A High-Performance and Ultra-Low-Power Accelerator Design for Advanced Deep Learning Algorithms on an FPGA
This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators on mobile Field-Programmable Gate Array (FPGA) systems. In particular, we concentrate on register transfer level (RTL) design flow optimizatio...
        Saved in:
      
    
          | Published in | Electronics (Basel) Vol. 13; no. 13; p. 2676 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2079-9292 2079-9292  | 
| DOI | 10.3390/electronics13132676 | 
Cover
| Abstract | This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators on mobile Field-Programmable Gate Array (FPGA) systems. In particular, we concentrate on register transfer level (RTL) design flow optimization to improve programming speed and power efficiency. We present a re-configurable accelerator design optimized for CNN-based object-detection applications, especially suitable for mobile FPGA platforms like the Xilinx PYNQ-Z2. By not only optimizing the MAC module using Enhanced clock gating (ECG), the accelerator can also use low-power techniques such as Local explicit clock gating (LECG) and Local explicit clock enable (LECE) in memory modules to efficiently minimize data access and memory utilization. The evaluation using ResNet-20 trained on the CIFAR-10 dataset demonstrated significant improvements in power efficiency consumption (up to 22%) and performance. The findings highlight the importance of using different optimization techniques across multiple hardware modules to achieve better results in real-world applications. | 
    
|---|---|
| AbstractList | This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators on mobile Field-Programmable Gate Array (FPGA) systems. In particular, we concentrate on register transfer level (RTL) design flow optimization to improve programming speed and power efficiency. We present a re-configurable accelerator design optimized for CNN-based object-detection applications, especially suitable for mobile FPGA platforms like the Xilinx PYNQ-Z2. By not only optimizing the MAC module using Enhanced clock gating (ECG), the accelerator can also use low-power techniques such as Local explicit clock gating (LECG) and Local explicit clock enable (LECE) in memory modules to efficiently minimize data access and memory utilization. The evaluation using ResNet-20 trained on the CIFAR-10 dataset demonstrated significant improvements in power efficiency consumption (up to 22%) and performance. The findings highlight the importance of using different optimization techniques across multiple hardware modules to achieve better results in real-world applications. | 
    
| Author | Alnatsheh, Nader Gundrapally, Achyuth Shah, Yatrik Ashish Choi, Kyuwon Ken  | 
    
| Author_xml | – sequence: 1 givenname: Achyuth surname: Gundrapally fullname: Gundrapally, Achyuth – sequence: 2 givenname: Yatrik Ashish surname: Shah fullname: Shah, Yatrik Ashish – sequence: 3 givenname: Nader surname: Alnatsheh fullname: Alnatsheh, Nader – sequence: 4 givenname: Kyuwon Ken surname: Choi fullname: Choi, Kyuwon Ken  | 
    
| BookMark | eNqNkE9LAzEQxYNUsNZ-Ai8Bz6v5s93dHJdqW2HBInpe0myyTdkma5Ja-u2bUg8iIs5lhuH93gzvGgyMNRKAW4zuKWXoQXZSBGeNFh5TTEmWZxdgSFDOEkYYGXybr8DY-w2KxTAtKBqCTQkXul0nS-mUdVtuhITcNPC9C44nld0nS7uXDpZCxDuOB-vgo_S6NTDqYdl8npAm7mQPK8md0aaFZddap8N666E10Q_OlvPyBlwq3nk5_uoj8Dp7epsukupl_jwtq0RQQkKyIlm6ahQRuJEYq2aiKKM8J6pIaYplKviKEK4IkzwvUtEIVWRCsKzIT9IRSM-mO9Pzw553Xd07veXuUGNUn_Kqf8krYndnrHf2Yyd9qDd250x8s6YxPEQmkwxFFT2rhLPeO6n-6c1-UEIHHrQ1MWLd_ckeAYg7lSk | 
    
| CitedBy_id | crossref_primary_10_1007_s12559_024_10383_0 | 
    
| Cites_doi | 10.1109/TNSE.2022.3154412 10.1109/JIOT.2022.3179016 10.1109/FPL53798.2021.00061 10.1145/2847263.2847265 10.1109/ICTA48799.2019.9012913 10.1109/ISOCC.2018.8649950 10.1109/UEMCON47517.2019.8992929 10.1109/ASAP57973.2023.00040 10.1109/ACCESS.2022.3180829 10.3390/electronics9030478 10.1109/FPL.2018.00074 10.1109/TCAD.2021.3056337 10.1109/ACCESS.2023.3285279 10.1109/TCAD.2021.3093398 10.1109/FCCM.2017.25 10.1109/FPL.2019.00069 10.1109/TCAD.2018.2812118 10.1109/TVLSI.2018.2815603 10.1109/CIC.2018.00042 10.1109/ACCESS.2020.3000009 10.1109/TCAD.2018.2857078 10.1109/TCSI.2021.3131581  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.3390/electronics13132676 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2079-9292 | 
    
| ExternalDocumentID | 10.3390/electronics13132676 10_3390_electronics13132676  | 
    
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c322t-b264bdf2c1de11fd5f393a72f84341e4cab22af29ea784cdcf86cc9687d5f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2079-9292 | 
    
| IngestDate | Sun Sep 07 11:06:25 EDT 2025 Fri Jul 25 09:23:26 EDT 2025 Thu Apr 24 23:00:50 EDT 2025 Thu Oct 16 04:42:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c322t-b264bdf2c1de11fd5f393a72f84341e4cab22af29ea784cdcf86cc9687d5f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/electronics13132676 | 
    
| PQID | 3079025560 | 
    
| PQPubID | 2032404 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_electronics13132676 proquest_journals_3079025560 crossref_primary_10_3390_electronics13132676 crossref_citationtrail_10_3390_electronics13132676  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-07-01 | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Electronics (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Kim (ref_18) 2023; 11 ref_14 Zhang (ref_2) 2022; 9 ref_12 Ma (ref_27) 2018; 26 ref_19 ref_17 Jameil (ref_1) 2022; 10 ref_16 ref_15 Tamimi (ref_5) 2019; 38 Li (ref_11) 2020; 8 Ullah (ref_10) 2022; 41 ref_25 ref_24 Bai (ref_23) 2018; 65 ref_21 ref_20 Wu (ref_6) 2022; 69 Li (ref_3) 2023; 10 Zhang (ref_13) 2022; 41 Gong (ref_22) 2018; 37 ref_26 ref_9 ref_8 ref_4 ref_7  | 
    
| References_xml | – volume: 10 start-page: 3071 year: 2023 ident: ref_3 article-title: ABM-SpConv-SIMD: Accelerating Convolutional Neural Network Inference for Industrial IoT Applications on Edge Devices publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3154412 – volume: 9 start-page: 21357 year: 2022 ident: ref_2 article-title: FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3179016 – ident: ref_7 doi: 10.1109/FPL53798.2021.00061 – ident: ref_24 doi: 10.1145/2847263.2847265 – ident: ref_12 doi: 10.1109/ICTA48799.2019.9012913 – ident: ref_15 doi: 10.1109/ISOCC.2018.8649950 – ident: ref_17 doi: 10.1109/UEMCON47517.2019.8992929 – ident: ref_8 doi: 10.1109/ASAP57973.2023.00040 – volume: 10 start-page: 60486 year: 2022 ident: ref_1 article-title: Efficient CNN Architecture on FPGA Using High Level Module for Healthcare Devices publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180829 – ident: ref_14 – ident: ref_16 doi: 10.3390/electronics9030478 – ident: ref_21 – ident: ref_25 doi: 10.1109/FPL.2018.00074 – volume: 41 start-page: 211 year: 2022 ident: ref_10 article-title: High-Performance Accurate and Approximate Multipliers for FPGA-Based Hardware Accelerators publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2021.3056337 – volume: 11 start-page: 59438 year: 2023 ident: ref_18 article-title: A Reconfigurable CNN-Based Accelerator Design for Fast and Energy-Efficient Object Detection System on Mobile FPGA publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3285279 – volume: 41 start-page: 1606 year: 2022 ident: ref_13 article-title: Exploring HW/SW Co-Design for Video Analysis on CPU-FPGA Heterogeneous Systems publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2021.3093398 – ident: ref_26 doi: 10.1109/FCCM.2017.25 – ident: ref_9 doi: 10.1109/FPL.2019.00069 – volume: 38 start-page: 466 year: 2019 ident: ref_5 article-title: An Efficient SRAM-Based Reconfigurable Architecture for Embedded Processors publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2018.2812118 – volume: 26 start-page: 1354 year: 2018 ident: ref_27 article-title: Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2018.2815603 – ident: ref_4 doi: 10.1109/CIC.2018.00042 – volume: 8 start-page: 105455 year: 2020 ident: ref_11 article-title: A Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep Convolutional Neural Networks Compared with Titan X GPU publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000009 – volume: 65 start-page: 1415 year: 2018 ident: ref_23 article-title: A CNN Accelerator on FPGA Using Depthwise Separable Convolution publication-title: IEEE Trans. Circuits Syst. II Express Briefs – ident: ref_19 – volume: 37 start-page: 2601 year: 2018 ident: ref_22 article-title: MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks with All Layers Mapped on Chip publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2018.2857078 – ident: ref_20 – volume: 69 start-page: 1185 year: 2022 ident: ref_6 article-title: A Flexible and Efficient FPGA Accelerator for Various Large-Scale and Lightweight CNNs publication-title: IEEE Trans. Circuits Syst. Regul. Pap. doi: 10.1109/TCSI.2021.3131581  | 
    
| SSID | ssj0000913830 | 
    
| Score | 2.3238986 | 
    
| Snippet | This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators... | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2676 | 
    
| SubjectTerms | Algorithms Artificial neural networks Automation Autonomous vehicles C plus plus Deep learning Design optimization Edge computing Field programmable gate arrays Machine learning Modules Neural networks Optimization techniques Power consumption Power efficiency Power management Python  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSD-MT6IgePBrvJvnoQWR9VREsRBW9Lnoqs22q3FP-9k-1u24OI1yU7hMkk8yWZfB_AcSC8QGJepzowIfW54DS2AaOCWxlwTFFGuXPIh254--zfvQQvC9Ct38K4ssp6TSwXat1X7oz8FGOxXfJltc4Hn9SpRrnb1VpCQ1TSCvqspBhbhCXmmLEasHRx3e09Tk9dHAtmzFsT-iGO-_3TmdrM0HM0hqFjH5lPUTPcuTzKB-J7LLJsLgV11mGtwo4kmQz2BiyYfBNW5xgFt-A9Ia5yg_Zm7wGIyDV5zoovQe_7Y9pzsmgkUQq7VF6xk6uyiINge5JUFQH4zQxIxb36SpLsFV1RvH0MST9He6TTu0m24bFz_XR5Sys5Bapw1hZUIvaR2jLlaeN5VgeWt7mImI19TGXGV0IyJixrGxHFvtLKxqFS7TCOXNMdaOT93OwCsSwSLcs87cnIR8Aio0BxKX2NC5ZocdYEVrsvVRXRuNO7yFLccDifp7_4vAkn058GE56Nv5sf1OOSVpNumM5CpAl0Olb_Mbf3t7l9WGGIZSZVugfQKL5G5hCxSCGPqgD7Acy84Vw priority: 102 providerName: ProQuest  | 
    
| Title | A High-Performance and Ultra-Low-Power Accelerator Design for Advanced Deep Learning Algorithms on an FPGA | 
    
| URI | https://www.proquest.com/docview/3079025560 https://doi.org/10.3390/electronics13132676  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4a7QF22MZgohurfOCIobHj_DhmWwuaoIrQKsEpsh0bBiGt2lRoO-xv33MTaDcNxI6Jnp3Iz_b32X7-HsCekJ5QiOs0FyagPpecRlYwKrlVgiNEGe32IU-HwfHI_3ouzhudbXcXZuX8nuNy_HCZDGbmOZXBIAzWoB0IJN4taI-GaXLh0sf1wpgi0LNaV-ixkn9iz5JQrs_LifxxJ4tiBVsGr-tL27OFJKELKbk5mFfqQP_8S7Dxmb_9Bl41HJMkdafYhBemfAsvV5QHt-A6IS7Cg6bLewNEljkZFdVU0pPxHU1d-jSSaI0fWRzFky-LYA-C9iRpIgfwnZmQRqP1kiTF5Xj6vbq6nZFxifWRQXqUbMPZoP_t8zFt0i5QjaO7ogo5ksot015uPM_mwvKYy5DZyEfIM76WijFpWWxkGPk61zYKtI6DKHSm76BVjkuzA8SyUPYs83JPhT4SGxUKzZXyc5zYZI-zDrB7b2S6ESR3eTGKDBcmrhWzf7RiB_YfCk1qPY6nzXfv3Zw1g3OW4bQWL6TXeh2gD65_TnXv_9P-A2wwJEF1eO8utKrp3HxEElOpLqxFg6MutD_1h-kZPp3-6nebDv0b4_f2Aw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IJ5qSoE9wI1V7V0_DxUytCGlaRRVrdQLsvZZhIyTNq6i_jb-HLPOOskBVRzgao1H1ux4ZnZ35vsA3sUijCXmdapjk9CIC04zGzMquJUxxxRllDuHPB0lg4vo62V8uQG_ulkY11bZxcQ2UOuJcmfk--iLeYuXFXycXlPHGuVuVzsKDeGpFfRBCzHmBztOzN0ct3Czg-NDXO_3jPWPzj8PqGcZoAqduaESSwKpLVOhNmFodWx5zkXKbBZhhDeREpIxYVluRJpFSiubJUrlSZY6UVT6ALZQMsed39ano9H4bHnE4yA3Mx4ssI44z4P9FbXNLHSYiYmDOlnPh6sid_u2noq7uaiqtXzXfwKPfaFKioVnPYUNUz-DR2vwhc_hR0Fcmwgdr4YPiKg1uaiaG0GHkzkdOw42UiiFn9Te55PDtmOEoDwpfPsBPjNT4oFer0hRXaHdm-8_Z2RSoz7SH38pXsDZv7fqS9isJ7XZAWJZKgLLQh3KNMLqSKax4lJGGqOjCDjrAevMVyqPau7INaoSdzfO5uUfbN6DD8uXpgtQj_vF97p1Kf0fPitX_tgDulyrv1G3e7-6t7A9OD8dlsPj0ckreMiwiFq0B-_BZnNza15jEdTIN97ZCHz7r879G1RTHnM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkPo4VPSBmhboHtpbV7F3_TxUlUVqoFAUVUXiUln7pKqME4hRxC_j7zHrR5JDhTi0V2s9smY-z8zOzn4D8CEUfigxrlMdmogGXHCa2JBRwa0MOYYoo1wd8vtJdHAafDsLz9bgtr8L49oqe5_YOGo9Ua5GPkQspg1flje0XVvEeJR_mV5SN0HKnbT24zRaiByZmzlu32afD0do64-M5V9_7h3QbsIAVQjkmkpMB6S2TPna-L7VoeUpFzGzSYDe3QRKSMaEZakRcRIorWwSKZVGSeyWotBHsBE7Cnd3RT3fXxR3HNlmwr2W5Yjz1Bsuh9rMfMeWGDmSk9VIuExvn1xXU3EzF2W5EunyTXjepagkazH1AtZM9RKerRAXvoI_GXENInS8vHZARKXJaVlfCXo8mdOxm75GMqXwk5qTfDJqekUIridZ13iAz8yUdBSv5yQrz1HL9e-LGZlUKI_k4_3sNfz49zrdgvVqUpk3QCyLhWeZr30ZB5gXyThUXMpAo18UHmcDYL36CtXxmbuxGmWB-xqn8-IvOh_Ap8VL05bO4_7l271diu7fnhVLJA6ALmz1EHFv7xf3Hh4jpIvjw5Ojd_CUYfbU9gVvw3p9dW12MPup5W6DNAK__iuu7wCZlRwN | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADO6Js8oEjLo0dZzlGQEEIqgpRCU6R7dhsIa3aVAi-nnGT0oIAlWs0diKP7fccz7xB6IALh0vAdZJw7RGXCUYCwykRzEjOAKK0sv8hr5reedu9uOW3pc62zYWZuL9ncBw_GheD6TtWZdDzvVk053Eg3hU01262ojtbPq7uhwSAnha6Qr-1_Io9Y0I5P8i64u1VpOkEtjSWi6Tt_lCS0IaUPNcGuayp92-CjVN-9gpaKjkmjopJsYpmdLaGFieUB9fRU4RthAdpjfMGsMgS3E7zniCXnVfSsuXTcKQUvGR4FY9PhsEeGOxxVEYOwDPdxaVG6z2O0vtO7zF_eOnjTgb94UbrLNpA143Tm-NzUpZdIApWd04kcCSZGKqcRDuOSbhhIRM-NYELkKddJSSlwtBQCz9wVaJM4CkVeoFvTTdRJetkegthQ31RN9RJHOm7QGykzxWT0k1gYxN1RquIjrwRq1KQ3NbFSGM4mNhRjH8YxSo6_GzULfQ4_jbfHbk5LhdnP4ZtLRxKr9WriHy6fprutv9pv4MWKJCgIrx3F1Xy3kDvAYnJ5X45eT8A2A_yUg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Performance+and+Ultra-Low-Power+Accelerator+Design+for+Advanced+Deep+Learning+Algorithms+on+an+FPGA&rft.jtitle=Electronics+%28Basel%29&rft.au=Gundrapally%2C+Achyuth&rft.au=Shah%2C+Yatrik+Ashish&rft.au=Alnatsheh%2C+Nader&rft.au=Choi%2C+Kyuwon+Ken&rft.date=2024-07-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=13&rft.spage=2676&rft_id=info:doi/10.3390%2Felectronics13132676&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13132676 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |