Predicting Students at Risk of Dropout in Technical Course Using LMS Logs
Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine Learning techniques to create a student performance prediction model, using academic data and records from a Learning Management System, that corre...
Saved in:
| Published in | Electronics (Basel) Vol. 11; no. 3; p. 468 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics11030468 |
Cover
| Abstract | Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine Learning techniques to create a student performance prediction model, using academic data and records from a Learning Management System, that correlates with success or failure in completing the course. Six algorithms were employed, with models trained at three different stages of their two-year course completion. We tested the models with records of 394 students from 3 courses. Random Forest provided the best results with 84.47% on the F1 score in our experiments, followed by Decision Tree obtaining similar results in the first subjects. We also employ clustering techniques and find different behavior groups with a strong correlation to performance. This work contributes to predicting students at risk of dropping out, offers insight into understanding student behavior, and provides a support mechanism for academic managers to take corrective and preventive actions on this problem. |
|---|---|
| AbstractList | Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine Learning techniques to create a student performance prediction model, using academic data and records from a Learning Management System, that correlates with success or failure in completing the course. Six algorithms were employed, with models trained at three different stages of their two-year course completion. We tested the models with records of 394 students from 3 courses. Random Forest provided the best results with 84.47% on the F1 score in our experiments, followed by Decision Tree obtaining similar results in the first subjects. We also employ clustering techniques and find different behavior groups with a strong correlation to performance. This work contributes to predicting students at risk of dropping out, offers insight into understanding student behavior, and provides a support mechanism for academic managers to take corrective and preventive actions on this problem. |
| Author | Tamada, Mariela Mizota Netto, José Francisco de Magalhães Giusti, Rafael |
| Author_xml | – sequence: 1 givenname: Mariela Mizota surname: Tamada fullname: Tamada, Mariela Mizota – sequence: 2 givenname: Rafael surname: Giusti fullname: Giusti, Rafael – sequence: 3 givenname: José Francisco de Magalhães surname: Netto fullname: Netto, José Francisco de Magalhães |
| BookMark | eNqNkE1LAzEQhoMoWGt_gZeA52qS2a8cpX4VVhTbnpdsNqmpa7ImWaT_3i31ICLiXGYO7_POzHuCDq2zCqEzSi4AOLlUrZLRO2tkoJQASbLiAI0YyfmUM84Ov83HaBLChgzFKRRARmj-5FVjZDR2jRexb5SNAYuIn014xU7ja-8610dsLF4q-TIsES2eud4HhVdhR5UPC1y6dThFR1q0QU2--hitbm-Ws_tp-Xg3n12VUwmMxSmHhKiCaUJTmkidKaEgA6ohL1JIWSESDXXdJFLUVEqARKSpbOoibQrBGWgYo2Tv29tObD9E21adN2_CbytKql0i1S-JDNj5Huu8e-9ViNVm-MIOl1YsY3nKIKc7FexV0rsQvNL_9OY_KGmiiMbZ6IVp_2Q_ATmzibs |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_04_291 crossref_primary_10_1109_ACCESS_2023_3293827 crossref_primary_10_1016_j_techsoc_2024_102474 crossref_primary_10_1038_s41598_025_93918_1 crossref_primary_10_32517_0234_0453_2023_38_3_31_41 crossref_primary_10_7717_peerj_cs_1708 crossref_primary_10_1016_j_heliyon_2024_e26214 crossref_primary_10_12716_1001_17_03_17 crossref_primary_10_3389_fpsyg_2022_944335 crossref_primary_10_3390_data9040060 crossref_primary_10_1016_j_heliyon_2024_e36436 |
| Cites_doi | 10.3390/app10217730 10.3390/su131910991 10.1109/SIIE.2018.8586748 10.1080/08839510490442058 10.1177/0735633118757015 10.1016/j.compedu.2016.02.006 10.3390/su13031127 10.1016/j.compedu.2013.06.009 10.1007/s00521-021-05749-6 10.3390/app10010354 10.1016/j.compedu.2020.104108 10.1109/FIE43999.2019.9028545 10.1109/TLT.2016.2616312 10.3390/app11219946 10.17234/INFUTURE.2019.14 10.4018/IJDET.20210101.oa3 10.1016/j.compeleceng.2017.03.005 10.1061/(ASCE)IS.1943-555X.0000602 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics11030468 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics11030468 10_3390_electronics11030468 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-9340e82f01514cf6eae3631f37853528a4f3bbd4cab1cc334a55cdb85d8a923f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 03:53:02 EDT 2025 Fri Jul 25 03:12:18 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Thu Oct 16 04:31:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-9340e82f01514cf6eae3631f37853528a4f3bbd4cab1cc334a55cdb85d8a923f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/3/468/pdf?version=1644068890 |
| PQID | 2627523718 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics11030468 proquest_journals_2627523718 crossref_primary_10_3390_electronics11030468 crossref_citationtrail_10_3390_electronics11030468 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Piryonesi (ref_32) 2021; 27 Andrade (ref_14) 2021; 20 Balkaya (ref_8) 2019; 7 Hung (ref_22) 2008; 4 Cerezo (ref_24) 2016; 96 ref_13 ref_12 Marek (ref_2) 2021; 19 ref_11 Ortin (ref_26) 2021; 163 ref_33 ref_31 ref_30 Powers (ref_29) 2011; 2 Kotsiantis (ref_10) 2004; 15 ref_18 ref_16 ref_15 Xing (ref_19) 2019; 57 Seidman (ref_5) 1996; 71 ref_23 ref_21 ref_1 ref_3 ref_28 Burgos (ref_17) 2018; 66 Conijn (ref_20) 2017; 10 ref_27 Romero (ref_25) 2013; 68 ref_9 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_28 – volume: 71 start-page: 18 year: 1996 ident: ref_5 article-title: Retention revisited: R=E, id+E & In, iv publication-title: Coll. Univ. – volume: 20 start-page: 171 year: 2021 ident: ref_14 article-title: Active Methodology, Educational Data Mining and Learning Analytics: A Systematic Mapping Study publication-title: Inform. Educ. – ident: ref_30 – ident: ref_7 doi: 10.3390/app10217730 – ident: ref_3 doi: 10.3390/su131910991 – ident: ref_18 doi: 10.1109/SIIE.2018.8586748 – volume: 15 start-page: 411 year: 2004 ident: ref_10 article-title: Predicting students’ performance in distance learning using machine learning techniques publication-title: Appl. Artif. Intell. doi: 10.1080/08839510490442058 – volume: 57 start-page: 547 year: 2019 ident: ref_19 article-title: Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention publication-title: J. Educ. Comput. Res. doi: 10.1177/0735633118757015 – volume: 96 start-page: 42 year: 2016 ident: ref_24 article-title: Students’ LMS interaction patterns and their relationship with achievement: A case study in higher education publication-title: Comput. Educ. doi: 10.1016/j.compedu.2016.02.006 – volume: 4 start-page: 426 year: 2008 ident: ref_22 article-title: Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching publication-title: MERLOT J. Online Learn. Teach. – ident: ref_9 doi: 10.3390/su13031127 – volume: 68 start-page: 458 year: 2013 ident: ref_25 article-title: Predicting students’ final performance from participation in on-line discussion forums publication-title: Comput. Educ. doi: 10.1016/j.compedu.2013.06.009 – volume: 7 start-page: 229 year: 2019 ident: ref_8 article-title: Role of Trust, Privacy Concerns and Data Governance in Managers’ Decision on Adoption of Big Data Systems publication-title: Manag. Stud. – ident: ref_1 – volume: 2 start-page: 37 year: 2011 ident: ref_29 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation publication-title: J. Mach. Learn. Technol. – ident: ref_23 – ident: ref_15 doi: 10.1007/s00521-021-05749-6 – ident: ref_21 doi: 10.3390/app10010354 – volume: 163 start-page: 104108 year: 2021 ident: ref_26 article-title: Massive LMS log data analysis for the early prediction of course-agnostic student performance publication-title: Comput. Educ. doi: 10.1016/j.compedu.2020.104108 – ident: ref_13 doi: 10.1109/FIE43999.2019.9028545 – volume: 10 start-page: 17 year: 2017 ident: ref_20 article-title: Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS publication-title: IEEE Trans. Learn. Technol. doi: 10.1109/TLT.2016.2616312 – ident: ref_6 – ident: ref_4 – ident: ref_31 – ident: ref_33 – ident: ref_27 – ident: ref_12 – ident: ref_11 doi: 10.3390/app11219946 – ident: ref_16 doi: 10.17234/INFUTURE.2019.14 – volume: 19 start-page: 40 year: 2021 ident: ref_2 article-title: Teacher Experiences in Converting Classes to Distance Learning in the COVID-19 Pandemic publication-title: Int. J. Distance Educ. Technol. doi: 10.4018/IJDET.20210101.oa3 – volume: 66 start-page: 542 year: 2018 ident: ref_17 article-title: Data mining for modeling students performance: A tutoring action plan to prevent academic dropout publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.03.005 – volume: 27 start-page: 04021005 year: 2021 ident: ref_32 article-title: Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration Modeling publication-title: J. Infrastruct. Syst. doi: 10.1061/(ASCE)IS.1943-555X.0000602 |
| SSID | ssj0000913830 |
| Score | 2.3034143 |
| Snippet | Educational data mining is a process that aims at discovering patterns that provide insight into teaching and learning processes. This work uses Machine... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 468 |
| SubjectTerms | Algorithms At risk students Classification Clustering COVID-19 Data mining Decision trees Distance learning Education Educational materials Learning management systems Machine learning Performance prediction Prediction models Research methodology Secondary schools Students Teaching |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHNSDUdSIotmDRxvtblvKwRgfEDVICErCrdmnIZKCtMT4790pLWhijPfdPczsPHZm9vsATqViYdBk3PGVoI5ngsARSAkoMZf1faoYzwZku8H9wHsc-sMSdIu_MDhWWfjEzFGricQa-TlFOF3KrCu9mr47yBqF3dWCQoPn1ArqMoMYW4MKRWSsMlRuWt1ef1l1QRTMkF0s4IeYfe-fr9hmEtfN-oThzxC1yjvX5_GUf37w8fhbCGpvw1aeO5LrhbJ3oKTjKtIu5yMaVdj8hi64Cw-9GXZhcK6ZPC8gLBPCU9IfJW9kYsgdEiTMUzKKSVZgR3UR5LBLNMkmCUjn6Zl0Jq_JHgzarZfbeydnTnCkNdDUaTLvQofU2FjvetIEmmsWMNewRpjBuXDPMCGUJ7lwpWTM474vlQh9FXKb8Rm2D-V4EusDINL4QjFrpi43XuCa0O6hwp7usoZWmtaAFsKKZA4rjuwW48g-L1DC0S8SrsHZctN0garx9_J6oYUoN7EkWl2IGjhLzfznuMO_jzuCDYp_HLLR7DqU09lcH9vMIxUn-XX6AlnC2lo priority: 102 providerName: ProQuest |
| Title | Predicting Students at Risk of Dropout in Technical Course Using LMS Logs |
| URI | https://www.proquest.com/docview/2627523718 https://www.mdpi.com/2079-9292/11/3/468/pdf?version=1644068890 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7R5NByaOlLpNBoDz3WmH1mc6pom0AriCJoJHqy9llFRE6EnVblwG9n13aAogqVHi3trGzNjueb3dnvA3hnLJWiT1XCrSYJ80IkOkoCmohlOSeWqqpBdiQOJuzrKT9tNtyKpq0ylOLT6idNdnv9JORvkmKc0pQJmS6s__Cz2UkKSJ9FzZR-KNnbggcs3oL2ZDTe-x4V5Va2NdUQDbV9eqMsU2BcnQnKP9PRDcZ8vMwX6vcvNZvdSjfDZ5CtXrTuMjnbWZZ6x1zc4XD8_y_ZgKcNEkV79dJ5DmsufwHrt_gJX8KX8Xk8x4md0eikJsEskCrR8bQ4Q3OPPkeJhWWJpjmqtuijw1FUwSscqnoR0OHRCTqc_yhewWQ4-PbpIGm0FxITQrxM-pTtOkl8QAuYGS-cclRQ7GlPVoQwinmqtWVGaWwMpUxxbqyW3EoVMKOnr6GVz3O3Cch4ri0NgY6VZwJ7GWyIDrNj2nPWkQ6QlQsy0xCTR32MWRYKlOi37C9-68D7a6NFzctx__DtlW-zJkiLjESGZkJDdu5Acu3vf5nuzQPHb8ETEq9NVN3e29Aqz5fubQAzpe7CIznc70L742A0Pg5PR5eDbrOKrwDxWfTn |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeqvISobTsodywiHfWxjmgihZQUkKEeEjczD5R1MgJ2BHiz_W3sePYCZUQ4sLdO4fZz_PYnf0-gB_aYBK3UAaRUTwQLo4DRZKAmmrZKOIGZTkg24vbV-LPdXQ9B__qtzA0VlnHxDJQm6GmM_JdTnS6HH0o_Tm6C0g1im5XawkNWUkrmP2SYqx62HFiHx98C5fvdw79fm9zfnx0-bsdVCoDgfZgLoIWiqZNuPN5MRTaxVZajDF0uJeU1CdSOFTKCC1VqDWikFGkjUoik0hfHTn0dj_AgkDR8s3fwq-j3tn59JSHWDcTbE7ojhBbzd2Zuk0ehuW9ZPJ_SpzVuYvjbCQfH-Rg8CzlHX-Bz1Wtyg4m4FqCOZstk8xzNRKyDJ-esRmuQOfsnm59aI6aXUwoM3MmC3bez_-yoWOHJMgwLlg_Y-WBPsGDkWZeblk5ucC6pxesO7zNV-HqXXy4BvPZMLPrwLSLlEEfFkLpRBy6xK_hylsPcc8ayxvAa2eluqIxJzWNQerbGfJw-oKHG7AzXTSasHi8_vlmvQtp9Uvn6QyADQimO_MWcxuvm9uCxfblaTftdnonX-Ejp_cV5Vj4JswX92P7zVc9hfpeQYvBzXuj-QlSbhdl |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkKAcEE81lNI90FutxDu24xyqqiINpKQI8ZC4mX0iROQE7Ajx1_rruuNHAlKFuHD3zmH28-zs7rffB7CvNMZRB4UXasm9wEaRJ8kSUFEvG4ZcoygIsifR0WXw-yq8moO_9VsYolXWNbEo1Hqk6Iy8yUlOl6MrpU1b0SJOu70f43uPHKToprW20yghcmyeHt32Lfve77q5_sp579fFwZFXOQx4ygE59zoYtEzMrVsT_UDZyAiDEfoW23EheyICi1LqQAnpK4UYiDBUWsahjoXrjCy6uPOw2CYVd3ql3jucnu-Q3maMrVLoCLHTas58bTLfL24k45eL4azDXZ6kY_H0KIbDZ4tdbw1Wqy6V_SxhtQ5zJt0gg-eKDLIBK890DDehf_pA9z3EoGbnpVhmxkTOzm6zOzayrEtWDJOc3aasOMonYDByy8sMKzgLbPDnnA1GN9kWXL5LBrdhIR2l5iMwZUOp0RUEX9gg8m3sxnDpovvYNtrwBvA6WYmqBMzJR2OYuI0MZTj5T4Yb8G06aFzqd7z--W49C0n1M2fJDHoN8KYz85ZwO6-H-wJLDsPJoH9y_Ak-cHpYUfDBd2Ehf5iYz67dyeVegSsG1-8N5H-8ORT_ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kPagH32K1yh48GuM-m56k-KCKiqgFPYV9SmlJS5Mq-uvdTdL6QES97ywJs5P5ZnbyfQDsKk0i3iQiYFrigFrOA-klAZXHsoxhTUQ-IHvF2x16fs_uy4ZbWo5VulK8m3-k8UGjGbj8jUOEQhJSHoVDbQ-fyk6SQ_rUa6Y0Xcle5cxh8Qqodq6uWw9eUW5iW1ANEVfbh-_KMilC-Z1g9DkdvWPM2XEyFC_Pot__kG5OF0E8edBiyqS3P87kvnr9wuH4_zdZAgslEoWt4ugsgxmTrID5D_yEq-DseuTvcfxkNLwtSDBTKDJ40017cGDhsZdYGGewm8C8Re8dDr0KXmpgPosALy5v4cXgMV0DndOTu6N2UGovBMqFeBY0CT0wEbYOLSCqLDfCEE6QJY0oJ4QR1BIpNVVCIqUIoYIxpWXEdCQcZrRkHVSSQWI2AFSWSU1coCNhKUc2cjZYut0RaRhtcA3giQtiVRKTe32MfuwKFO-3-Bu_1cDe1GhY8HL8vLw-8W1cBmkaY8_QjInLzjUQTP39m-02_7h-C8xh_9tEPu1dB5VsNDbbDsxkcqc8sW_7ofE2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students+at+Risk+of+Dropout+in+Technical+Course+Using+LMS+Logs&rft.jtitle=Electronics+%28Basel%29&rft.au=Tamada%2C+Mariela+Mizota&rft.au=Giusti%2C+Rafael&rft.au=Netto%2C+Jos%C3%A9+Francisco+de+Magalh%C3%A3es&rft.date=2022-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=3&rft.spage=468&rft_id=info:doi/10.3390%2Felectronics11030468&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11030468 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |