: 10.1016/0167-7977(88)90005-6
– volume: 77
  start-page: 1020
  year: 1996
  ident: BFnature09048_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.1020
– volume: 64
  start-page: 014312
  year: 2001
  ident: BFnature09048_CR4
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.64.014312
– volume: 73
  start-page: 044307
  year: 2006
  ident: BFnature09048_CR11
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.73.044307
– volume: 80
  start-page: 676
  year: 1998
  ident: BFnature09048_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.676
– volume: 679
  start-page: 267
  year: 2001
  ident: BFnature09048_CR21
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(00)00379-1
– volume: 129
  start-page: 113
  year: 1969
  ident: BFnature09048_CR22
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(69)90912-9
– volume: 66
  start-page: 054313
  year: 2002
  ident: BFnature09048_CR8
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.66.054313
– volume: 50
  start-page: 411
  year: 1968
  ident: BFnature09048_CR18
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(68)90126-7
– volume-title: Theory of Nuclear Shell Structure
  year: 1955
  ident: BFnature09048_CR1
– volume: 76
  start-page: 044302
  year: 2007
  ident: BFnature09048_CR12
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.76.044302
– volume: 261
  start-page: 1122
  year: 2007
  ident: BFnature09048_CR15
  publication-title: Nucl. Instrum. Methods B
  doi: 10.1016/j.nimb.2007.04.289
– volume: 16
  start-page: 2193
  year: 1977
  ident: BFnature09048_CR19
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.16.2193
– volume: 80
  start-page: 021305(R)
  year: 2009
  ident: BFnature09048_CR7
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.021305
SSID ssj0005174
Score 2.4403613
Snippet Nuclear magic Atomic nuclei have a shell structure that allows for 'magic' numbers of neutrons and protons, analogous to the noble gases in atomic physics....
Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten...
SourceID osti
pascalfrancis
crossref
springer
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 454
SubjectTerms 639/638/263
639/766/387
ATOMIC AND MOLECULAR PHYSICS
ATOMIC PHYSICS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CLOSURES
Exact sciences and technology
Humanities and Social Sciences
letter
MAGIC NUCLEI
multidisciplinary
NEUTRONS
Nuclear physics
NUCLEAR PHYSICS AND RADIATION PHYSICS
NUCLEAR STRUCTURE
NUCLEI
NUCLEONS
NUCLEOSYNTHESIS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
PRODUCTION
PROTONS
QUANTUM NUMBERS
R PROCESS
RARE GASES
Science
SHELL MODELS
Title The magic nature of 132Sn explored through the single-particle states of 133Sn
URI https://link.springer.com/article/10.1038/nature09048
https://www.osti.gov/biblio/985782
Volume 465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbymAvY-02lm4teuhgW3DmWvKHHpOupTQlGbSBshejk-WnNimz99K_vqcPO04a2MeLE4QtGd3p_NPp7neEHIHIklCzMIhDjhuUWOkAt0FpEJVpqVlsjoJsgOw0OZ_zi5v4ZnWia7NLahiqh615Jf8jVWxDuZos2X-QbNspNuB_lC9eUcJ4_WsZ30m0XQPHz2mQH-77rixxP27EddHW4TH40rgFbnVw73sa2GSiyj3ErhZdnDp1_XXqfbQOg4vZ9NTG-02Gg9ZzjPKczC5H1tIMV-7UyejHpQ-1aJtmP-dj29I87n0O7ri843Pw77DVUdbkCDje666d5a4ohFcoBPVpx3ByRyXtv8HckVY_Me-OzN1NaShCx9G5TqK98XFrQw4NU2IiGH9OdqIUYVaP7IzG38dnq3igDcpun8yJQ37rDLgGX3pLNMMmmlZWuKBKVwnlyZG6RSrXr8krv8WgIyflXfJML_bICxvqq6o9suvNeUU_e87xL2_IFFWJWlWi7jXosqRWlWijStSrEv5quqFK1KmSewhV6S2Zn51en5wHvtRGoNCi1wGkMuMcgEHJGY90UQCLCiWZjoDFiHSSRAEUEZcglJCQKUSescy0gKQwJwvvSG-xXOj3hEomy-QYcAYh4joD4KHIykgcizQEzmSffG1mMFeeh96UQ7nNbTwEy_LOdPfJUXvzvaNf2X7bvhFFjqjRUB8rEyOm6lxkplhDnxyuCajtqFGJPvnUSCz3q7vaNsr-nzr6QF6uVstH0qt__dYHiFlrOPTa9giYl5Ng
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+magic+nature+of+132Sn+explored+through+the+single-particle+states+of+133Sn&rft.jtitle=Nature+%28London%29&rft.au=JONES%2C+K.+L&rft.au=ADEKOLA%2C+A.+S&rft.au=KAPLER%2C+R&rft.au=KOZUB%2C+R.+L&rft.date=2010-05-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=465&rft.issue=7297&rft.spage=454&rft.epage=457&rft_id=info:doi/10.1038%2Fnature09048&rft.externalDBID=n%2Fa&rft.externalDocID=22796934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon