Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks

Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4810 - 4819
Main Authors Beetz, Marcel, Banerjee, Abhirup, Grau, Vicente
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2024.3389871

Cover

Abstract Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
AbstractList Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.
Author Beetz, Marcel
Grau, Vicente
Banerjee, Abhirup
Author_xml – sequence: 1
  givenname: Marcel
  orcidid: 0009-0004-5239-9313
  surname: Beetz
  fullname: Beetz, Marcel
  email: marcel.beetz@eng.ox.ac.uk
  organization: Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, U.K
– sequence: 2
  givenname: Abhirup
  orcidid: 0000-0001-8198-5128
  surname: Banerjee
  fullname: Banerjee, Abhirup
  email: abhirup.banerjee@eng.ox.ac.uk
  organization: Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, U.K
– sequence: 3
  givenname: Vicente
  orcidid: 0000-0001-8139-3480
  surname: Grau
  fullname: Grau, Vicente
  email: vicente.grau@eng.ox.ac.uk
  organization: Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38648144$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKxDAUhoMoXkYfQBDp0s2MuTVNl1pvI96QEZclTU412jZj0kF9ezvTUcSFIZCTk-8_gW8LrTauAYR2CR4RgtPDy-OL8YhiykeMyVQmZAVtUiLkkFIsV79rkvINtBPCC-6W7FqpWEcbTAouCeebaHLtDFS2eYrYSZQpb6zSUeaa1ivdWtdEqjHRPVTqQy2uj7Z9ju6cbdooq9zMRCdQOl_3jzfQvjv_GrbRWqmqADvLc4Aezk4n2cXw6vZ8nB1dDTWjtB2mVGptEmlAUpFCXBjgQijFCmWKVOJEloAFEawUsaSm26kpmOKJoNxgbdgAHfRzp969zSC0eW2DhqpSDbhZyBnmMSExwaxD95forKjB5FNva-U_828THUB6QHsXgofyByE4nwvP58LzufB8KbzLJH8y2rYLFZ0-W_2b3OuTFgB-_RRjEVPKvgAi24x3
CODEN IJBHA9
CitedBy_id crossref_primary_10_13166_jms_191398
crossref_primary_10_3390_jcm13154442
Cites_doi 10.1002/9781118574362.ch9
10.1109/ISBI52829.2022.9761590
10.1109/TMI.2022.3154599
10.1098/rsfs.2015.0083
10.1109/TMI.2002.804441
10.1109/ISBI48211.2021.9434040
10.1007/978-3-030-32251-9_4
10.1007/978-3-031-23443-9_34
10.1007/978-3-031-43907-0_47
10.1186/s12938-015-0033-5
10.3389/fcvm.2021.730316
10.1007/978-3-030-00934-2_53
10.1038/s41598-020-75525-4
10.1016/j.jcp.2012.09.015
10.1186/1532-429X-15-46
10.1007/978-3-030-78710-3_26
10.1007/978-3-030-68107-4_6
10.1109/TMI.2017.2714343
10.1007/978-3-030-93722-5_24
10.1007/978-3-030-39074-7_19
10.1007/s11263-010-0405-z
10.1038/s42256-019-0019-2
10.11159/icsta21.127
10.1016/j.jcmg.2021.11.027
10.1002/mp.14341
10.1016/j.cma.2020.112869
10.1007/978-3-319-59448-4_46
10.1007/978-3-031-16446-0_24
10.1148/ryai.2019180080
10.1016/j.media.2023.102975
10.1038/s41591-020-1009-y
10.3389/fphys.2022.886723
10.3389/fcvm.2019.00190
10.1007/978-3-031-23443-9_26
10.3389/fcvm.2022.983868
10.1007/s10237-019-01168-8
10.1111/j.2517-6161.1972.tb00899.x
10.1007/s10439-022-02967-4
10.1007/978-3-642-31340-0_21
10.1016/j.media.2011.10.006
10.1109/CVPR.2018.00029
10.1007/s10237-019-01175-9
10.1016/j.pbiomolbio.2012.07.001
10.1109/3DV.2018.00088
10.1007/978-3-031-23443-9_27
10.1016/j.neucom.2020.08.030
10.1007/978-3-030-93722-5_9
10.1016/j.media.2021.102278
10.1007/978-3-031-23443-9_23
10.1109/JBHI.2017.2652449
10.1109/EMBC40787.2023.10340878
10.1007/s12206-015-0232-9
10.1016/j.compmedimag.2009.05.002
10.1007/978-3-642-04271-3_41
10.1001/jama.1982.03320430047030
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2024.3389871
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4819
ExternalDocumentID 38648144
10_1109_JBHI_2024_3389871
10506522
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/20/21/35082
  funderid: 10.13039/501100000274
– fundername: Royal Society University Research Fellow
– fundername: CompBioMed 2 Centre of Excellence in Computational Biomedicine European Commission Horizon 2020 research and innovation programme
  grantid: 823712
– fundername: Stiftung der Deutschen Wirtschaft
  funderid: 10.13039/501100015754
– fundername: Stiftung der Deutschen Wirtschaft; Foundation of German Business
  funderid: 10.13039/501100015754
– fundername: Royal Society
  grantid: URF\R1\221314
  funderid: 10.13039/501100000288
– fundername: British Heart Foundation
  grantid: PG/20/21/35082
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-928ccd78de8269e5bde466aa3badb98078fe06163f6582d82d9db3a47624d0cd3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sat Sep 27 17:13:06 EDT 2025
Mon Jul 21 05:51:31 EDT 2025
Wed Oct 01 03:40:10 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
Wed Aug 27 01:57:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-928ccd78de8269e5bde466aa3badb98078fe06163f6582d82d9db3a47624d0cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0004-5239-9313
0000-0001-8139-3480
0000-0001-8198-5128
PMID 38648144
PQID 3045115103
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3045115103
crossref_primary_10_1109_JBHI_2024_3389871
crossref_citationtrail_10_1109_JBHI_2024_3389871
ieee_primary_10506522
pubmed_primary_38648144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref56
ref15
ref59
ref14
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
Adams (ref41) 2023
ref6
ref5
ref40
Jackson (ref42) 2022
ref35
ref34
ref37
ref36
ref31
ref30
ref33
Ossenberg-Engels (ref32) 2019
ref2
ref39
ref38
Petersen (ref53) 2015; 18
Qi (ref58) 2017
Glass (ref1) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Qi (ref57) 2017
ref60
ref62
ref61
References_xml – ident: ref9
  doi: 10.1002/9781118574362.ch9
– ident: ref51
  doi: 10.1109/ISBI52829.2022.9761590
– ident: ref24
  doi: 10.1109/TMI.2022.3154599
– ident: ref7
  doi: 10.1098/rsfs.2015.0083
– ident: ref15
  doi: 10.1109/TMI.2002.804441
– ident: ref44
  doi: 10.1109/ISBI48211.2021.9434040
– ident: ref43
  doi: 10.1007/978-3-030-32251-9_4
– ident: ref52
  doi: 10.1007/978-3-031-23443-9_34
– ident: ref40
  doi: 10.1007/978-3-031-43907-0_47
– year: 2023
  ident: ref41
  article-title: Point2SSM: Learning morphological variations of anatomies from point cloud
– ident: ref6
  doi: 10.1186/s12938-015-0033-5
– ident: ref29
  doi: 10.3389/fcvm.2021.730316
– ident: ref28
  doi: 10.1007/978-3-030-00934-2_53
– ident: ref17
  doi: 10.1038/s41598-020-75525-4
– ident: ref5
  doi: 10.1016/j.jcp.2012.09.015
– ident: ref54
  doi: 10.1186/1532-429X-15-46
– ident: ref34
  doi: 10.1007/978-3-030-78710-3_26
– ident: ref33
  doi: 10.1007/978-3-030-68107-4_6
– ident: ref10
  doi: 10.1109/TMI.2017.2714343
– ident: ref48
  doi: 10.1007/978-3-030-93722-5_24
– volume-title: Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function
  year: 2012
  ident: ref1
– ident: ref26
  doi: 10.1007/978-3-030-39074-7_19
– ident: ref21
  doi: 10.1007/s11263-010-0405-z
– ident: ref27
  doi: 10.1038/s42256-019-0019-2
– ident: ref39
  doi: 10.11159/icsta21.127
– ident: ref2
  doi: 10.1016/j.jcmg.2021.11.027
– start-page: 5099
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref58
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref16
  doi: 10.1002/mp.14341
– ident: ref14
  doi: 10.1016/j.cma.2020.112869
– ident: ref30
  doi: 10.1007/978-3-319-59448-4_46
– ident: ref35
  doi: 10.1007/978-3-031-16446-0_24
– ident: ref31
  doi: 10.1148/ryai.2019180080
– start-page: 109
  volume-title: Proc. Int. Workshop Stat. Atlases Comput. Models Heart
  year: 2019
  ident: ref32
  article-title: Conditional generative adversarial networks for the prediction of cardiac contraction from individual frames
– ident: ref56
  doi: 10.1016/j.media.2023.102975
– ident: ref55
  doi: 10.1038/s41591-020-1009-y
– ident: ref50
  doi: 10.3389/fphys.2022.886723
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2017
  ident: ref57
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref22
  doi: 10.3389/fcvm.2019.00190
– ident: ref45
  doi: 10.1007/978-3-031-23443-9_26
– ident: ref37
  doi: 10.3389/fcvm.2022.983868
– ident: ref8
  doi: 10.1007/s10237-019-01168-8
– ident: ref61
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: ref23
  doi: 10.1007/s10439-022-02967-4
– ident: ref19
  doi: 10.1007/978-3-642-31340-0_21
– year: 2022
  ident: ref42
  article-title: Building representations of different brain areas through hierarchical point cloud networks
  publication-title: Med. Imag. Deep Learn.
– ident: ref20
  doi: 10.1016/j.media.2011.10.006
– ident: ref59
  doi: 10.1109/CVPR.2018.00029
– ident: ref13
  doi: 10.1007/s10237-019-01175-9
– ident: ref4
  doi: 10.1016/j.pbiomolbio.2012.07.001
– ident: ref60
  doi: 10.1109/3DV.2018.00088
– ident: ref38
  doi: 10.1007/978-3-031-23443-9_27
– ident: ref46
  doi: 10.1016/j.neucom.2020.08.030
– ident: ref49
  doi: 10.1007/978-3-030-93722-5_9
– ident: ref25
  doi: 10.1016/j.media.2021.102278
– ident: ref36
  doi: 10.1007/978-3-031-23443-9_23
– ident: ref3
  doi: 10.1109/JBHI.2017.2652449
– ident: ref47
  doi: 10.1109/EMBC40787.2023.10340878
– ident: ref12
  doi: 10.1007/s12206-015-0232-9
– ident: ref11
  doi: 10.1016/j.compmedimag.2009.05.002
– ident: ref18
  doi: 10.1007/978-3-642-04271-3_41
– ident: ref62
  doi: 10.1001/jama.1982.03320430047030
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  ident: ref53
  article-title: U.K. biobanks cardiovascular magnetic resonance protocol
  publication-title: J. Cardiovasc. Magn. Reson.
SSID ssj0000816896
Score 2.4487858
Snippet Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4810
SubjectTerms Anatomy
Cardiac disease
Cardiac mechanics
cardiac motion
cine MRI
Deep Learning
Deformable models
Deformation
geometric deep learning
Heart - diagnostic imaging
Heart - physiology
Humans
Imaging, Three-Dimensional - methods
Magnetic resonance imaging
Male
Models, Cardiovascular
Myocardial Contraction - physiology
myocardial infarction
Point cloud compression
point clouds
Shape
subpopulation-specific 3D deformation
survival analysis
Three-dimensional displays
Title Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks
URI https://ieeexplore.ieee.org/document/10506522
https://www.ncbi.nlm.nih.gov/pubmed/38648144
https://www.proquest.com/docview/3045115103
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAA-qllAJloVRG4lQpSx5OYh_bpavtSqw4gMotsj1edQVKECQS4tczY2dXBYkKKQcf7Dw8M5lvPC_GThJRQgY6j0SZm0jYGCKjhIxK1Bax1LpMHCU4n8-KyZWYXufXfbK6z4VxzvngMzekofflQ2M7OipDCc9RY6b4x10vZRGStVYHKr6DhO_HleIgQkkUvRczidXp9OfkN1qDqRiiTYZ2NnWIyWQhJBoUL1SS77HyNtz0ame8xWbLFw7RJjfDrjVD-_SqluO7v-gT-9gDUP4jcMw2W3P1Z7Z53rvYd9gldUejHHWenfGR5x_LqYbVfUiB4LoGTiF0j56m_M-i_csvmkXd8tFt0wE_c6uESD4LQeYPu-xq_OtyNIn61guRRQlvI5VKa6GU4ND8UC434ERRaJ0ZDUZRjfq5QyRQZHNEMCngpcBkWuCvVUBsIdtjG3VTu33GFajUFYjsBBgh5zhRyQISS4UKyyTRAxYvd7-yfV1yao9xW3n7JFYV0a4i2lU97Qbs-2rJXSjK8b_Ju7Tv_0wMWz5gx0saVyhS5CfRtWu6h4qcxwiUkzgbsC-B-KvVS545eOOuh-wDPTyECH5lG-19544QtrTmm2fXZ6w1470
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB5KCm0vfSVNt08Vcip464f80DHZNGzS7JLDhuZmJI2WhAQ7JDaE_vrOSN4lLaQUfNBBMrZmRvON5gWwk8gSM9R5JMvcRNLGGBklq6gkbRFXWpeJ4wTn2byYnsqjs_xsSFb3uTDOOR985sY89L58bG3PV2Uk4TlpzJRO3Me5lDIP6VrrKxXfQ8J35EppEJEsysGPmcTq29He9JDswVSOySojS5t7xGRVISsyKf5QSr7LysOA0yuegxcwX31yiDe5HPedGdtff1Vz_O9_egnPBwgqdgPPvIJHrnkNT2aDk30TFtwfjbPURbYvJp6DrOAqVjchCULoBgUH0d15qoqfF925OGkvmk5Mrtoexb5bp0SKeQgzv92C04Pvi8k0GpovRJZkvItUWlmLZYWODBDlcoNOFoXWmdFoFFepXzrCAkW2JAyTIj0KTaYlHa4SY4vZG9ho2sa9BaFQpa4gbCfRyGpJE1VVYGK5VGGZJHoE8Wr3aztUJucGGVe1t1BiVTPtaqZdPdBuBF_XS65DWY5_Td7ifb83MWz5CL6saFyTULGnRDeu7W9rdh8TVE7ibATbgfjr1SueeffAWz_D0-lidlwfH85_vIdn_CEhYPADbHQ3vftIIKYznzzr_gbE0-cK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+3D+Cardiac+Contraction+and+Relaxation+With+Point+Cloud+Deformation+Networks&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Beetz%2C+Marcel&rft.au=Banerjee%2C+Abhirup&rft.au=Grau%2C+Vicente&rft.date=2024-08-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4810&rft.epage=4819&rft_id=info:doi/10.1109%2FJBHI.2024.3389871&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2024_3389871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon