Predictive Maintenance System for Wafer Transport Robot Using K-Means Algorithm and Neural Network Model
Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and ma...
Saved in:
| Published in | Electronics (Basel) Vol. 11; no. 9; p. 1324 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics11091324 |
Cover
| Abstract | Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and maintenance costs caused by equipment failure. A new Predictive Maintenance (PdM) technique, a new method of maintenance, is introduced in this paper to develop an algorithm for predicting the failure of wafer transfer robots in advance. The acceleration sensor data used in the experiment were obtained by installing a sensor onto the wafer transfer robot. To analyze these data, the data preprocessing and FFT process were performed. These data were divided into normal data, first error data, second error data, and third error data (failure data) in stages. By clustering the data using the K-means algorithm, the center point distribution of the clusters was analyzed, and the features of the error data and normal data were extracted. Using these features, an artificial neural network model was designed to predict the point of failure of the robot. Previous research on maintenance systems of the transfer robot used fewer than 50 error data, but 1686 error data were used in this experiment. The reliability of the model is improved by randomly selecting data from a total of 2248 data sets. In addition, it was confirmed that it was possible to classify normal data and error data with an accuracy of 97% and to predict equipment failure by applying neural network modeling. |
|---|---|
| AbstractList | Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and maintenance costs caused by equipment failure. A new Predictive Maintenance (PdM) technique, a new method of maintenance, is introduced in this paper to develop an algorithm for predicting the failure of wafer transfer robots in advance. The acceleration sensor data used in the experiment were obtained by installing a sensor onto the wafer transfer robot. To analyze these data, the data preprocessing and FFT process were performed. These data were divided into normal data, first error data, second error data, and third error data (failure data) in stages. By clustering the data using the K-means algorithm, the center point distribution of the clusters was analyzed, and the features of the error data and normal data were extracted. Using these features, an artificial neural network model was designed to predict the point of failure of the robot. Previous research on maintenance systems of the transfer robot used fewer than 50 error data, but 1686 error data were used in this experiment. The reliability of the model is improved by randomly selecting data from a total of 2248 data sets. In addition, it was confirmed that it was possible to classify normal data and error data with an accuracy of 97% and to predict equipment failure by applying neural network modeling. |
| Author | Yoo, Ji-Hyun Park, Young-Kook Han, Seung-Soo |
| Author_xml | – sequence: 1 givenname: Ji-Hyun surname: Yoo fullname: Yoo, Ji-Hyun – sequence: 2 givenname: Young-Kook surname: Park fullname: Park, Young-Kook – sequence: 3 givenname: Seung-Soo surname: Han fullname: Han, Seung-Soo |
| BookMark | eNqNUE1LAzEUDFLBWvsLvAQ8r-Zjt7s5luIXtira4nFJs2_b1G1Sk6yl_95IPYgI-i7zGGbeG-YYdYw1gNApJeecC3IBDajgrNHKU0oE5Sw9QF1GcpEIJljn236E-t6vSJwoKzjpouWjg0qroN8BT6Q2AYw0CvDzzgdY49o6_CJrcHjqpPEb6wJ-snMb8Mxrs8B3yQQij4fNwjodlmssTYXvoXWyiRC21r3iia2gOUGHtWw89L-wh2ZXl9PRTTJ-uL4dDceJ4oyFRHCi5imkklcZZZxlomCZHNCKSlUrludZNheURrJIU8oh55SylEHBqCgkpLyH0v3d1mzkbiubptw4vZZuV1JSfhZW_lJYtJ3tbRtn31rwoVzZ1pmYtGSDAROE8jyLKrFXKWe9d1CXSgcZtDXBSd388YH_8P4n1weXfJQG |
| CitedBy_id | crossref_primary_10_1016_j_rser_2023_114088 crossref_primary_10_70322_ism_2025_10007 crossref_primary_10_1016_j_procs_2024_05_127 crossref_primary_10_3390_s23146249 crossref_primary_10_3390_electronics11101563 crossref_primary_10_57062_ijpem_st_2024_00157 crossref_primary_10_3390_en16062651 crossref_primary_10_1007_s12541_024_01159_5 crossref_primary_10_3390_designs7040098 crossref_primary_10_3390_electronics13224471 crossref_primary_10_1007_s00170_024_13719_0 |
| Cites_doi | 10.1109/TASE.2020.2983061 10.1007/s40745-015-0040-1 10.1109/ASET.2017.7983729 10.1109/ASMC.2015.7164425 10.23919/ELINFOCOM.2019.8706485 10.1109/ICRITO.2017.8342454 10.23919/ICCAS47443.2019.8971633 10.1080/00207543.2016.1174789 10.3390/pr5030039 10.1590/1806-9126-rbef-2017-0101 10.1016/j.cie.2019.106024 10.1109/TIE.2013.2261034 10.1109/INFOCT.2018.8356831 10.1109/IEA.2018.8387124 10.1109/TPAMI.2002.1017616 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics11091324 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics11091324 10_3390_electronics11091324 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-930cb4e4a3d5123259825a61d1acfc27755b91182584413e7311242e82198ae43 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:14:45 EDT 2025 Sun Oct 05 00:24:38 EDT 2025 Thu Oct 16 04:38:42 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-930cb4e4a3d5123259825a61d1acfc27755b91182584413e7311242e82198ae43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/9/1324/pdf?version=1650543949 |
| PQID | 2662901375 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics11091324 proquest_journals_2662901375 crossref_citationtrail_10_3390_electronics11091324 crossref_primary_10_3390_electronics11091324 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Cheng (ref_15) 2014; 61 Fan (ref_7) 2020; 17 ref_13 ref_12 ref_23 ref_11 ref_22 ref_10 ref_1 ref_3 ref_2 ref_19 Manjiyani (ref_17) 2014; 4 Kanungo (ref_20) 2002; 24 ref_16 ref_9 Varanis (ref_18) 2018; 40 ref_5 Song (ref_14) 2019; 52 Wang (ref_8) 2016; 54 Carvalho (ref_4) 2019; 137 ref_6 Xu (ref_21) 2015; 2 |
| References_xml | – ident: ref_6 – volume: 17 start-page: 1925 year: 2020 ident: ref_7 article-title: Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2983061 – volume: 2 start-page: 165 year: 2015 ident: ref_21 article-title: A Comprehensive Survey of Clustering Algorithms publication-title: Ann. Data. Sci. doi: 10.1007/s40745-015-0040-1 – ident: ref_2 – ident: ref_3 doi: 10.1109/ASET.2017.7983729 – ident: ref_11 doi: 10.1109/ASMC.2015.7164425 – volume: 4 start-page: 2 year: 2014 ident: ref_17 article-title: Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring publication-title: Int. J. Scinetific Res. Publ. – ident: ref_10 – ident: ref_13 doi: 10.23919/ELINFOCOM.2019.8706485 – ident: ref_22 doi: 10.1109/ICRITO.2017.8342454 – ident: ref_16 – ident: ref_12 doi: 10.23919/ICCAS47443.2019.8971633 – volume: 52 start-page: 624 year: 2019 ident: ref_14 article-title: Scheduling and control of a wafer transfer robot for foundry equipment innovation competition publication-title: Proc. IFAC-Pap. – volume: 54 start-page: 7231 year: 2016 ident: ref_8 article-title: Big data analytics for forecasting cycle time in semiconductor wafer fabrication system publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1174789 – ident: ref_19 – ident: ref_9 doi: 10.3390/pr5030039 – volume: 40 start-page: e1304 year: 2018 ident: ref_18 article-title: On mechanical vibration analysis of a multi degree of freedom system based on arduino and MEMS accelerometers publication-title: Rev. Bras. Ensino Fis. doi: 10.1590/1806-9126-rbef-2017-0101 – volume: 137 start-page: 106024 year: 2019 ident: ref_4 article-title: A systematic literature review of machine learning methods applied to predictive maintenance publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106024 – ident: ref_23 – volume: 61 start-page: 1402 year: 2014 ident: ref_15 article-title: Accuracy analysis of dynamic-wafer-handling robotic system in semiconductor manufacturing publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2261034 – ident: ref_5 doi: 10.1109/INFOCT.2018.8356831 – ident: ref_1 doi: 10.1109/IEA.2018.8387124 – volume: 24 start-page: 881 year: 2002 ident: ref_20 article-title: An efficient k-means clustering algorithms: Analysis and implementation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017616 |
| SSID | ssj0000913830 |
| Score | 2.3115413 |
| Snippet | Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1324 |
| SubjectTerms | Algorithms Artificial neural networks Cameras Cluster analysis Clustering Datasets Economic impact Equipment costs Experiments Failure Feature extraction Maintenance costs Neural networks Predictive maintenance Robots Sensors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qe1AP4hOrVfbg0aVtdvM6iFRpEaWlFIvewibZ6CEmtaaI_96ZPNoKIl5DsiEzuzPf7E6-D-AiiLSlDbfDNe2DSUNJ7ijd4ZGIHF_JwHJy5bnhyLqbyvtn87kGo-pfGGqrrGJiHqjDNKA98jYmEjryE7Z5PXvnpBpFp6uVhIYqpRXCq5xibAMaBjFj1aFx0x-NJ8tdF2LBdESnoB8SWO-3V2ozH92cJNOQP1PUCnduLpKZ-vpUcbyWgga7sFNiR9YrnL0HNZ3sw_Yao-ABvI7ndPJCMYwNFXFBEKGGZgUxOUOEyp5UpOdsSWrOJqmfZixvHWAPfKjxOuvFL_jt2esbU0nIiMAD3zsqOsYZyafFhzAd9B9v73gppsADXLMZd0Un8KWWSoQmwSgi7jOV1Q27KogCw7ZN03ep2kBEgolN2wKRmDS0gyENvSfFEdSTNNHHwGzLjnQouqFyHKrA0KlKYtnhRmhy1xFNMCr7eUHJNE6CF7GHFQcZ3fvF6E24XD40K4g2_r69VTnGK1fdh7eaI03gS2f9Z7iTv4c7hS2DfnvIGx1bUM_mC32GYCTzz8sZ9g2KueBn priority: 102 providerName: ProQuest |
| Title | Predictive Maintenance System for Wafer Transport Robot Using K-Means Algorithm and Neural Network Model |
| URI | https://www.proquest.com/docview/2662901375 https://www.mdpi.com/2079-9292/11/9/1324/pdf?version=1650543949 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6V5FA40BeIUBrtoccujnfXrxMKKCmiShShRqUnd22vAWGcKHFA9MBvZ8Z2Aq2qiqpHW14_NOOZ79ud_QbgY5wa14igww3NgymhFfe16fBUpn6kVez6Zee5wdA9HquTM-es7nM6r8sqkYpflkFadLyAY_4Wlm1bgYXESVnTJD24qaeSbIQXDm3tDNag6ToIxhvQHA9H3e_UUm45uNIakkjurcfWMnO7VMQU6td89AgyXy7yqb671Vn2JN_0X8GP5ZtWZSZX-4si2o9__ibi-B-f8ho2ayzKupXzvIEXJn8LG08UCt_BxWhGKzkUE9lAk7YECXQYVgmdM0S87JtOzYytRNLZ6SSaFKwsRWBf-MDgedbNziezy-Limuk8YSQIgs8dVhXojNqxZVsw7ve-Hh3zujkDjzEGFDyQnThSRmmZOATLSAjQ0a6d2DpOY-F5jhMFxF4Q4WCiNJ5EZKeE8TFEojcouQ2NfJKbHWCe66UmkXaifZ8YHTqJVkhjghT5aODLFoilicK4Vi6nBhpZiAyG7Br-wa4t-LQaNK2EO_5--d7S9mH9F89DBC-0zCw9pwV85Q_Pud3uP17_HtYF7asoKyn3oFHMFuYDop0iasOa3__chuZhbzg6xaPBfa9de_kDxc__DA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOAQOVUtBhKbtHuDWFc7u-nWIqpSHAiERQiC4mbW9hoNxQmKE8uf62zrjR5JKFeqFq2Wv5dnxzDe7s98HsB8lxjHCt7ihdTAltOKeNhZPZOKFWkWOVyjPDYZO70ad39l3K_C7PgtDbZV1TCwCdTyKaI38EBMJbflJ1_45fuakGkW7q7WEhq6kFeJOQTFWHezom9krlnDTztkxzveBEKcn10c9XqkM8AidOee-tKJQGaVlbBO-IEY7WzvtuK2jJBKua9uhTzAcUzVGfONKhChKGA__dfwsJXHcVVhXUvlY_K3_OhleXs1XeYh105NWSXckpW8dLtRtpu2ClFOov1PiAuc2XrKxnr3qNF1Keacf4UOFVVm3dK5PsGKyLdhcYjD8DI-XE9rpoZjJBpq4J4jAw7CSCJ0hIma3OjETNidRZ1ejcJSzolWB9fnA4HXWTR_Q1vnjE9NZzIgwBN87LDvUGcm1pdtw8y5m3YG1bJSZXWCu4yYmlu1Yex5VfOhEWmGZ4ydYr_qebIKo7RdEFbM5CWykAVY4ZPTgH0Zvwo_5Q-OS2OPt21v1xATVXz4NFj7ZBD6frP8Zbu_t4b5Do3c9uAguzob9L7Ah6MhF0WTZgrV88mK-IhDKw2-VtzG4f28H_wOe4RoQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIBU4IOhDDZR2D-2NVZzd9euAUEVJ04ZEESJqbu7aXjcH44TEVdW_xq9jxo8klVDUS6-WvZZnP898szv7DcBJlBjHCN_ihtbBlNCKe9pYPJGJF2oVOV7Rea4_cLojdTW2x1vwtz4LQ2WVtU8sHHU8jWiNvIWBhLb8pGu3kqosYnje-Tr7w6mDFO201u00Soj0zMM9pm-LL5fnONenQnS-__rW5VWHAR4hkHPuSysKlVFaxjZxC1Kzs7XTjts6SiLhurYd-kTBMUyjtzeuRHqihPHwP8dPUhLHfQEvXVJxp1PqnYvl-g7pbXrSKoWOpPSt1qqvzaJdyHEK9TgYrhjuq7tsph_udZquBbvOO3hbsVR2VsLqPWyZbAferGkX7sJkOKc9HvKWrK9JdYKkOwwrJdAZcmF2rRMzZ0v5dPZzGk5zVhQpsB7vG7zOztJbtGw--c10FjOSCsH3DsradEaN2tI9GD2LUfehkU0zcwDMddzExLIda8-jXA_hoxUmOH6CmarvySaI2n5BVGmaU2uNNMDchowe_MfoTfi8fGhWSnpsvv2wnpig-r8XwQqNTeDLyXrKcB82D3cM2wjr4MfloPcRXgs6a1FUVx5CI5_fmU_IgPLwqIAag5vnxvY_4oMXqg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB2V5AAcoAUqQqHaA8cujnfXXycUIRCiShShRg0ns7bXgGqcKHFA8Os7YzsJrRCi6tXa9YdmPPPe7uwbgMM4Na4RQZsbWgdTQivua9PmqUz9SKvY9cvOc92eez5QF0NnWPc5ndZllUjF78ogLdpewDF_C8u2rcBC4qSscZIeP9RLSTbCC4eOdgYr0HQdBOMNaA56_c4VtZSbT660hiSSe2vZWmZql4qYQv2Zj5Ygc3WWj_XTo86yF_nmbBOu529alZn8OpoV0VH8_JeI4398ykfYqLEo61TO8wk-mHwL1l8oFG7DbX9COzkUE1lXk7YECXQYVgmdM0S87KdOzYQtRNLZ5SgaFawsRWDfedfgddbJbkaTu-L2nuk8YSQIgs_tVRXojNqxZTswODv9cXLO6-YMPMYYUPBAtuNIGaVl4hAsIyFAR7t2Yus4jYXnOU4UEHtBhIOJ0ngSkZ0SxscQid6g5Gdo5KPc7ALzXC81ibQT7fvE6NBJtEIaE6TIRwNftkDMTRTGtXI5NdDIQmQwZNfwFbu24Nti0rgS7nh7-P7c9mH9F09DBC-0zSw9pwV84Q_vud3eP47_AmuCzlWUlZT70CgmM3OAaKeIvtYe_RsFM_tb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Maintenance+System+for+Wafer+Transport+Robot+Using+K-Means+Algorithm+and+Neural+Network+Model&rft.jtitle=Electronics+%28Basel%29&rft.au=Yoo%2C+Ji-Hyun&rft.au=Park%2C+Young-Kook&rft.au=Han%2C+Seung-Soo&rft.date=2022-05-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=9&rft.spage=1324&rft_id=info:doi/10.3390%2Felectronics11091324&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11091324 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |