Neural blind deconvolution with Poisson data

Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconv...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 39; no. 5; pp. 54003 - 54032
Main Authors Benfenati, A, Catozzi, A, Ruggiero, V
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.05.2023
Subjects
Online AccessGet full text
ISSN0266-5611
1361-6420
1361-6420
DOI10.1088/1361-6420/acc2e0

Cover

Abstract Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconvolution aims to reconstruct the image when only the recorded data is available. In the last years, among the standard variational approaches, Deep Learning techniques have gained interest thanks to their impressive performances. The Deep Image Prior framework has been employed for solving this task, giving rise to the so-called neural blind deconvolution (NBD), where the unknown blur and image are estimated via two different neural networks. In this paper, we consider microscopy images, where the predominant noise is of Poisson type, hence signal-dependent: this leads to consider the generalized Kullback–Leibler as loss function and to couple it with regularization terms on both the blur operator and on the image. Furthermore, we propose to modify the standard NBD formulation problem, by including for the blur kernel an upper bound which depends on the optical instrument. A numerical solution is obtained by an alternating Proximal Gradient Descent-Ascent procedure, which results in the Double Deep Image Prior for Poisson noise algorithm. We evaluate the proposed strategy on both synthetic and real-world images, achieving promising results and proving that the correct choice of the loss and regularization functions strongly depends on the application at hand.
AbstractList Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconvolution aims to reconstruct the image when only the recorded data is available. In the last years, among the standard variational approaches, Deep Learning techniques have gained interest thanks to their impressive performances. The Deep Image Prior framework has been employed for solving this task, giving rise to the so-called neural blind deconvolution (NBD), where the unknown blur and image are estimated via two different neural networks. In this paper, we consider microscopy images, where the predominant noise is of Poisson type, hence signal-dependent: this leads to consider the generalized Kullback–Leibler as loss function and to couple it with regularization terms on both the blur operator and on the image. Furthermore, we propose to modify the standard NBD formulation problem, by including for the blur kernel an upper bound which depends on the optical instrument. A numerical solution is obtained by an alternating Proximal Gradient Descent-Ascent procedure, which results in the Double Deep Image Prior for Poisson noise algorithm. We evaluate the proposed strategy on both synthetic and real-world images, achieving promising results and proving that the correct choice of the loss and regularization functions strongly depends on the application at hand.
Author Catozzi, A
Benfenati, A
Ruggiero, V
Author_xml – sequence: 1
  givenname: A
  orcidid: 0000-0002-2985-374X
  surname: Benfenati
  fullname: Benfenati, A
  organization: Dipartimento di Scienze e Politiche Ambientali. Università di Milano , Via Celoria, 2, 20133 Milano, Italy
– sequence: 2
  givenname: A
  orcidid: 0000-0001-6378-3063
  surname: Catozzi
  fullname: Catozzi, A
  organization: Fisica e Informatica. Università di Parma Dipartimento di Matematica, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
– sequence: 3
  givenname: V
  orcidid: 0000-0001-5885-1703
  surname: Ruggiero
  fullname: Ruggiero, V
  organization: Università di Ferrara Dipartimento di Matematica e Informatica, Via Machiavelli, 30, 44121 Ferrara, Italy
BookMark eNqNkE1LxDAQhoOs4O7q3WN_wNbNpG3aHmXxCxb1oOcwTVLMEpMlaV3239tS8SAonmbmZZ6BZxZk5rzThFwCvQJaVWvIOKQ8Z3SNUjJNT8j8O5qROWWcpwUHOCOLGHeUAlRQzsnqUfcBbdJY41SitPTuw9u-M94lB9O9Jc_exDgMCjs8J6ct2qgvvuqSvN7evGzu0-3T3cPmepvKjLEubaBEJVnOijrjTOec06rJVVsjcs1KqfnQNFy2Glhe64LVWSkZQKmVanVdZUsC093e7fF4QGvFPph3DEcBVIy6YnQTo5uYdAeGTowMPsag2_8g_AciTYejehfQ2L_A1QQavxc73wc3fOP39U9dx3mQ
CODEN INPEEY
CitedBy_id crossref_primary_10_3390_math12060850
crossref_primary_10_1002_jemt_24732
Cites_doi 10.1088/2053-2563/aae109
10.1021/acs.nanolett.7b00717
10.1088/0266-5611/29/11/119501
10.1109/TMI.2003.809622
10.1007/s10107-006-0050-z
10.1007/s11263-020-01303-4
10.1109/TIP.2016.2531905
10.1016/j.ymeth.2016.12.015
10.1109/TCI.2020.3032671
10.1093/imanum/drq024
10.1088/1361-6420/33/1/015003
10.3390/jimaging8050142
10.1016/j.cviu.2020.103134
10.1007/s10589-022-00392-w
10.1111/j.1365-2818.2012.03675.x
10.1109/ICCVW.2019.00127
10.1088/0266-5611/29/6/065017
10.1088/0266-5611/25/4/045010
10.1109/TPAMI.2019.2941472
10.1109/CVPR.2019.01128
10.1007/s10107-005-0595-2
10.1046/j.1365-2818.1997.d01-629.x
10.1088/0266-5611/26/10/105004
10.1115/1.4056470
10.1364/JOSAA.17.000425
10.1109/TPAMI.2017.2753804
10.1016/S0167-6377(99)00074-7
10.1038/s41592-019-0364-4
10.1117/1.JBO.25.12.123707
10.1007/BF01585748
10.1006/jmre.1998.1387
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6420/acc2e0
DatabaseName IOP Publishing
IOPscience (Open Access)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1361-6420
ExternalDocumentID oai:sfera.unife.it:11392/2508270
10_1088_1361_6420_acc2e0
ipacc2e0
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KZ1
LAP
LMP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
ZMT
~02
AAYXX
ADACN
ADEQX
AEINN
CITATION
02O
1WK
29J
5ZI
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
AI.
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
RKQ
S3P
T37
UNPAY
VH1
ZY4
ID FETCH-LOGICAL-c322t-b17adc24259362e46608b4df9aa6e27ce6aa6b6cfe1249e52937c2117eddfe983
IEDL.DBID UNPAY
ISSN 0266-5611
1361-6420
IngestDate Sun Oct 26 02:57:00 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Wed Oct 01 01:10:42 EDT 2025
Wed Aug 21 03:34:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-b17adc24259362e46608b4df9aa6e27ce6aa6b6cfe1249e52937c2117eddfe983
Notes IP-103717.R1
ORCID 0000-0001-6378-3063
0000-0002-2985-374X
0000-0001-5885-1703
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6420/acc2e0
PageCount 30
ParticipantIDs unpaywall_primary_10_1088_1361_6420_acc2e0
crossref_primary_10_1088_1361_6420_acc2e0
iop_journals_10_1088_1361_6420_acc2e0
crossref_citationtrail_10_1088_1361_6420_acc2e0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Inverse problems
PublicationTitleAbbrev ip
PublicationTitleAlternate Inverse Problems
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Pardalos (ipacc2e0bib34) 1990; 46
Cascarano (ipacc2e0bib28) 2022; 84
Kiwiel (ipacc2e0bib36) 2008; 112
Zuo (ipacc2e0bib10) 2016; 25
Grasmair (ipacc2e0bib42) 2009
Nah (ipacc2e0bib14) 2017
Sage (ipacc2e0bib49) 2017; 115
Wang (ipacc2e0bib31) 2021
Ulyanov (ipacc2e0bib22) 2018
Bortolotti (ipacc2e0bib43) 2016; 33
Grippo (ipacc2e0bib7) 2000; 26
Sage (ipacc2e0bib50) 2019; 16
Zanella (ipacc2e0bib44) 2009; 25
Bertero (ipacc2e0bib1) 2018
Boţ (ipacc2e0bib29) 2022
Chen (ipacc2e0bib30) 2021
Liu (ipacc2e0bib13) 2021; 43
Bertsekas (ipacc2e0bib6) 1999
Kotera (ipacc2e0bib26) 2021
Zanella (ipacc2e0bib45) 2013; 29
Asim (ipacc2e0bib20) 2020; 6
Campisi (ipacc2e0bib2) 2016
Bonettini (ipacc2e0bib8) 2011; 31
Ulyanov (ipacc2e0bib23) 2020; 128
Prato (ipacc2e0bib9) 2013; 29
Gao (ipacc2e0bib17) 2019
Tao (ipacc2e0bib15) 2018
Dai (ipacc2e0bib35) 2006; 106
Zhang (ipacc2e0bib12) 2022
Bertero (ipacc2e0bib32) 2010; 26
Zhuang (ipacc2e0bib27) 2022
Zhang (ipacc2e0bib16) 2018
Sitzmann (ipacc2e0bib39) 2020
Tran (ipacc2e0bib19) 2021
Benfenati (ipacc2e0bib47) 2022; 8
van Kempen (ipacc2e0bib4) 1997; 185
Levin (ipacc2e0bib3) 2009
Gandelsman (ipacc2e0bib24) 2019
Wang (ipacc2e0bib25) 2019
Pan (ipacc2e0bib11) 2018; 40
Kirshner (ipacc2e0bib48) 2013; 249
van Kempen (ipacc2e0bib5) 2000; 17
Ren (ipacc2e0bib21) 2020
Chen (ipacc2e0bib37) 2017; 17
Bauschke (ipacc2e0bib33) 2011
Cascarano (ipacc2e0bib40) 2023; 7
Koh (ipacc2e0bib18) 2021; 203
Borgia (ipacc2e0bib41) 1998; 132
Willett (ipacc2e0bib46) 2003; 22
Ashida (ipacc2e0bib38) 2020; 25
References_xml – year: 2018
  ident: ipacc2e0bib1
  doi: 10.1088/2053-2563/aae109
– start-page: pp 331
  year: 2009
  ident: ipacc2e0bib42
  article-title: Locally adaptive total variation regularization
– volume: 17
  start-page: 3188
  year: 2017
  ident: ipacc2e0bib37
  article-title: Immersion meta-lenses at visible wavelengths for nanoscale imaging
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00717
– volume: 29
  year: 2013
  ident: ipacc2e0bib45
  article-title: Corrigendum: efficient gradient projection methods for edge-preserving removal of poisson noise
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/11/119501
– year: 2020
  ident: ipacc2e0bib39
  article-title: Implicit neural representations with periodic activation functions
– year: 2016
  ident: ipacc2e0bib2
– volume: 22
  start-page: 332
  year: 2003
  ident: ipacc2e0bib46
  article-title: Platelets: a multiscale approach for recovering edges and surfaces in photon limited medical imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.809622
– volume: 112
  start-page: 473
  year: 2008
  ident: ipacc2e0bib36
  article-title: Breakpoint searching algorithms for the continuous quadratic knapsack problem
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0050-z
– start-page: pp 3843
  year: 2019
  ident: ipacc2e0bib17
  article-title: Dynamic scene deblurring with parameter selective sharing and nested skip connections
– volume: 128
  start-page: 1867
  year: 2020
  ident: ipacc2e0bib23
  article-title: Deep Image Prior
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01303-4
– volume: 25
  start-page: 1751
  year: 2016
  ident: ipacc2e0bib10
  article-title: Learning iteration-wise generalized shrinkage–thresholding operators for blind deconvolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2531905
– volume: 115
  start-page: 28
  year: 2017
  ident: ipacc2e0bib49
  article-title: DeconvolutionLab2: an open-source software for deconvolution microscopy
  publication-title: Methods Image Process. Biol.
  doi: 10.1016/j.ymeth.2016.12.015
– volume: 6
  start-page: 1493
  year: 2020
  ident: ipacc2e0bib20
  article-title: Blind image deconvolution using deep generative priors
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.3032671
– volume: 31
  start-page: 1431
  year: 2011
  ident: ipacc2e0bib8
  article-title: Inexact block coordinate descent methods with application to the nonnegative matrix factorization
  publication-title: IMA J. Num. Anal.
  doi: 10.1093/imanum/drq024
– volume: 33
  year: 2016
  ident: ipacc2e0bib43
  article-title: Uniform penalty inversion of two-dimensional NMR relaxation data
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/33/1/015003
– volume: 8
  start-page: 142
  year: 2022
  ident: ipacc2e0bib47
  article-title: upU-Net approaches for background emission removal in fluorescence microscopy
  publication-title: J. Imaging
  doi: 10.3390/jimaging8050142
– volume: 203
  year: 2021
  ident: ipacc2e0bib18
  article-title: Single-image deblurring with neural networks: a comparative survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.103134
– volume: 84
  start-page: 1
  year: 2022
  ident: ipacc2e0bib28
  article-title: Constrained and unconstrained deep image prior optimization models with automatic regularization
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00392-w
– volume: 249
  start-page: 13
  year: 2013
  ident: ipacc2e0bib48
  article-title: 3-D PSF fitting for fluorescence microscopy: Implementation and localization application
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.2012.03675.x
– year: 2019
  ident: ipacc2e0bib25
  article-title: Image deconvolution with deep image and kernel priors
  doi: 10.1109/ICCVW.2019.00127
– volume: 29
  year: 2013
  ident: ipacc2e0bib9
  article-title: A convergent blind deconvolution method for post-adaptive-optics astronomical imaging
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/6/065017
– start-page: pp 5892
  year: 2022
  ident: ipacc2e0bib12
  article-title: Pixel screening based intermediate correction for blind deblurring
– start-page: pp 1954
  year: 2021
  ident: ipacc2e0bib26
  article-title: Improving neural blind deconvolution
– volume: 25
  year: 2009
  ident: ipacc2e0bib44
  article-title: Efficient gradient projection methods for edge-preserving removal of poisson noise
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/25/4/045010
– year: 2021
  ident: ipacc2e0bib31
  article-title: Early stopping for deep image prior
– start-page: pp 9446
  year: 2018
  ident: ipacc2e0bib22
– start-page: pp 3338
  year: 2020
  ident: ipacc2e0bib21
  article-title: Neural blind deconvolution using deep priors
– year: 1999
  ident: ipacc2e0bib6
– start-page: pp 2521
  year: 2018
  ident: ipacc2e0bib16
  article-title: Dynamic scene deblurring using spatially variant recurrent neural networks
– volume: 43
  start-page: 1041
  year: 2021
  ident: ipacc2e0bib13
  article-title: Surface-aware blind image deblurring
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2941472
– year: 2019
  ident: ipacc2e0bib24
  article-title: Double-DIP: unsupervised image decomposition via coupled deepimage- priors
  doi: 10.1109/CVPR.2019.01128
– start-page: p 2021
  year: 2021
  ident: ipacc2e0bib19
  article-title: Explore image deblurring via encoded blur kernel space
– start-page: pp 1964
  year: 2009
  ident: ipacc2e0bib3
  article-title: Understanding and evaluating blind deconvolution algorithm
– year: 2022
  ident: ipacc2e0bib27
  article-title: Blind image deblurring with unknown kernel size and substantial noise
– volume: 106
  start-page: 403
  year: 2006
  ident: ipacc2e0bib35
  article-title: New algorithms for singly linearly constrained quadratic programming problems subject to lower and upper bounds
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0595-2
– volume: 185
  start-page: 354
  year: 1997
  ident: ipacc2e0bib4
  article-title: A quantitative comparison of image restoration methods for confocal microscopy
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.1997.d01-629.x
– year: 2011
  ident: ipacc2e0bib33
– volume: 26
  year: 2010
  ident: ipacc2e0bib32
  article-title: A discrepancy principle for Poisson data
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/26/10/105004
– year: 2021
  ident: ipacc2e0bib30
  article-title: Proximal gradient descent-ascent: variable convergence under kl geometry
– volume: 7
  year: 2023
  ident: ipacc2e0bib40
  article-title: On the First-Order Optimization Methods in Deep Image Prior
  publication-title: J. Verif. Valid. Uncertain. Quantif.
  doi: 10.1115/1.4056470
– volume: 17
  start-page: 425
  year: 2000
  ident: ipacc2e0bib5
  article-title: Background estimation in nonlinear image restoration
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.17.000425
– volume: 40
  start-page: 2315
  year: 2018
  ident: ipacc2e0bib11
  article-title: Deblurring images via dark channel prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2753804
– volume: 26
  start-page: 127
  year: 2000
  ident: ipacc2e0bib7
  article-title: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(99)00074-7
– volume: 16
  start-page: 387
  year: 2019
  ident: ipacc2e0bib50
  article-title: Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software
  publication-title: Nat. Methods Tech. Life Sci. Chem.
  doi: 10.1038/s41592-019-0364-4
– start-page: pp 8174
  year: 2018
  ident: ipacc2e0bib15
  article-title: Scale-recurrent network for deep image deblurring
– year: 2022
  ident: ipacc2e0bib29
  article-title: Alternating proximal-gradient steps for (stochastic) nonconvex-concave minimax problems
– volume: 25
  year: 2020
  ident: ipacc2e0bib38
  article-title: Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.25.12.123707
– start-page: pp 257
  year: 2017
  ident: ipacc2e0bib14
  article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring
– volume: 46
  start-page: 321
  year: 1990
  ident: ipacc2e0bib34
  article-title: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
  publication-title: Math. Program.
  doi: 10.1007/BF01585748
– volume: 132
  start-page: 65
  year: 1998
  ident: ipacc2e0bib41
  article-title: Uniform-penalty inversion of multiexponential decay data
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1998.1387
SSID ssj0011817
Score 2.429534
Snippet Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function...
SourceID unpaywall
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 54003
SubjectTerms blind deconvolution
deep image prior
neural networks
Poisson noise
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: IOP Publishing
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHnQHv8X5RQ96UMzWrm2a4knEMYTpDg52EEqavF4c3XCdon-9L0tWpoiK9JJAkjYvSd_vJS-_R8hJSwTC84WkjAmXBuAzKtJUUa6At5QLoQC9NdC9Y51-cDsIBxVyWd6FGY3tr7-BSUMUbERoHeJ40_OZRxE2u00hZQvQXl_2OQJjfXvvvlceIaDqiswGC6MIEjx7RvldC5900hK-t0ZWpvlYvL2K4XBB3bTXyeP8Q42XyVNjWqQN-f6Fw_GfPdkgaxaGOlem6CapQL5FagvkhJjrloyuk21yoVk8sEaKsFQ5SpvRL3bWOnov1-mNcAgxo11Od0i_ffNw3aE20gKVuKALmnqRUFJbHzEqNAgYc3kaqCwWgkErksAwkTKZgY5VDSFihEii6RiBUhnE3N8l1XyUwx5xpNKBiGSGTxwIHgsVZgIY59hjcD1RJ825rBNpach1NIxhMjsO5zzRUkm0VBIjlTo5K2uMDQXHD2VPUdiJXYeTH8qdlwP8a6P7f2z0gKzqYPTGHfKQVIvnKRwhZCnS49nU_ABypOMK
  priority: 102
  providerName: IOP Publishing
Title Neural blind deconvolution with Poisson data
URI https://iopscience.iop.org/article/10.1088/1361-6420/acc2e0
UnpaywallVersion submittedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1361-6420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011817
  issn: 1361-6420
  databaseCode: IOP
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-2-aA--C1-jj7og2K2dm2zFJ9ElCns48HhBKGkyfXFsQ3dFP3rvZg4VERRCqWBS9pckuZ3yeV3AHs1GckglIpxLn0WYciZzDLNhEZR0z7GEs3SQLPFG93oshf3CnA8PQszHLlff4UeLVGwVaFziBPVIOQBI9jsV6VSNSR7fYbHBMRLMNNtdU5u7KoKZ4QM3KkrK-42Kb8r4tOkVKQXz8PsZDCSz0-y3_8w35wvwu37l1o3k7vKZJxV1MsXEsd_VmUJFhwO9U6s6DIUcLAC8x_YCSnVnFK6PqzCkaHxoBwZ4VLtaWNHP7pu65nFXK8zpDakhPE5XYPu-dnVaYO5UAtM0YgesyyoS62M-ZHQjIYR577IIp0nUnKs1RVyesi4ytEEq8aYQEJdke1YR61zTES4DqXBcIAb4CltIhGpnK4kkiKROs4lciGoxugHchOq77pOleMhN-Ew-unbfrgQqdFKarSSWq1swsE0x8hycPwgu0_KTt1AfPhB7nDawL8WuvUX4W2YMyHprVPkDpTG9xPcJeAyzspQvGh36N4Or8uus74CHIPnmQ
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oJioPfhvxcw_6oLGwwei6R6MS_AB5kIS32bW3FwkQAY3-9V5ZIWgMmpi9tMn1tl7b3V17_R3AcVH60itJxTiXLvOxxJmMY82ERlHULpYlmq2BWp1Xm_5tq9yyeU5Hd2G6Pfvrz1MxBQpORWgD4kTBK3GPkdnsFqRSRXQLPZ3Mw8IIp8Tc4HtoTI4RSH0F6SYLZ2QoePac8icuX_TSPL07C0vDTk--v8l2e0rlVFbhafyxaaTJc344iPPq4xuO4z96swYr1hx1LlLydZjDzgZkp0AKqVabILv2N-HcoHlQi5jMU-1o406_2tnrmD1dp9GloaSKCT3dgmbl-vGyymzGBaZoYQ9Y7AVSK-OFhKTY0OfcFbGvk1BKjsVAIadCzFWCJmc1lslWCBS5kAFqnWAoStuQ6XQ7uAOO0iYhkUroCX0pQqnLiUQuBPUaXU_moDCWd6QsHLnJitGORsfiQkRGMpGRTJRKJgenkxa9FIpjBu0JCTyy67E_g-5sMsi_Mt39I9MjWGxcVaL7m_rdHiyb_PRphOQ-ZAYvQzwgK2YQH45m6iexV-hr
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9AefIv1xR70oJh2t91Ns3gqYilCSw8WKghLNpm9WNpiW0V_vROTliqiKHtJYJLdTJLNN8nkG4DTqgxlUJOKcS59FmKNM5mmmgmNoqp9jCSarYF2h7d64W0_6ufganEXZjR2v_4yJS1RsFWhc4gTlaDGA0aw2a9IpapI9nqBRwTE81DodbqNe7urwhkhA3fryoq7Q8rvqvi0KK3Qi4uwOhuO5euLHAyW1pvmBjzMv9S6mTyWZ9O0rN6-kDj-symbsO5wqNewoluQw-E2FJfYCSnXXlC6Tnbg0tB4UImUcKn2tLGjn92w9cxmrtcdUR9Sxvic7kKveXN33WIu1AJTNKOnLA3qUitjfsS0omHIuS_SUGexlByrdYWcEilXGZpg1RgRSKgrsh3rqHWGsajtQX44GuI-eEqbSEQqoycOpYiljjKJXAhqMfqBLEFlrutEOR5yEw5jkHychwuRGK0kRiuJ1UoJzhclxpaD4wfZM1J24ibi5Ae5i0UH_1rpwV-ED2HNhKS3TpFHkJ8-zfCYgMs0PXED9B1R1eWW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+blind+deconvolution+with+Poisson+data&rft.jtitle=Inverse+problems&rft.au=Benfenati%2C+A&rft.au=Catozzi%2C+A&rft.au=Ruggiero%2C+V&rft.date=2023-05-01&rft.pub=IOP+Publishing&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1088%2F1361-6420%2Facc2e0&rft.externalDocID=ipacc2e0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon