Predicting Students at Risk of Dropout in Technical Course Using LMS Logs

Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine Learning techniques to create a student performance prediction model, using academic data and records from a Learning Management System, that corre...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 3; p. 468
Main Authors Tamada, Mariela Mizota, Giusti, Rafael, Netto, José Francisco de Magalhães
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11030468

Cover

Abstract Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine Learning techniques to create a student performance prediction model, using academic data and records from a Learning Management System, that correlates with success or failure in completing the course. Six algorithms were employed, with models trained at three different stages of their two-year course completion. We tested the models with records of 394 students from 3 courses. Random Forest provided the best results with 84.47% on the F1 score in our experiments, followed by Decision Tree obtaining similar results in the first subjects. We also employ clustering techniques and find different behavior groups with a strong correlation to performance. This work contributes to predicting students at risk of dropping out, offers insight into understanding student behavior, and provides a support mechanism for academic managers to take corrective and preventive actions on this problem.
AbstractList Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine Learning techniques to create a student performance prediction model, using academic data and records from a Learning Management System, that correlates with success or failure in completing the course. Six algorithms were employed, with models trained at three different stages of their two-year course completion. We tested the models with records of 394 students from 3 courses. Random Forest provided the best results with 84.47% on the F1 score in our experiments, followed by Decision Tree obtaining similar results in the first subjects. We also employ clustering techniques and find different behavior groups with a strong correlation to performance. This work contributes to predicting students at risk of dropping out, offers insight into understanding student behavior, and provides a support mechanism for academic managers to take corrective and preventive actions on this problem.
Author Tamada, Mariela Mizota
Netto, José Francisco de Magalhães
Giusti, Rafael
Author_xml – sequence: 1
  givenname: Mariela Mizota
  surname: Tamada
  fullname: Tamada, Mariela Mizota
– sequence: 2
  givenname: Rafael
  surname: Giusti
  fullname: Giusti, Rafael
– sequence: 3
  givenname: José Francisco de Magalhães
  surname: Netto
  fullname: Netto, José Francisco de Magalhães
BookMark eNqNkE1LAzEQhoMoWGt_gZeA52qS2a8cpX4VVhTbnpdsNqmpa7ImWaT_3i31ICLiXGYO7_POzHuCDq2zCqEzSi4AOLlUrZLRO2tkoJQASbLiAI0YyfmUM84Ov83HaBLChgzFKRRARmj-5FVjZDR2jRexb5SNAYuIn014xU7ja-8610dsLF4q-TIsES2eud4HhVdhR5UPC1y6dThFR1q0QU2--hitbm-Ws_tp-Xg3n12VUwmMxSmHhKiCaUJTmkidKaEgA6ohL1JIWSESDXXdJFLUVEqARKSpbOoibQrBGWgYo2Tv29tObD9E21adN2_CbytKql0i1S-JDNj5Huu8e-9ViNVm-MIOl1YsY3nKIKc7FexV0rsQvNL_9OY_KGmiiMbZ6IVp_2Q_ATmzibs
CitedBy_id crossref_primary_10_1016_j_procs_2024_04_291
crossref_primary_10_1109_ACCESS_2023_3293827
crossref_primary_10_1016_j_techsoc_2024_102474
crossref_primary_10_1038_s41598_025_93918_1
crossref_primary_10_32517_0234_0453_2023_38_3_31_41
crossref_primary_10_7717_peerj_cs_1708
crossref_primary_10_1016_j_heliyon_2024_e26214
crossref_primary_10_12716_1001_17_03_17
crossref_primary_10_3389_fpsyg_2022_944335
crossref_primary_10_3390_data9040060
crossref_primary_10_1016_j_heliyon_2024_e36436
Cites_doi 10.3390/app10217730
10.3390/su131910991
10.1109/SIIE.2018.8586748
10.1080/08839510490442058
10.1177/0735633118757015
10.1016/j.compedu.2016.02.006
10.3390/su13031127
10.1016/j.compedu.2013.06.009
10.1007/s00521-021-05749-6
10.3390/app10010354
10.1016/j.compedu.2020.104108
10.1109/FIE43999.2019.9028545
10.1109/TLT.2016.2616312
10.3390/app11219946
10.17234/INFUTURE.2019.14
10.4018/IJDET.20210101.oa3
10.1016/j.compeleceng.2017.03.005
10.1061/(ASCE)IS.1943-555X.0000602
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11030468
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11030468
10_3390_electronics11030468
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-9340e82f01514cf6eae3631f37853528a4f3bbd4cab1cc334a55cdb85d8a923f3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 03:53:02 EDT 2025
Fri Jul 25 03:12:18 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Thu Oct 16 04:31:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-9340e82f01514cf6eae3631f37853528a4f3bbd4cab1cc334a55cdb85d8a923f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/3/468/pdf?version=1644068890
PQID 2627523718
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11030468
proquest_journals_2627523718
crossref_primary_10_3390_electronics11030468
crossref_citationtrail_10_3390_electronics11030468
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Piryonesi (ref_32) 2021; 27
Andrade (ref_14) 2021; 20
Balkaya (ref_8) 2019; 7
Hung (ref_22) 2008; 4
Cerezo (ref_24) 2016; 96
ref_13
ref_12
Marek (ref_2) 2021; 19
ref_11
Ortin (ref_26) 2021; 163
ref_33
ref_31
ref_30
Powers (ref_29) 2011; 2
Kotsiantis (ref_10) 2004; 15
ref_18
ref_16
ref_15
Xing (ref_19) 2019; 57
Seidman (ref_5) 1996; 71
ref_23
ref_21
ref_1
ref_3
ref_28
Burgos (ref_17) 2018; 66
Conijn (ref_20) 2017; 10
ref_27
Romero (ref_25) 2013; 68
ref_9
ref_4
ref_7
ref_6
References_xml – ident: ref_28
– volume: 71
  start-page: 18
  year: 1996
  ident: ref_5
  article-title: Retention revisited: R=E, id+E & In, iv
  publication-title: Coll. Univ.
– volume: 20
  start-page: 171
  year: 2021
  ident: ref_14
  article-title: Active Methodology, Educational Data Mining and Learning Analytics: A Systematic Mapping Study
  publication-title: Inform. Educ.
– ident: ref_30
– ident: ref_7
  doi: 10.3390/app10217730
– ident: ref_3
  doi: 10.3390/su131910991
– ident: ref_18
  doi: 10.1109/SIIE.2018.8586748
– volume: 15
  start-page: 411
  year: 2004
  ident: ref_10
  article-title: Predicting students’ performance in distance learning using machine learning techniques
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839510490442058
– volume: 57
  start-page: 547
  year: 2019
  ident: ref_19
  article-title: Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention
  publication-title: J. Educ. Comput. Res.
  doi: 10.1177/0735633118757015
– volume: 96
  start-page: 42
  year: 2016
  ident: ref_24
  article-title: Students’ LMS interaction patterns and their relationship with achievement: A case study in higher education
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2016.02.006
– volume: 4
  start-page: 426
  year: 2008
  ident: ref_22
  article-title: Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching
  publication-title: MERLOT J. Online Learn. Teach.
– ident: ref_9
  doi: 10.3390/su13031127
– volume: 68
  start-page: 458
  year: 2013
  ident: ref_25
  article-title: Predicting students’ final performance from participation in on-line discussion forums
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2013.06.009
– volume: 7
  start-page: 229
  year: 2019
  ident: ref_8
  article-title: Role of Trust, Privacy Concerns and Data Governance in Managers’ Decision on Adoption of Big Data Systems
  publication-title: Manag. Stud.
– ident: ref_1
– volume: 2
  start-page: 37
  year: 2011
  ident: ref_29
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: J. Mach. Learn. Technol.
– ident: ref_23
– ident: ref_15
  doi: 10.1007/s00521-021-05749-6
– ident: ref_21
  doi: 10.3390/app10010354
– volume: 163
  start-page: 104108
  year: 2021
  ident: ref_26
  article-title: Massive LMS log data analysis for the early prediction of course-agnostic student performance
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2020.104108
– ident: ref_13
  doi: 10.1109/FIE43999.2019.9028545
– volume: 10
  start-page: 17
  year: 2017
  ident: ref_20
  article-title: Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS
  publication-title: IEEE Trans. Learn. Technol.
  doi: 10.1109/TLT.2016.2616312
– ident: ref_6
– ident: ref_4
– ident: ref_31
– ident: ref_33
– ident: ref_27
– ident: ref_12
– ident: ref_11
  doi: 10.3390/app11219946
– ident: ref_16
  doi: 10.17234/INFUTURE.2019.14
– volume: 19
  start-page: 40
  year: 2021
  ident: ref_2
  article-title: Teacher Experiences in Converting Classes to Distance Learning in the COVID-19 Pandemic
  publication-title: Int. J. Distance Educ. Technol.
  doi: 10.4018/IJDET.20210101.oa3
– volume: 66
  start-page: 542
  year: 2018
  ident: ref_17
  article-title: Data mining for modeling students performance: A tutoring action plan to prevent academic dropout
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.03.005
– volume: 27
  start-page: 04021005
  year: 2021
  ident: ref_32
  article-title: Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration Modeling
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)IS.1943-555X.0000602
SSID ssj0000913830
Score 2.3034143
Snippet Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 468
SubjectTerms Algorithms
At risk students
Classification
Clustering
COVID-19
Data mining
Decision trees
Distance learning
Education
Educational materials
Learning management systems
Machine learning
Performance prediction
Prediction models
Research methodology
Secondary schools
Students
Teaching
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHNSDUdSIotmDRxvtblvKwRgfEDVICErCrdmnIZKCtMT4790pLWhijPfdPczsPHZm9vsATqViYdBk3PGVoI5ngsARSAkoMZf1faoYzwZku8H9wHsc-sMSdIu_MDhWWfjEzFGricQa-TlFOF3KrCu9mr47yBqF3dWCQoPn1ArqMoMYW4MKRWSsMlRuWt1ef1l1QRTMkF0s4IeYfe-fr9hmEtfN-oThzxC1yjvX5_GUf37w8fhbCGpvw1aeO5LrhbJ3oKTjKtIu5yMaVdj8hi64Cw-9GXZhcK6ZPC8gLBPCU9IfJW9kYsgdEiTMUzKKSVZgR3UR5LBLNMkmCUjn6Zl0Jq_JHgzarZfbeydnTnCkNdDUaTLvQofU2FjvetIEmmsWMNewRpjBuXDPMCGUJ7lwpWTM474vlQh9FXKb8Rm2D-V4EusDINL4QjFrpi43XuCa0O6hwp7usoZWmtaAFsKKZA4rjuwW48g-L1DC0S8SrsHZctN0garx9_J6oYUoN7EkWl2IGjhLzfznuMO_jzuCDYp_HLLR7DqU09lcH9vMIxUn-XX6AlnC2lo
  priority: 102
  providerName: ProQuest
Title Predicting Students at Risk of Dropout in Technical Course Using LMS Logs
URI https://www.proquest.com/docview/2627523718
https://www.mdpi.com/2079-9292/11/3/468/pdf?version=1644068890
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7R5NByaOlLpNBoDz3WmH1mc6pom0AriCJoJHqy9llFRE6EnVblwG9n13aAogqVHi3trGzNjueb3dnvA3hnLJWiT1XCrSYJ80IkOkoCmohlOSeWqqpBdiQOJuzrKT9tNtyKpq0ylOLT6idNdnv9JORvkmKc0pQJmS6s__Cz2UkKSJ9FzZR-KNnbggcs3oL2ZDTe-x4V5Va2NdUQDbV9eqMsU2BcnQnKP9PRDcZ8vMwX6vcvNZvdSjfDZ5CtXrTuMjnbWZZ6x1zc4XD8_y_ZgKcNEkV79dJ5DmsufwHrt_gJX8KX8Xk8x4md0eikJsEskCrR8bQ4Q3OPPkeJhWWJpjmqtuijw1FUwSscqnoR0OHRCTqc_yhewWQ4-PbpIGm0FxITQrxM-pTtOkl8QAuYGS-cclRQ7GlPVoQwinmqtWVGaWwMpUxxbqyW3EoVMKOnr6GVz3O3Cch4ri0NgY6VZwJ7GWyIDrNj2nPWkQ6QlQsy0xCTR32MWRYKlOi37C9-68D7a6NFzctx__DtlW-zJkiLjESGZkJDdu5Acu3vf5nuzQPHb8ETEq9NVN3e29Aqz5fubQAzpe7CIznc70L742A0Pg5PR5eDbrOKrwDxWfTn
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeqvISobTsodywiHfWxjmgihZQUkKEeEjczD5R1MgJ2BHiz_W3sePYCZUQ4sLdO4fZz_PYnf0-gB_aYBK3UAaRUTwQLo4DRZKAmmrZKOIGZTkg24vbV-LPdXQ9B__qtzA0VlnHxDJQm6GmM_JdTnS6HH0o_Tm6C0g1im5XawkNWUkrmP2SYqx62HFiHx98C5fvdw79fm9zfnx0-bsdVCoDgfZgLoIWiqZNuPN5MRTaxVZajDF0uJeU1CdSOFTKCC1VqDWikFGkjUoik0hfHTn0dj_AgkDR8s3fwq-j3tn59JSHWDcTbE7ojhBbzd2Zuk0ehuW9ZPJ_SpzVuYvjbCQfH-Rg8CzlHX-Bz1Wtyg4m4FqCOZstk8xzNRKyDJ-esRmuQOfsnm59aI6aXUwoM3MmC3bez_-yoWOHJMgwLlg_Y-WBPsGDkWZeblk5ucC6pxesO7zNV-HqXXy4BvPZMLPrwLSLlEEfFkLpRBy6xK_hylsPcc8ayxvAa2eluqIxJzWNQerbGfJw-oKHG7AzXTSasHi8_vlmvQtp9Uvn6QyADQimO_MWcxuvm9uCxfblaTftdnonX-Ejp_cV5Vj4JswX92P7zVc9hfpeQYvBzXuj-QlSbhdl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkKAcEE81lNI90FutxDu24xyqqiINpKQI8ZC4mX0iROQE7Ajx1_rruuNHAlKFuHD3zmH28-zs7rffB7CvNMZRB4UXasm9wEaRJ8kSUFEvG4ZcoygIsifR0WXw-yq8moO_9VsYolXWNbEo1Hqk6Iy8yUlOl6MrpU1b0SJOu70f43uPHKToprW20yghcmyeHt32Lfve77q5_sp579fFwZFXOQx4ygE59zoYtEzMrVsT_UDZyAiDEfoW23EheyICi1LqQAnpK4UYiDBUWsahjoXrjCy6uPOw2CYVd3ql3jucnu-Q3maMrVLoCLHTas58bTLfL24k45eL4azDXZ6kY_H0KIbDZ4tdbw1Wqy6V_SxhtQ5zJt0gg-eKDLIBK890DDehf_pA9z3EoGbnpVhmxkTOzm6zOzayrEtWDJOc3aasOMonYDByy8sMKzgLbPDnnA1GN9kWXL5LBrdhIR2l5iMwZUOp0RUEX9gg8m3sxnDpovvYNtrwBvA6WYmqBMzJR2OYuI0MZTj5T4Yb8G06aFzqd7z--W49C0n1M2fJDHoN8KYz85ZwO6-H-wJLDsPJoH9y_Ak-cHpYUfDBd2Ehf5iYz67dyeVegSsG1-8N5H-8ORT_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kPagH32K1yh48GuM-m56k-KCKiqgFPYV9SmlJS5Mq-uvdTdL6QES97ywJs5P5ZnbyfQDsKk0i3iQiYFrigFrOA-klAZXHsoxhTUQ-IHvF2x16fs_uy4ZbWo5VulK8m3-k8UGjGbj8jUOEQhJSHoVDbQ-fyk6SQ_rUa6Y0Xcle5cxh8Qqodq6uWw9eUW5iW1ANEVfbh-_KMilC-Z1g9DkdvWPM2XEyFC_Pot__kG5OF0E8edBiyqS3P87kvnr9wuH4_zdZAgslEoWt4ugsgxmTrID5D_yEq-DseuTvcfxkNLwtSDBTKDJ40017cGDhsZdYGGewm8C8Re8dDr0KXmpgPosALy5v4cXgMV0DndOTu6N2UGovBMqFeBY0CT0wEbYOLSCqLDfCEE6QJY0oJ4QR1BIpNVVCIqUIoYIxpWXEdCQcZrRkHVSSQWI2AFSWSU1coCNhKUc2cjZYut0RaRhtcA3giQtiVRKTe32MfuwKFO-3-Bu_1cDe1GhY8HL8vLw-8W1cBmkaY8_QjInLzjUQTP39m-02_7h-C8xh_9tEPu1dB5VsNDbbDsxkcqc8sW_7ofE2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students+at+Risk+of+Dropout+in+Technical+Course+Using+LMS+Logs&rft.jtitle=Electronics+%28Basel%29&rft.au=Tamada%2C+Mariela+Mizota&rft.au=Giusti%2C+Rafael&rft.au=Netto%2C+Jos%C3%A9+Francisco+de+Magalh%C3%A3es&rft.date=2022-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=3&rft.spage=468&rft_id=info:doi/10.3390%2Felectronics11030468&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11030468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon