A High-Performance and Ultra-Low-Power Accelerator Design for Advanced Deep Learning Algorithms on an FPGA

This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators on mobile Field-Programmable Gate Array (FPGA) systems. In particular, we concentrate on register transfer level (RTL) design flow optimizatio...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 13; no. 13; p. 2676
Main Authors Gundrapally, Achyuth, Shah, Yatrik Ashish, Alnatsheh, Nader, Choi, Kyuwon Ken
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics13132676

Cover

Abstract This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators on mobile Field-Programmable Gate Array (FPGA) systems. In particular, we concentrate on register transfer level (RTL) design flow optimization to improve programming speed and power efficiency. We present a re-configurable accelerator design optimized for CNN-based object-detection applications, especially suitable for mobile FPGA platforms like the Xilinx PYNQ-Z2. By not only optimizing the MAC module using Enhanced clock gating (ECG), the accelerator can also use low-power techniques such as Local explicit clock gating (LECG) and Local explicit clock enable (LECE) in memory modules to efficiently minimize data access and memory utilization. The evaluation using ResNet-20 trained on the CIFAR-10 dataset demonstrated significant improvements in power efficiency consumption (up to 22%) and performance. The findings highlight the importance of using different optimization techniques across multiple hardware modules to achieve better results in real-world applications.
AbstractList This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators on mobile Field-Programmable Gate Array (FPGA) systems. In particular, we concentrate on register transfer level (RTL) design flow optimization to improve programming speed and power efficiency. We present a re-configurable accelerator design optimized for CNN-based object-detection applications, especially suitable for mobile FPGA platforms like the Xilinx PYNQ-Z2. By not only optimizing the MAC module using Enhanced clock gating (ECG), the accelerator can also use low-power techniques such as Local explicit clock gating (LECG) and Local explicit clock enable (LECE) in memory modules to efficiently minimize data access and memory utilization. The evaluation using ResNet-20 trained on the CIFAR-10 dataset demonstrated significant improvements in power efficiency consumption (up to 22%) and performance. The findings highlight the importance of using different optimization techniques across multiple hardware modules to achieve better results in real-world applications.
Author Alnatsheh, Nader
Gundrapally, Achyuth
Shah, Yatrik Ashish
Choi, Kyuwon Ken
Author_xml – sequence: 1
  givenname: Achyuth
  surname: Gundrapally
  fullname: Gundrapally, Achyuth
– sequence: 2
  givenname: Yatrik Ashish
  surname: Shah
  fullname: Shah, Yatrik Ashish
– sequence: 3
  givenname: Nader
  surname: Alnatsheh
  fullname: Alnatsheh, Nader
– sequence: 4
  givenname: Kyuwon Ken
  surname: Choi
  fullname: Choi, Kyuwon Ken
BookMark eNqNkE9LAzEQxYNUsNZ-Ai8Bz6v5s93dHJdqW2HBInpe0myyTdkma5Ja-u2bUg8iIs5lhuH93gzvGgyMNRKAW4zuKWXoQXZSBGeNFh5TTEmWZxdgSFDOEkYYGXybr8DY-w2KxTAtKBqCTQkXul0nS-mUdVtuhITcNPC9C44nld0nS7uXDpZCxDuOB-vgo_S6NTDqYdl8npAm7mQPK8md0aaFZddap8N666E10Q_OlvPyBlwq3nk5_uoj8Dp7epsukupl_jwtq0RQQkKyIlm6ahQRuJEYq2aiKKM8J6pIaYplKviKEK4IkzwvUtEIVWRCsKzIT9IRSM-mO9Pzw553Xd07veXuUGNUn_Kqf8krYndnrHf2Yyd9qDd250x8s6YxPEQmkwxFFT2rhLPeO6n-6c1-UEIHHrQ1MWLd_ckeAYg7lSk
CitedBy_id crossref_primary_10_1007_s12559_024_10383_0
Cites_doi 10.1109/TNSE.2022.3154412
10.1109/JIOT.2022.3179016
10.1109/FPL53798.2021.00061
10.1145/2847263.2847265
10.1109/ICTA48799.2019.9012913
10.1109/ISOCC.2018.8649950
10.1109/UEMCON47517.2019.8992929
10.1109/ASAP57973.2023.00040
10.1109/ACCESS.2022.3180829
10.3390/electronics9030478
10.1109/FPL.2018.00074
10.1109/TCAD.2021.3056337
10.1109/ACCESS.2023.3285279
10.1109/TCAD.2021.3093398
10.1109/FCCM.2017.25
10.1109/FPL.2019.00069
10.1109/TCAD.2018.2812118
10.1109/TVLSI.2018.2815603
10.1109/CIC.2018.00042
10.1109/ACCESS.2020.3000009
10.1109/TCAD.2018.2857078
10.1109/TCSI.2021.3131581
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics13132676
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics13132676
10_3390_electronics13132676
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c322t-b264bdf2c1de11fd5f393a72f84341e4cab22af29ea784cdcf86cc9687d5f3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Sep 07 11:06:25 EDT 2025
Fri Jul 25 09:23:26 EDT 2025
Thu Apr 24 23:00:50 EDT 2025
Thu Oct 16 04:42:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-b264bdf2c1de11fd5f393a72f84341e4cab22af29ea784cdcf86cc9687d5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/electronics13132676
PQID 3079025560
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics13132676
proquest_journals_3079025560
crossref_primary_10_3390_electronics13132676
crossref_citationtrail_10_3390_electronics13132676
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kim (ref_18) 2023; 11
ref_14
Zhang (ref_2) 2022; 9
ref_12
Ma (ref_27) 2018; 26
ref_19
ref_17
Jameil (ref_1) 2022; 10
ref_16
ref_15
Tamimi (ref_5) 2019; 38
Li (ref_11) 2020; 8
Ullah (ref_10) 2022; 41
ref_25
ref_24
Bai (ref_23) 2018; 65
ref_21
ref_20
Wu (ref_6) 2022; 69
Li (ref_3) 2023; 10
Zhang (ref_13) 2022; 41
Gong (ref_22) 2018; 37
ref_26
ref_9
ref_8
ref_4
ref_7
References_xml – volume: 10
  start-page: 3071
  year: 2023
  ident: ref_3
  article-title: ABM-SpConv-SIMD: Accelerating Convolutional Neural Network Inference for Industrial IoT Applications on Edge Devices
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3154412
– volume: 9
  start-page: 21357
  year: 2022
  ident: ref_2
  article-title: FitNN: A Low-Resource FPGA-Based CNN Accelerator for Drones
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3179016
– ident: ref_7
  doi: 10.1109/FPL53798.2021.00061
– ident: ref_24
  doi: 10.1145/2847263.2847265
– ident: ref_12
  doi: 10.1109/ICTA48799.2019.9012913
– ident: ref_15
  doi: 10.1109/ISOCC.2018.8649950
– ident: ref_17
  doi: 10.1109/UEMCON47517.2019.8992929
– ident: ref_8
  doi: 10.1109/ASAP57973.2023.00040
– volume: 10
  start-page: 60486
  year: 2022
  ident: ref_1
  article-title: Efficient CNN Architecture on FPGA Using High Level Module for Healthcare Devices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3180829
– ident: ref_14
– ident: ref_16
  doi: 10.3390/electronics9030478
– ident: ref_21
– ident: ref_25
  doi: 10.1109/FPL.2018.00074
– volume: 41
  start-page: 211
  year: 2022
  ident: ref_10
  article-title: High-Performance Accurate and Approximate Multipliers for FPGA-Based Hardware Accelerators
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2021.3056337
– volume: 11
  start-page: 59438
  year: 2023
  ident: ref_18
  article-title: A Reconfigurable CNN-Based Accelerator Design for Fast and Energy-Efficient Object Detection System on Mobile FPGA
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3285279
– volume: 41
  start-page: 1606
  year: 2022
  ident: ref_13
  article-title: Exploring HW/SW Co-Design for Video Analysis on CPU-FPGA Heterogeneous Systems
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2021.3093398
– ident: ref_26
  doi: 10.1109/FCCM.2017.25
– ident: ref_9
  doi: 10.1109/FPL.2019.00069
– volume: 38
  start-page: 466
  year: 2019
  ident: ref_5
  article-title: An Efficient SRAM-Based Reconfigurable Architecture for Embedded Processors
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2018.2812118
– volume: 26
  start-page: 1354
  year: 2018
  ident: ref_27
  article-title: Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2018.2815603
– ident: ref_4
  doi: 10.1109/CIC.2018.00042
– volume: 8
  start-page: 105455
  year: 2020
  ident: ref_11
  article-title: A Novel FPGA Accelerator Design for Real-Time and Ultra-Low Power Deep Convolutional Neural Networks Compared with Titan X GPU
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000009
– volume: 65
  start-page: 1415
  year: 2018
  ident: ref_23
  article-title: A CNN Accelerator on FPGA Using Depthwise Separable Convolution
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– ident: ref_19
– volume: 37
  start-page: 2601
  year: 2018
  ident: ref_22
  article-title: MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks with All Layers Mapped on Chip
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2018.2857078
– ident: ref_20
– volume: 69
  start-page: 1185
  year: 2022
  ident: ref_6
  article-title: A Flexible and Efficient FPGA Accelerator for Various Large-Scale and Lightweight CNNs
  publication-title: IEEE Trans. Circuits Syst. Regul. Pap.
  doi: 10.1109/TCSI.2021.3131581
SSID ssj0000913830
Score 2.3238986
Snippet This article addresses the growing need in resource-constrained edge computing scenarios for energy-efficient convolutional neural network (CNN) accelerators...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2676
SubjectTerms Algorithms
Artificial neural networks
Automation
Autonomous vehicles
C plus plus
Deep learning
Design optimization
Edge computing
Field programmable gate arrays
Machine learning
Modules
Neural networks
Optimization techniques
Power consumption
Power efficiency
Power management
Python
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSD-MT6IgePBrvJvnoQWR9VREsRBW9Lnoqs22q3FP-9k-1u24OI1yU7hMkk8yWZfB_AcSC8QGJepzowIfW54DS2AaOCWxlwTFFGuXPIh254--zfvQQvC9Ct38K4ssp6TSwXat1X7oz8FGOxXfJltc4Hn9SpRrnb1VpCQ1TSCvqspBhbhCXmmLEasHRx3e09Tk9dHAtmzFsT-iGO-_3TmdrM0HM0hqFjH5lPUTPcuTzKB-J7LLJsLgV11mGtwo4kmQz2BiyYfBNW5xgFt-A9Ia5yg_Zm7wGIyDV5zoovQe_7Y9pzsmgkUQq7VF6xk6uyiINge5JUFQH4zQxIxb36SpLsFV1RvH0MST9He6TTu0m24bFz_XR5Sys5Bapw1hZUIvaR2jLlaeN5VgeWt7mImI19TGXGV0IyJixrGxHFvtLKxqFS7TCOXNMdaOT93OwCsSwSLcs87cnIR8Aio0BxKX2NC5ZocdYEVrsvVRXRuNO7yFLccDifp7_4vAkn058GE56Nv5sf1OOSVpNumM5CpAl0Olb_Mbf3t7l9WGGIZSZVugfQKL5G5hCxSCGPqgD7Acy84Vw
  priority: 102
  providerName: ProQuest
Title A High-Performance and Ultra-Low-Power Accelerator Design for Advanced Deep Learning Algorithms on an FPGA
URI https://www.proquest.com/docview/3079025560
https://doi.org/10.3390/electronics13132676
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4a7QF22MZgohurfOCIobHj_DhmWwuaoIrQKsEpsh0bBiGt2lRoO-xv33MTaDcNxI6Jnp3Iz_b32X7-HsCekJ5QiOs0FyagPpecRlYwKrlVgiNEGe32IU-HwfHI_3ouzhudbXcXZuX8nuNy_HCZDGbmOZXBIAzWoB0IJN4taI-GaXLh0sf1wpgi0LNaV-ixkn9iz5JQrs_LifxxJ4tiBVsGr-tL27OFJKELKbk5mFfqQP_8S7Dxmb_9Bl41HJMkdafYhBemfAsvV5QHt-A6IS7Cg6bLewNEljkZFdVU0pPxHU1d-jSSaI0fWRzFky-LYA-C9iRpIgfwnZmQRqP1kiTF5Xj6vbq6nZFxifWRQXqUbMPZoP_t8zFt0i5QjaO7ogo5ksot015uPM_mwvKYy5DZyEfIM76WijFpWWxkGPk61zYKtI6DKHSm76BVjkuzA8SyUPYs83JPhT4SGxUKzZXyc5zYZI-zDrB7b2S6ESR3eTGKDBcmrhWzf7RiB_YfCk1qPY6nzXfv3Zw1g3OW4bQWL6TXeh2gD65_TnXv_9P-A2wwJEF1eO8utKrp3HxEElOpLqxFg6MutD_1h-kZPp3-6nebDv0b4_f2Aw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lA4IJ5qSoE9wI1V7V0_DxUytCGlaRRVrdQLsvZZhIyTNq6i_jb-HLPOOskBVRzgao1H1ux4ZnZ35vsA3sUijCXmdapjk9CIC04zGzMquJUxxxRllDuHPB0lg4vo62V8uQG_ulkY11bZxcQ2UOuJcmfk--iLeYuXFXycXlPHGuVuVzsKDeGpFfRBCzHmBztOzN0ct3Czg-NDXO_3jPWPzj8PqGcZoAqduaESSwKpLVOhNmFodWx5zkXKbBZhhDeREpIxYVluRJpFSiubJUrlSZY6UVT6ALZQMsed39ano9H4bHnE4yA3Mx4ssI44z4P9FbXNLHSYiYmDOlnPh6sid_u2noq7uaiqtXzXfwKPfaFKioVnPYUNUz-DR2vwhc_hR0Fcmwgdr4YPiKg1uaiaG0GHkzkdOw42UiiFn9Te55PDtmOEoDwpfPsBPjNT4oFer0hRXaHdm-8_Z2RSoz7SH38pXsDZv7fqS9isJ7XZAWJZKgLLQh3KNMLqSKax4lJGGqOjCDjrAevMVyqPau7INaoSdzfO5uUfbN6DD8uXpgtQj_vF97p1Kf0fPitX_tgDulyrv1G3e7-6t7A9OD8dlsPj0ckreMiwiFq0B-_BZnNza15jEdTIN97ZCHz7r879G1RTHnM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RkPo4VPSBmhboHtpbV7F3_TxUlUVqoFAUVUXiUln7pKqME4hRxC_j7zHrR5JDhTi0V2s9smY-z8zOzn4D8CEUfigxrlMdmogGXHCa2JBRwa0MOYYoo1wd8vtJdHAafDsLz9bgtr8L49oqe5_YOGo9Ua5GPkQspg1flje0XVvEeJR_mV5SN0HKnbT24zRaiByZmzlu32afD0do64-M5V9_7h3QbsIAVQjkmkpMB6S2TPna-L7VoeUpFzGzSYDe3QRKSMaEZakRcRIorWwSKZVGSeyWotBHsBE7Cnd3RT3fXxR3HNlmwr2W5Yjz1Bsuh9rMfMeWGDmSk9VIuExvn1xXU3EzF2W5EunyTXjepagkazH1AtZM9RKerRAXvoI_GXENInS8vHZARKXJaVlfCXo8mdOxm75GMqXwk5qTfDJqekUIridZ13iAz8yUdBSv5yQrz1HL9e-LGZlUKI_k4_3sNfz49zrdgvVqUpk3QCyLhWeZr30ZB5gXyThUXMpAo18UHmcDYL36CtXxmbuxGmWB-xqn8-IvOh_Ap8VL05bO4_7l271diu7fnhVLJA6ALmz1EHFv7xf3Hh4jpIvjw5Ojd_CUYfbU9gVvw3p9dW12MPup5W6DNAK__iuu7wCZlRwN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIADO6Js8oEjLo0dZzlGQEEIqgpRCU6R7dhsIa3aVAi-nnGT0oIAlWs0diKP7fccz7xB6IALh0vAdZJw7RGXCUYCwykRzEjOAKK0sv8hr5reedu9uOW3pc62zYWZuL9ncBw_GheD6TtWZdDzvVk053Eg3hU01262ojtbPq7uhwSAnha6Qr-1_Io9Y0I5P8i64u1VpOkEtjSWi6Tt_lCS0IaUPNcGuayp92-CjVN-9gpaKjkmjopJsYpmdLaGFieUB9fRU4RthAdpjfMGsMgS3E7zniCXnVfSsuXTcKQUvGR4FY9PhsEeGOxxVEYOwDPdxaVG6z2O0vtO7zF_eOnjTgb94UbrLNpA143Tm-NzUpZdIApWd04kcCSZGKqcRDuOSbhhIRM-NYELkKddJSSlwtBQCz9wVaJM4CkVeoFvTTdRJetkegthQ31RN9RJHOm7QGykzxWT0k1gYxN1RquIjrwRq1KQ3NbFSGM4mNhRjH8YxSo6_GzULfQ4_jbfHbk5LhdnP4ZtLRxKr9WriHy6fprutv9pv4MWKJCgIrx3F1Xy3kDvAYnJ5X45eT8A2A_yUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+High-Performance+and+Ultra-Low-Power+Accelerator+Design+for+Advanced+Deep+Learning+Algorithms+on+an+FPGA&rft.jtitle=Electronics+%28Basel%29&rft.au=Gundrapally%2C+Achyuth&rft.au=Shah%2C+Yatrik+Ashish&rft.au=Alnatsheh%2C+Nader&rft.au=Choi%2C+Kyuwon+Ken&rft.date=2024-07-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=13&rft.spage=2676&rft_id=info:doi/10.3390%2Felectronics13132676&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13132676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon