Neural blind deconvolution with Poisson data
Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconv...
Saved in:
| Published in | Inverse problems Vol. 39; no. 5; pp. 54003 - 54032 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
01.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0266-5611 1361-6420 1361-6420 |
| DOI | 10.1088/1361-6420/acc2e0 |
Cover
| Abstract | Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconvolution aims to reconstruct the image when only the recorded data is available. In the last years, among the standard variational approaches, Deep Learning techniques have gained interest thanks to their impressive performances. The Deep Image Prior framework has been employed for solving this task, giving rise to the so-called neural blind deconvolution (NBD), where the unknown blur and image are estimated via two different neural networks. In this paper, we consider microscopy images, where the predominant noise is of Poisson type, hence signal-dependent: this leads to consider the generalized Kullback–Leibler as loss function and to couple it with regularization terms on both the blur operator and on the image. Furthermore, we propose to modify the standard NBD formulation problem, by including for the blur kernel an upper bound which depends on the optical instrument. A numerical solution is obtained by an alternating Proximal Gradient Descent-Ascent procedure, which results in the Double Deep Image Prior for Poisson noise algorithm. We evaluate the proposed strategy on both synthetic and real-world images, achieving promising results and proving that the correct choice of the loss and regularization functions strongly depends on the application at hand. |
|---|---|
| AbstractList | Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function inducing the blur effect on the acquired image can be solely approximately known, or just a mathematical model may be available. Blind deconvolution aims to reconstruct the image when only the recorded data is available. In the last years, among the standard variational approaches, Deep Learning techniques have gained interest thanks to their impressive performances. The Deep Image Prior framework has been employed for solving this task, giving rise to the so-called neural blind deconvolution (NBD), where the unknown blur and image are estimated via two different neural networks. In this paper, we consider microscopy images, where the predominant noise is of Poisson type, hence signal-dependent: this leads to consider the generalized Kullback–Leibler as loss function and to couple it with regularization terms on both the blur operator and on the image. Furthermore, we propose to modify the standard NBD formulation problem, by including for the blur kernel an upper bound which depends on the optical instrument. A numerical solution is obtained by an alternating Proximal Gradient Descent-Ascent procedure, which results in the Double Deep Image Prior for Poisson noise algorithm. We evaluate the proposed strategy on both synthetic and real-world images, achieving promising results and proving that the correct choice of the loss and regularization functions strongly depends on the application at hand. |
| Author | Catozzi, A Benfenati, A Ruggiero, V |
| Author_xml | – sequence: 1 givenname: A orcidid: 0000-0002-2985-374X surname: Benfenati fullname: Benfenati, A organization: Dipartimento di Scienze e Politiche Ambientali. Università di Milano , Via Celoria, 2, 20133 Milano, Italy – sequence: 2 givenname: A orcidid: 0000-0001-6378-3063 surname: Catozzi fullname: Catozzi, A organization: Fisica e Informatica. Università di Parma Dipartimento di Matematica, Parco Area delle Scienze, 7/A, 43124 Parma, Italy – sequence: 3 givenname: V orcidid: 0000-0001-5885-1703 surname: Ruggiero fullname: Ruggiero, V organization: Università di Ferrara Dipartimento di Matematica e Informatica, Via Machiavelli, 30, 44121 Ferrara, Italy |
| BookMark | eNqNkE1LxDAQhoOs4O7q3WN_wNbNpG3aHmXxCxb1oOcwTVLMEpMlaV3239tS8SAonmbmZZ6BZxZk5rzThFwCvQJaVWvIOKQ8Z3SNUjJNT8j8O5qROWWcpwUHOCOLGHeUAlRQzsnqUfcBbdJY41SitPTuw9u-M94lB9O9Jc_exDgMCjs8J6ct2qgvvuqSvN7evGzu0-3T3cPmepvKjLEubaBEJVnOijrjTOec06rJVVsjcs1KqfnQNFy2Glhe64LVWSkZQKmVanVdZUsC093e7fF4QGvFPph3DEcBVIy6YnQTo5uYdAeGTowMPsag2_8g_AciTYejehfQ2L_A1QQavxc73wc3fOP39U9dx3mQ |
| CODEN | INPEEY |
| CitedBy_id | crossref_primary_10_3390_math12060850 crossref_primary_10_1002_jemt_24732 |
| Cites_doi | 10.1088/2053-2563/aae109 10.1021/acs.nanolett.7b00717 10.1088/0266-5611/29/11/119501 10.1109/TMI.2003.809622 10.1007/s10107-006-0050-z 10.1007/s11263-020-01303-4 10.1109/TIP.2016.2531905 10.1016/j.ymeth.2016.12.015 10.1109/TCI.2020.3032671 10.1093/imanum/drq024 10.1088/1361-6420/33/1/015003 10.3390/jimaging8050142 10.1016/j.cviu.2020.103134 10.1007/s10589-022-00392-w 10.1111/j.1365-2818.2012.03675.x 10.1109/ICCVW.2019.00127 10.1088/0266-5611/29/6/065017 10.1088/0266-5611/25/4/045010 10.1109/TPAMI.2019.2941472 10.1109/CVPR.2019.01128 10.1007/s10107-005-0595-2 10.1046/j.1365-2818.1997.d01-629.x 10.1088/0266-5611/26/10/105004 10.1115/1.4056470 10.1364/JOSAA.17.000425 10.1109/TPAMI.2017.2753804 10.1016/S0167-6377(99)00074-7 10.1038/s41592-019-0364-4 10.1117/1.JBO.25.12.123707 10.1007/BF01585748 10.1006/jmre.1998.1387 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s). Published by IOP Publishing Ltd |
| Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1088/1361-6420/acc2e0 |
| DatabaseName | IOP Publishing IOPscience (Open Access) CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1361-6420 |
| ExternalDocumentID | oai:sfera.unife.it:11392/2508270 10_1088_1361_6420_acc2e0 ipacc2e0 |
| GroupedDBID | -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHFT ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT KZ1 LAP LMP N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA UCJ W28 XPP ZMT ~02 AAYXX ADACN ADEQX AEINN CITATION 02O 1WK 29J 5ZI 9BW AAGCF AALHV ACARI ACWPO ADTOC AERVB AETNG AFFNX AGQPQ AHSEE AI. ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. Q02 RKQ S3P T37 UNPAY VH1 ZY4 |
| ID | FETCH-LOGICAL-c322t-b17adc24259362e46608b4df9aa6e27ce6aa6b6cfe1249e52937c2117eddfe983 |
| IEDL.DBID | UNPAY |
| ISSN | 0266-5611 1361-6420 |
| IngestDate | Sun Oct 26 02:57:00 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Wed Oct 01 01:10:42 EDT 2025 Wed Aug 21 03:34:23 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-b17adc24259362e46608b4df9aa6e27ce6aa6b6cfe1249e52937c2117eddfe983 |
| Notes | IP-103717.R1 |
| ORCID | 0000-0001-6378-3063 0000-0002-2985-374X 0000-0001-5885-1703 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6420/acc2e0 |
| PageCount | 30 |
| ParticipantIDs | unpaywall_primary_10_1088_1361_6420_acc2e0 crossref_primary_10_1088_1361_6420_acc2e0 iop_journals_10_1088_1361_6420_acc2e0 crossref_citationtrail_10_1088_1361_6420_acc2e0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Inverse problems |
| PublicationTitleAbbrev | ip |
| PublicationTitleAlternate | Inverse Problems |
| PublicationYear | 2023 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Pardalos (ipacc2e0bib34) 1990; 46 Cascarano (ipacc2e0bib28) 2022; 84 Kiwiel (ipacc2e0bib36) 2008; 112 Zuo (ipacc2e0bib10) 2016; 25 Grasmair (ipacc2e0bib42) 2009 Nah (ipacc2e0bib14) 2017 Sage (ipacc2e0bib49) 2017; 115 Wang (ipacc2e0bib31) 2021 Ulyanov (ipacc2e0bib22) 2018 Bortolotti (ipacc2e0bib43) 2016; 33 Grippo (ipacc2e0bib7) 2000; 26 Sage (ipacc2e0bib50) 2019; 16 Zanella (ipacc2e0bib44) 2009; 25 Bertero (ipacc2e0bib1) 2018 Boţ (ipacc2e0bib29) 2022 Chen (ipacc2e0bib30) 2021 Liu (ipacc2e0bib13) 2021; 43 Bertsekas (ipacc2e0bib6) 1999 Kotera (ipacc2e0bib26) 2021 Zanella (ipacc2e0bib45) 2013; 29 Asim (ipacc2e0bib20) 2020; 6 Campisi (ipacc2e0bib2) 2016 Bonettini (ipacc2e0bib8) 2011; 31 Ulyanov (ipacc2e0bib23) 2020; 128 Prato (ipacc2e0bib9) 2013; 29 Gao (ipacc2e0bib17) 2019 Tao (ipacc2e0bib15) 2018 Dai (ipacc2e0bib35) 2006; 106 Zhang (ipacc2e0bib12) 2022 Bertero (ipacc2e0bib32) 2010; 26 Zhuang (ipacc2e0bib27) 2022 Zhang (ipacc2e0bib16) 2018 Sitzmann (ipacc2e0bib39) 2020 Tran (ipacc2e0bib19) 2021 Benfenati (ipacc2e0bib47) 2022; 8 van Kempen (ipacc2e0bib4) 1997; 185 Levin (ipacc2e0bib3) 2009 Gandelsman (ipacc2e0bib24) 2019 Wang (ipacc2e0bib25) 2019 Pan (ipacc2e0bib11) 2018; 40 Kirshner (ipacc2e0bib48) 2013; 249 van Kempen (ipacc2e0bib5) 2000; 17 Ren (ipacc2e0bib21) 2020 Chen (ipacc2e0bib37) 2017; 17 Bauschke (ipacc2e0bib33) 2011 Cascarano (ipacc2e0bib40) 2023; 7 Koh (ipacc2e0bib18) 2021; 203 Borgia (ipacc2e0bib41) 1998; 132 Willett (ipacc2e0bib46) 2003; 22 Ashida (ipacc2e0bib38) 2020; 25 |
| References_xml | – year: 2018 ident: ipacc2e0bib1 doi: 10.1088/2053-2563/aae109 – start-page: pp 331 year: 2009 ident: ipacc2e0bib42 article-title: Locally adaptive total variation regularization – volume: 17 start-page: 3188 year: 2017 ident: ipacc2e0bib37 article-title: Immersion meta-lenses at visible wavelengths for nanoscale imaging publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00717 – volume: 29 year: 2013 ident: ipacc2e0bib45 article-title: Corrigendum: efficient gradient projection methods for edge-preserving removal of poisson noise publication-title: Inverse Problems doi: 10.1088/0266-5611/29/11/119501 – year: 2020 ident: ipacc2e0bib39 article-title: Implicit neural representations with periodic activation functions – year: 2016 ident: ipacc2e0bib2 – volume: 22 start-page: 332 year: 2003 ident: ipacc2e0bib46 article-title: Platelets: a multiscale approach for recovering edges and surfaces in photon limited medical imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.809622 – volume: 112 start-page: 473 year: 2008 ident: ipacc2e0bib36 article-title: Breakpoint searching algorithms for the continuous quadratic knapsack problem publication-title: Math. Program. doi: 10.1007/s10107-006-0050-z – start-page: pp 3843 year: 2019 ident: ipacc2e0bib17 article-title: Dynamic scene deblurring with parameter selective sharing and nested skip connections – volume: 128 start-page: 1867 year: 2020 ident: ipacc2e0bib23 article-title: Deep Image Prior publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01303-4 – volume: 25 start-page: 1751 year: 2016 ident: ipacc2e0bib10 article-title: Learning iteration-wise generalized shrinkage–thresholding operators for blind deconvolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2531905 – volume: 115 start-page: 28 year: 2017 ident: ipacc2e0bib49 article-title: DeconvolutionLab2: an open-source software for deconvolution microscopy publication-title: Methods Image Process. Biol. doi: 10.1016/j.ymeth.2016.12.015 – volume: 6 start-page: 1493 year: 2020 ident: ipacc2e0bib20 article-title: Blind image deconvolution using deep generative priors publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2020.3032671 – volume: 31 start-page: 1431 year: 2011 ident: ipacc2e0bib8 article-title: Inexact block coordinate descent methods with application to the nonnegative matrix factorization publication-title: IMA J. Num. Anal. doi: 10.1093/imanum/drq024 – volume: 33 year: 2016 ident: ipacc2e0bib43 article-title: Uniform penalty inversion of two-dimensional NMR relaxation data publication-title: Inverse Problems doi: 10.1088/1361-6420/33/1/015003 – volume: 8 start-page: 142 year: 2022 ident: ipacc2e0bib47 article-title: upU-Net approaches for background emission removal in fluorescence microscopy publication-title: J. Imaging doi: 10.3390/jimaging8050142 – volume: 203 year: 2021 ident: ipacc2e0bib18 article-title: Single-image deblurring with neural networks: a comparative survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2020.103134 – volume: 84 start-page: 1 year: 2022 ident: ipacc2e0bib28 article-title: Constrained and unconstrained deep image prior optimization models with automatic regularization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-022-00392-w – volume: 249 start-page: 13 year: 2013 ident: ipacc2e0bib48 article-title: 3-D PSF fitting for fluorescence microscopy: Implementation and localization application publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2012.03675.x – year: 2019 ident: ipacc2e0bib25 article-title: Image deconvolution with deep image and kernel priors doi: 10.1109/ICCVW.2019.00127 – volume: 29 year: 2013 ident: ipacc2e0bib9 article-title: A convergent blind deconvolution method for post-adaptive-optics astronomical imaging publication-title: Inverse Problems doi: 10.1088/0266-5611/29/6/065017 – start-page: pp 5892 year: 2022 ident: ipacc2e0bib12 article-title: Pixel screening based intermediate correction for blind deblurring – start-page: pp 1954 year: 2021 ident: ipacc2e0bib26 article-title: Improving neural blind deconvolution – volume: 25 year: 2009 ident: ipacc2e0bib44 article-title: Efficient gradient projection methods for edge-preserving removal of poisson noise publication-title: Inverse Problems doi: 10.1088/0266-5611/25/4/045010 – year: 2021 ident: ipacc2e0bib31 article-title: Early stopping for deep image prior – start-page: pp 9446 year: 2018 ident: ipacc2e0bib22 – start-page: pp 3338 year: 2020 ident: ipacc2e0bib21 article-title: Neural blind deconvolution using deep priors – year: 1999 ident: ipacc2e0bib6 – start-page: pp 2521 year: 2018 ident: ipacc2e0bib16 article-title: Dynamic scene deblurring using spatially variant recurrent neural networks – volume: 43 start-page: 1041 year: 2021 ident: ipacc2e0bib13 article-title: Surface-aware blind image deblurring publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2941472 – year: 2019 ident: ipacc2e0bib24 article-title: Double-DIP: unsupervised image decomposition via coupled deepimage- priors doi: 10.1109/CVPR.2019.01128 – start-page: p 2021 year: 2021 ident: ipacc2e0bib19 article-title: Explore image deblurring via encoded blur kernel space – start-page: pp 1964 year: 2009 ident: ipacc2e0bib3 article-title: Understanding and evaluating blind deconvolution algorithm – year: 2022 ident: ipacc2e0bib27 article-title: Blind image deblurring with unknown kernel size and substantial noise – volume: 106 start-page: 403 year: 2006 ident: ipacc2e0bib35 article-title: New algorithms for singly linearly constrained quadratic programming problems subject to lower and upper bounds publication-title: Math. Program. doi: 10.1007/s10107-005-0595-2 – volume: 185 start-page: 354 year: 1997 ident: ipacc2e0bib4 article-title: A quantitative comparison of image restoration methods for confocal microscopy publication-title: J. Microsc. doi: 10.1046/j.1365-2818.1997.d01-629.x – year: 2011 ident: ipacc2e0bib33 – volume: 26 year: 2010 ident: ipacc2e0bib32 article-title: A discrepancy principle for Poisson data publication-title: Inverse Problems doi: 10.1088/0266-5611/26/10/105004 – year: 2021 ident: ipacc2e0bib30 article-title: Proximal gradient descent-ascent: variable convergence under kl geometry – volume: 7 year: 2023 ident: ipacc2e0bib40 article-title: On the First-Order Optimization Methods in Deep Image Prior publication-title: J. Verif. Valid. Uncertain. Quantif. doi: 10.1115/1.4056470 – volume: 17 start-page: 425 year: 2000 ident: ipacc2e0bib5 article-title: Background estimation in nonlinear image restoration publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.17.000425 – volume: 40 start-page: 2315 year: 2018 ident: ipacc2e0bib11 article-title: Deblurring images via dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2753804 – volume: 26 start-page: 127 year: 2000 ident: ipacc2e0bib7 article-title: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(99)00074-7 – volume: 16 start-page: 387 year: 2019 ident: ipacc2e0bib50 article-title: Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software publication-title: Nat. Methods Tech. Life Sci. Chem. doi: 10.1038/s41592-019-0364-4 – start-page: pp 8174 year: 2018 ident: ipacc2e0bib15 article-title: Scale-recurrent network for deep image deblurring – year: 2022 ident: ipacc2e0bib29 article-title: Alternating proximal-gradient steps for (stochastic) nonconvex-concave minimax problems – volume: 25 year: 2020 ident: ipacc2e0bib38 article-title: Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.25.12.123707 – start-page: pp 257 year: 2017 ident: ipacc2e0bib14 article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring – volume: 46 start-page: 321 year: 1990 ident: ipacc2e0bib34 article-title: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds publication-title: Math. Program. doi: 10.1007/BF01585748 – volume: 132 start-page: 65 year: 1998 ident: ipacc2e0bib41 article-title: Uniform-penalty inversion of multiexponential decay data publication-title: J. Magn. Reson. doi: 10.1006/jmre.1998.1387 |
| SSID | ssj0011817 |
| Score | 2.429534 |
| Snippet | Blind Deconvolution problem is a challenging task in several scientific imaging domains, such as Microscopy, Medicine and Astronomy. The Point Spread Function... |
| SourceID | unpaywall crossref iop |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 54003 |
| SubjectTerms | blind deconvolution deep image prior neural networks Poisson noise |
| SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: IOP Publishing dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHnQHv8X5RQ96UMzWrm2a4knEMYTpDg52EEqavF4c3XCdon-9L0tWpoiK9JJAkjYvSd_vJS-_R8hJSwTC84WkjAmXBuAzKtJUUa6At5QLoQC9NdC9Y51-cDsIBxVyWd6FGY3tr7-BSUMUbERoHeJ40_OZRxE2u00hZQvQXl_2OQJjfXvvvlceIaDqiswGC6MIEjx7RvldC5900hK-t0ZWpvlYvL2K4XBB3bTXyeP8Q42XyVNjWqQN-f6Fw_GfPdkgaxaGOlem6CapQL5FagvkhJjrloyuk21yoVk8sEaKsFQ5SpvRL3bWOnov1-mNcAgxo11Od0i_ffNw3aE20gKVuKALmnqRUFJbHzEqNAgYc3kaqCwWgkErksAwkTKZgY5VDSFihEii6RiBUhnE3N8l1XyUwx5xpNKBiGSGTxwIHgsVZgIY59hjcD1RJ825rBNpach1NIxhMjsO5zzRUkm0VBIjlTo5K2uMDQXHD2VPUdiJXYeTH8qdlwP8a6P7f2z0gKzqYPTGHfKQVIvnKRwhZCnS49nU_ABypOMK priority: 102 providerName: IOP Publishing |
| Title | Neural blind deconvolution with Poisson data |
| URI | https://iopscience.iop.org/article/10.1088/1361-6420/acc2e0 |
| UnpaywallVersion | submittedVersion |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: AUTh Library subscriptions: IOP Publishing customDbUrl: eissn: 1361-6420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011817 issn: 1361-6420 databaseCode: IOP dateStart: 19850101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-2-aA--C1-jj7og2K2dm2zFJ9ElCns48HhBKGkyfXFsQ3dFP3rvZg4VERRCqWBS9pckuZ3yeV3AHs1GckglIpxLn0WYciZzDLNhEZR0z7GEs3SQLPFG93oshf3CnA8PQszHLlff4UeLVGwVaFziBPVIOQBI9jsV6VSNSR7fYbHBMRLMNNtdU5u7KoKZ4QM3KkrK-42Kb8r4tOkVKQXz8PsZDCSz0-y3_8w35wvwu37l1o3k7vKZJxV1MsXEsd_VmUJFhwO9U6s6DIUcLAC8x_YCSnVnFK6PqzCkaHxoBwZ4VLtaWNHP7pu65nFXK8zpDakhPE5XYPu-dnVaYO5UAtM0YgesyyoS62M-ZHQjIYR577IIp0nUnKs1RVyesi4ytEEq8aYQEJdke1YR61zTES4DqXBcIAb4CltIhGpnK4kkiKROs4lciGoxugHchOq77pOleMhN-Ew-unbfrgQqdFKarSSWq1swsE0x8hycPwgu0_KTt1AfPhB7nDawL8WuvUX4W2YMyHprVPkDpTG9xPcJeAyzspQvGh36N4Or8uus74CHIPnmQ |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oJioPfhvxcw_6oLGwwei6R6MS_AB5kIS32bW3FwkQAY3-9V5ZIWgMmpi9tMn1tl7b3V17_R3AcVH60itJxTiXLvOxxJmMY82ERlHULpYlmq2BWp1Xm_5tq9yyeU5Hd2G6Pfvrz1MxBQpORWgD4kTBK3GPkdnsFqRSRXQLPZ3Mw8IIp8Tc4HtoTI4RSH0F6SYLZ2QoePac8icuX_TSPL07C0vDTk--v8l2e0rlVFbhafyxaaTJc344iPPq4xuO4z96swYr1hx1LlLydZjDzgZkp0AKqVabILv2N-HcoHlQi5jMU-1o406_2tnrmD1dp9GloaSKCT3dgmbl-vGyymzGBaZoYQ9Y7AVSK-OFhKTY0OfcFbGvk1BKjsVAIadCzFWCJmc1lslWCBS5kAFqnWAoStuQ6XQ7uAOO0iYhkUroCX0pQqnLiUQuBPUaXU_moDCWd6QsHLnJitGORsfiQkRGMpGRTJRKJgenkxa9FIpjBu0JCTyy67E_g-5sMsi_Mt39I9MjWGxcVaL7m_rdHiyb_PRphOQ-ZAYvQzwgK2YQH45m6iexV-hr |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9AefIv1xR70oJh2t91Ns3gqYilCSw8WKghLNpm9WNpiW0V_vROTliqiKHtJYJLdTJLNN8nkG4DTqgxlUJOKcS59FmKNM5mmmgmNoqp9jCSarYF2h7d64W0_6ufganEXZjR2v_4yJS1RsFWhc4gTlaDGA0aw2a9IpapI9nqBRwTE81DodbqNe7urwhkhA3fryoq7Q8rvqvi0KK3Qi4uwOhuO5euLHAyW1pvmBjzMv9S6mTyWZ9O0rN6-kDj-symbsO5wqNewoluQw-E2FJfYCSnXXlC6Tnbg0tB4UImUcKn2tLGjn92w9cxmrtcdUR9Sxvic7kKveXN33WIu1AJTNKOnLA3qUitjfsS0omHIuS_SUGexlByrdYWcEilXGZpg1RgRSKgrsh3rqHWGsajtQX44GuI-eEqbSEQqoycOpYiljjKJXAhqMfqBLEFlrutEOR5yEw5jkHychwuRGK0kRiuJ1UoJzhclxpaD4wfZM1J24ibi5Ae5i0UH_1rpwV-ED2HNhKS3TpFHkJ8-zfCYgMs0PXED9B1R1eWW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+blind+deconvolution+with+Poisson+data&rft.jtitle=Inverse+problems&rft.au=Benfenati%2C+A&rft.au=Catozzi%2C+A&rft.au=Ruggiero%2C+V&rft.date=2023-05-01&rft.pub=IOP+Publishing&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1088%2F1361-6420%2Facc2e0&rft.externalDocID=ipacc2e0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon |