Predictive Maintenance System for Wafer Transport Robot Using K-Means Algorithm and Neural Network Model

Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and ma...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 9; p. 1324
Main Authors Yoo, Ji-Hyun, Park, Young-Kook, Han, Seung-Soo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11091324

Cover

Abstract Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and maintenance costs caused by equipment failure. A new Predictive Maintenance (PdM) technique, a new method of maintenance, is introduced in this paper to develop an algorithm for predicting the failure of wafer transfer robots in advance. The acceleration sensor data used in the experiment were obtained by installing a sensor onto the wafer transfer robot. To analyze these data, the data preprocessing and FFT process were performed. These data were divided into normal data, first error data, second error data, and third error data (failure data) in stages. By clustering the data using the K-means algorithm, the center point distribution of the clusters was analyzed, and the features of the error data and normal data were extracted. Using these features, an artificial neural network model was designed to predict the point of failure of the robot. Previous research on maintenance systems of the transfer robot used fewer than 50 error data, but 1686 error data were used in this experiment. The reliability of the model is improved by randomly selecting data from a total of 2248 data sets. In addition, it was confirmed that it was possible to classify normal data and error data with an accuracy of 97% and to predict equipment failure by applying neural network modeling.
AbstractList Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in the field of semiconductor manufacturing, where processes are automated, various methods are being tried to minimize the economic losses and maintenance costs caused by equipment failure. A new Predictive Maintenance (PdM) technique, a new method of maintenance, is introduced in this paper to develop an algorithm for predicting the failure of wafer transfer robots in advance. The acceleration sensor data used in the experiment were obtained by installing a sensor onto the wafer transfer robot. To analyze these data, the data preprocessing and FFT process were performed. These data were divided into normal data, first error data, second error data, and third error data (failure data) in stages. By clustering the data using the K-means algorithm, the center point distribution of the clusters was analyzed, and the features of the error data and normal data were extracted. Using these features, an artificial neural network model was designed to predict the point of failure of the robot. Previous research on maintenance systems of the transfer robot used fewer than 50 error data, but 1686 error data were used in this experiment. The reliability of the model is improved by randomly selecting data from a total of 2248 data sets. In addition, it was confirmed that it was possible to classify normal data and error data with an accuracy of 97% and to predict equipment failure by applying neural network modeling.
Author Yoo, Ji-Hyun
Park, Young-Kook
Han, Seung-Soo
Author_xml – sequence: 1
  givenname: Ji-Hyun
  surname: Yoo
  fullname: Yoo, Ji-Hyun
– sequence: 2
  givenname: Young-Kook
  surname: Park
  fullname: Park, Young-Kook
– sequence: 3
  givenname: Seung-Soo
  surname: Han
  fullname: Han, Seung-Soo
BookMark eNqNUE1LAzEUDFLBWvsLvAQ8r-Zjt7s5luIXtira4nFJs2_b1G1Sk6yl_95IPYgI-i7zGGbeG-YYdYw1gNApJeecC3IBDajgrNHKU0oE5Sw9QF1GcpEIJljn236E-t6vSJwoKzjpouWjg0qroN8BT6Q2AYw0CvDzzgdY49o6_CJrcHjqpPEb6wJ-snMb8Mxrs8B3yQQij4fNwjodlmssTYXvoXWyiRC21r3iia2gOUGHtWw89L-wh2ZXl9PRTTJ-uL4dDceJ4oyFRHCi5imkklcZZZxlomCZHNCKSlUrludZNheURrJIU8oh55SylEHBqCgkpLyH0v3d1mzkbiubptw4vZZuV1JSfhZW_lJYtJ3tbRtn31rwoVzZ1pmYtGSDAROE8jyLKrFXKWe9d1CXSgcZtDXBSd388YH_8P4n1weXfJQG
CitedBy_id crossref_primary_10_1016_j_rser_2023_114088
crossref_primary_10_70322_ism_2025_10007
crossref_primary_10_1016_j_procs_2024_05_127
crossref_primary_10_3390_s23146249
crossref_primary_10_3390_electronics11101563
crossref_primary_10_57062_ijpem_st_2024_00157
crossref_primary_10_3390_en16062651
crossref_primary_10_1007_s12541_024_01159_5
crossref_primary_10_3390_designs7040098
crossref_primary_10_3390_electronics13224471
crossref_primary_10_1007_s00170_024_13719_0
Cites_doi 10.1109/TASE.2020.2983061
10.1007/s40745-015-0040-1
10.1109/ASET.2017.7983729
10.1109/ASMC.2015.7164425
10.23919/ELINFOCOM.2019.8706485
10.1109/ICRITO.2017.8342454
10.23919/ICCAS47443.2019.8971633
10.1080/00207543.2016.1174789
10.3390/pr5030039
10.1590/1806-9126-rbef-2017-0101
10.1016/j.cie.2019.106024
10.1109/TIE.2013.2261034
10.1109/INFOCT.2018.8356831
10.1109/IEA.2018.8387124
10.1109/TPAMI.2002.1017616
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11091324
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11091324
10_3390_electronics11091324
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-930cb4e4a3d5123259825a61d1acfc27755b91182584413e7311242e82198ae43
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 04:14:45 EDT 2025
Sun Oct 05 00:24:38 EDT 2025
Thu Oct 16 04:38:42 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-930cb4e4a3d5123259825a61d1acfc27755b91182584413e7311242e82198ae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/9/1324/pdf?version=1650543949
PQID 2662901375
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11091324
proquest_journals_2662901375
crossref_citationtrail_10_3390_electronics11091324
crossref_primary_10_3390_electronics11091324
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_15) 2014; 61
Fan (ref_7) 2020; 17
ref_13
ref_12
ref_23
ref_11
ref_22
ref_10
ref_1
ref_3
ref_2
ref_19
Manjiyani (ref_17) 2014; 4
Kanungo (ref_20) 2002; 24
ref_16
ref_9
Varanis (ref_18) 2018; 40
ref_5
Song (ref_14) 2019; 52
Wang (ref_8) 2016; 54
Carvalho (ref_4) 2019; 137
ref_6
Xu (ref_21) 2015; 2
References_xml – ident: ref_6
– volume: 17
  start-page: 1925
  year: 2020
  ident: ref_7
  article-title: Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2983061
– volume: 2
  start-page: 165
  year: 2015
  ident: ref_21
  article-title: A Comprehensive Survey of Clustering Algorithms
  publication-title: Ann. Data. Sci.
  doi: 10.1007/s40745-015-0040-1
– ident: ref_2
– ident: ref_3
  doi: 10.1109/ASET.2017.7983729
– ident: ref_11
  doi: 10.1109/ASMC.2015.7164425
– volume: 4
  start-page: 2
  year: 2014
  ident: ref_17
  article-title: Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring
  publication-title: Int. J. Scinetific Res. Publ.
– ident: ref_10
– ident: ref_13
  doi: 10.23919/ELINFOCOM.2019.8706485
– ident: ref_22
  doi: 10.1109/ICRITO.2017.8342454
– ident: ref_16
– ident: ref_12
  doi: 10.23919/ICCAS47443.2019.8971633
– volume: 52
  start-page: 624
  year: 2019
  ident: ref_14
  article-title: Scheduling and control of a wafer transfer robot for foundry equipment innovation competition
  publication-title: Proc. IFAC-Pap.
– volume: 54
  start-page: 7231
  year: 2016
  ident: ref_8
  article-title: Big data analytics for forecasting cycle time in semiconductor wafer fabrication system
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1174789
– ident: ref_19
– ident: ref_9
  doi: 10.3390/pr5030039
– volume: 40
  start-page: e1304
  year: 2018
  ident: ref_18
  article-title: On mechanical vibration analysis of a multi degree of freedom system based on arduino and MEMS accelerometers
  publication-title: Rev. Bras. Ensino Fis.
  doi: 10.1590/1806-9126-rbef-2017-0101
– volume: 137
  start-page: 106024
  year: 2019
  ident: ref_4
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106024
– ident: ref_23
– volume: 61
  start-page: 1402
  year: 2014
  ident: ref_15
  article-title: Accuracy analysis of dynamic-wafer-handling robotic system in semiconductor manufacturing
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2261034
– ident: ref_5
  doi: 10.1109/INFOCT.2018.8356831
– ident: ref_1
  doi: 10.1109/IEA.2018.8387124
– volume: 24
  start-page: 881
  year: 2002
  ident: ref_20
  article-title: An efficient k-means clustering algorithms: Analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017616
SSID ssj0000913830
Score 2.3115413
Snippet Maintenance is the technology of continuously monitoring the conditions of equipment and predicting the timing of maintenance for equipment. Particularly in...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1324
SubjectTerms Algorithms
Artificial neural networks
Cameras
Cluster analysis
Clustering
Datasets
Economic impact
Equipment costs
Experiments
Failure
Feature extraction
Maintenance costs
Neural networks
Predictive maintenance
Robots
Sensors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qe1AP4hOrVfbg0aVtdvM6iFRpEaWlFIvewibZ6CEmtaaI_96ZPNoKIl5DsiEzuzPf7E6-D-AiiLSlDbfDNe2DSUNJ7ijd4ZGIHF_JwHJy5bnhyLqbyvtn87kGo-pfGGqrrGJiHqjDNKA98jYmEjryE7Z5PXvnpBpFp6uVhIYqpRXCq5xibAMaBjFj1aFx0x-NJ8tdF2LBdESnoB8SWO-3V2ozH92cJNOQP1PUCnduLpKZ-vpUcbyWgga7sFNiR9YrnL0HNZ3sw_Yao-ABvI7ndPJCMYwNFXFBEKGGZgUxOUOEyp5UpOdsSWrOJqmfZixvHWAPfKjxOuvFL_jt2esbU0nIiMAD3zsqOsYZyafFhzAd9B9v73gppsADXLMZd0Un8KWWSoQmwSgi7jOV1Q27KogCw7ZN03ep2kBEgolN2wKRmDS0gyENvSfFEdSTNNHHwGzLjnQouqFyHKrA0KlKYtnhRmhy1xFNMCr7eUHJNE6CF7GHFQcZ3fvF6E24XD40K4g2_r69VTnGK1fdh7eaI03gS2f9Z7iTv4c7hS2DfnvIGx1bUM_mC32GYCTzz8sZ9g2KueBn
  priority: 102
  providerName: ProQuest
Title Predictive Maintenance System for Wafer Transport Robot Using K-Means Algorithm and Neural Network Model
URI https://www.proquest.com/docview/2662901375
https://www.mdpi.com/2079-9292/11/9/1324/pdf?version=1650543949
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6V5FA40BeIUBrtoccujnfXrxMKKCmiShShRqUnd22vAWGcKHFA9MBvZ8Z2Aq2qiqpHW14_NOOZ79ud_QbgY5wa14igww3NgymhFfe16fBUpn6kVez6Zee5wdA9HquTM-es7nM6r8sqkYpflkFadLyAY_4Wlm1bgYXESVnTJD24qaeSbIQXDm3tDNag6ToIxhvQHA9H3e_UUm45uNIakkjurcfWMnO7VMQU6td89AgyXy7yqb671Vn2JN_0X8GP5ZtWZSZX-4si2o9__ibi-B-f8ho2ayzKupXzvIEXJn8LG08UCt_BxWhGKzkUE9lAk7YECXQYVgmdM0S87JtOzYytRNLZ6SSaFKwsRWBf-MDgedbNziezy-Limuk8YSQIgs8dVhXojNqxZVsw7ve-Hh3zujkDjzEGFDyQnThSRmmZOATLSAjQ0a6d2DpOY-F5jhMFxF4Q4WCiNJ5EZKeE8TFEojcouQ2NfJKbHWCe66UmkXaifZ8YHTqJVkhjghT5aODLFoilicK4Vi6nBhpZiAyG7Br-wa4t-LQaNK2EO_5--d7S9mH9F89DBC-0zCw9pwV85Q_Pud3uP17_HtYF7asoKyn3oFHMFuYDop0iasOa3__chuZhbzg6xaPBfa9de_kDxc__DA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOAQOVUtBhKbtHuDWFc7u-nWIqpSHAiERQiC4mbW9hoNxQmKE8uf62zrjR5JKFeqFq2Wv5dnxzDe7s98HsB8lxjHCt7ihdTAltOKeNhZPZOKFWkWOVyjPDYZO70ad39l3K_C7PgtDbZV1TCwCdTyKaI38EBMJbflJ1_45fuakGkW7q7WEhq6kFeJOQTFWHezom9krlnDTztkxzveBEKcn10c9XqkM8AidOee-tKJQGaVlbBO-IEY7WzvtuK2jJBKua9uhTzAcUzVGfONKhChKGA__dfwsJXHcVVhXUvlY_K3_OhleXs1XeYh105NWSXckpW8dLtRtpu2ClFOov1PiAuc2XrKxnr3qNF1Keacf4UOFVVm3dK5PsGKyLdhcYjD8DI-XE9rpoZjJBpq4J4jAw7CSCJ0hIma3OjETNidRZ1ejcJSzolWB9fnA4HXWTR_Q1vnjE9NZzIgwBN87LDvUGcm1pdtw8y5m3YG1bJSZXWCu4yYmlu1Yex5VfOhEWmGZ4ydYr_qebIKo7RdEFbM5CWykAVY4ZPTgH0Zvwo_5Q-OS2OPt21v1xATVXz4NFj7ZBD6frP8Zbu_t4b5Do3c9uAguzob9L7Ah6MhF0WTZgrV88mK-IhDKw2-VtzG4f28H_wOe4RoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIBU4IOhDDZR2D-2NVZzd9euAUEVJ04ZEESJqbu7aXjcH44TEVdW_xq9jxo8klVDUS6-WvZZnP898szv7DcBJlBjHCN_ihtbBlNCKe9pYPJGJF2oVOV7Rea4_cLojdTW2x1vwtz4LQ2WVtU8sHHU8jWiNvIWBhLb8pGu3kqosYnje-Tr7w6mDFO201u00Soj0zMM9pm-LL5fnONenQnS-__rW5VWHAR4hkHPuSysKlVFaxjZxC1Kzs7XTjts6SiLhurYd-kTBMUyjtzeuRHqihPHwP8dPUhLHfQEvXVJxp1PqnYvl-g7pbXrSKoWOpPSt1qqvzaJdyHEK9TgYrhjuq7tsph_udZquBbvOO3hbsVR2VsLqPWyZbAferGkX7sJkOKc9HvKWrK9JdYKkOwwrJdAZcmF2rRMzZ0v5dPZzGk5zVhQpsB7vG7zOztJbtGw--c10FjOSCsH3DsradEaN2tI9GD2LUfehkU0zcwDMddzExLIda8-jXA_hoxUmOH6CmarvySaI2n5BVGmaU2uNNMDchowe_MfoTfi8fGhWSnpsvv2wnpig-r8XwQqNTeDLyXrKcB82D3cM2wjr4MfloPcRXgs6a1FUVx5CI5_fmU_IgPLwqIAag5vnxvY_4oMXqg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB2V5AAcoAUqQqHaA8cujnfXXycUIRCiShShRg0ns7bXgGqcKHFA8Os7YzsJrRCi6tXa9YdmPPPe7uwbgMM4Na4RQZsbWgdTQivua9PmqUz9SKvY9cvOc92eez5QF0NnWPc5ndZllUjF78ogLdpewDF_C8u2rcBC4qSscZIeP9RLSTbCC4eOdgYr0HQdBOMNaA56_c4VtZSbT660hiSSe2vZWmZql4qYQv2Zj5Ygc3WWj_XTo86yF_nmbBOu529alZn8OpoV0VH8_JeI4398ykfYqLEo61TO8wk-mHwL1l8oFG7DbX9COzkUE1lXk7YECXQYVgmdM0S87KdOzYQtRNLZ5SgaFawsRWDfedfgddbJbkaTu-L2nuk8YSQIgs_tVRXojNqxZTswODv9cXLO6-YMPMYYUPBAtuNIGaVl4hAsIyFAR7t2Yus4jYXnOU4UEHtBhIOJ0ngSkZ0SxscQid6g5Gdo5KPc7ALzXC81ibQT7fvE6NBJtEIaE6TIRwNftkDMTRTGtXI5NdDIQmQwZNfwFbu24Nti0rgS7nh7-P7c9mH9F09DBC-0zSw9pwV84Q_vud3eP47_AmuCzlWUlZT70CgmM3OAaKeIvtYe_RsFM_tb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Maintenance+System+for+Wafer+Transport+Robot+Using+K-Means+Algorithm+and+Neural+Network+Model&rft.jtitle=Electronics+%28Basel%29&rft.au=Yoo%2C+Ji-Hyun&rft.au=Park%2C+Young-Kook&rft.au=Han%2C+Seung-Soo&rft.date=2022-05-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=9&rft.spage=1324&rft_id=info:doi/10.3390%2Felectronics11091324&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11091324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon