Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks

Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4810 - 4819
Main Authors Beetz, Marcel, Banerjee, Abhirup, Grau, Vicente
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3389871

Cover

More Information
Summary:Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3389871