Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks
Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D...
        Saved in:
      
    
          | Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4810 - 4819 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.08.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2168-2194 2168-2208 2168-2208  | 
| DOI | 10.1109/JBHI.2024.3389871 | 
Cover
| Abstract | Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis. | 
    
|---|---|
| AbstractList | Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis. Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the heart's true 3D deformation process, thus limiting diagnostic accuracy and the understanding of cardiac mechanics. Metrics based on 3D shape have been proposed to alleviate these shortcomings. In this work, we present the Point Cloud Deformation Network (PCD-Net) as a novel geometric deep learning approach for direct modeling of 3D cardiac mechanics of the biventricular anatomy between the extreme ends of the cardiac cycle. Its encoder-decoder architecture combines a low-dimensional latent space with recent advances in point cloud deep learning for effective multi-scale feature learning directly on flexible and memory-efficient point cloud representations of the cardiac anatomy. We first evaluate the PCD-Net's predictive capability for both cardiac contraction and relaxation on a large UK Biobank dataset of over 10,000 subjects and find average Chamfer distances between the predicted and ground truth anatomies below the pixel resolution of the underlying image acquisition. We then show the PCD-Net's ability to capture subpopulation-specific differences in 3D cardiac mechanics between normal and myocardial infarction (MI) subjects and visualize abnormal phenotypes between predicted normal 3D shapes and corresponding observed ones. Finally, we demonstrate that the PCD-Net's learned 3D deformation encodings outperform multiple clinical and machine learning benchmarks by 11% in terms of area under the receiver operating characteristic curve for the tasks of prevalent MI detection and incident MI prediction and by 7% in terms of Harrell's concordance index for MI survival analysis.  | 
    
| Author | Beetz, Marcel Grau, Vicente Banerjee, Abhirup  | 
    
| Author_xml | – sequence: 1 givenname: Marcel orcidid: 0009-0004-5239-9313 surname: Beetz fullname: Beetz, Marcel email: marcel.beetz@eng.ox.ac.uk organization: Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, U.K – sequence: 2 givenname: Abhirup orcidid: 0000-0001-8198-5128 surname: Banerjee fullname: Banerjee, Abhirup email: abhirup.banerjee@eng.ox.ac.uk organization: Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, U.K – sequence: 3 givenname: Vicente orcidid: 0000-0001-8139-3480 surname: Grau fullname: Grau, Vicente email: vicente.grau@eng.ox.ac.uk organization: Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, U.K  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38648144$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kMtKxDAUhoMoXkYfQBDp0s2MuTVNl1pvI96QEZclTU412jZj0kF9ezvTUcSFIZCTk-8_gW8LrTauAYR2CR4RgtPDy-OL8YhiykeMyVQmZAVtUiLkkFIsV79rkvINtBPCC-6W7FqpWEcbTAouCeebaHLtDFS2eYrYSZQpb6zSUeaa1ivdWtdEqjHRPVTqQy2uj7Z9ju6cbdooq9zMRCdQOl_3jzfQvjv_GrbRWqmqADvLc4Aezk4n2cXw6vZ8nB1dDTWjtB2mVGptEmlAUpFCXBjgQijFCmWKVOJEloAFEawUsaSm26kpmOKJoNxgbdgAHfRzp969zSC0eW2DhqpSDbhZyBnmMSExwaxD95forKjB5FNva-U_828THUB6QHsXgofyByE4nwvP58LzufB8KbzLJH8y2rYLFZ0-W_2b3OuTFgB-_RRjEVPKvgAi24x3 | 
    
| CODEN | IJBHA9 | 
    
| CitedBy_id | crossref_primary_10_13166_jms_191398 crossref_primary_10_3390_jcm13154442  | 
    
| Cites_doi | 10.1002/9781118574362.ch9 10.1109/ISBI52829.2022.9761590 10.1109/TMI.2022.3154599 10.1098/rsfs.2015.0083 10.1109/TMI.2002.804441 10.1109/ISBI48211.2021.9434040 10.1007/978-3-030-32251-9_4 10.1007/978-3-031-23443-9_34 10.1007/978-3-031-43907-0_47 10.1186/s12938-015-0033-5 10.3389/fcvm.2021.730316 10.1007/978-3-030-00934-2_53 10.1038/s41598-020-75525-4 10.1016/j.jcp.2012.09.015 10.1186/1532-429X-15-46 10.1007/978-3-030-78710-3_26 10.1007/978-3-030-68107-4_6 10.1109/TMI.2017.2714343 10.1007/978-3-030-93722-5_24 10.1007/978-3-030-39074-7_19 10.1007/s11263-010-0405-z 10.1038/s42256-019-0019-2 10.11159/icsta21.127 10.1016/j.jcmg.2021.11.027 10.1002/mp.14341 10.1016/j.cma.2020.112869 10.1007/978-3-319-59448-4_46 10.1007/978-3-031-16446-0_24 10.1148/ryai.2019180080 10.1016/j.media.2023.102975 10.1038/s41591-020-1009-y 10.3389/fphys.2022.886723 10.3389/fcvm.2019.00190 10.1007/978-3-031-23443-9_26 10.3389/fcvm.2022.983868 10.1007/s10237-019-01168-8 10.1111/j.2517-6161.1972.tb00899.x 10.1007/s10439-022-02967-4 10.1007/978-3-642-31340-0_21 10.1016/j.media.2011.10.006 10.1109/CVPR.2018.00029 10.1007/s10237-019-01175-9 10.1016/j.pbiomolbio.2012.07.001 10.1109/3DV.2018.00088 10.1007/978-3-031-23443-9_27 10.1016/j.neucom.2020.08.030 10.1007/978-3-030-93722-5_9 10.1016/j.media.2021.102278 10.1007/978-3-031-23443-9_23 10.1109/JBHI.2017.2652449 10.1109/EMBC40787.2023.10340878 10.1007/s12206-015-0232-9 10.1016/j.compmedimag.2009.05.002 10.1007/978-3-642-04271-3_41 10.1001/jama.1982.03320430047030  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1109/JBHI.2024.3389871 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2168-2208 | 
    
| EndPage | 4819 | 
    
| ExternalDocumentID | 38648144 10_1109_JBHI_2024_3389871 10506522  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/20/21/35082 funderid: 10.13039/501100000274 – fundername: Royal Society University Research Fellow – fundername: CompBioMed 2 Centre of Excellence in Computational Biomedicine European Commission Horizon 2020 research and innovation programme grantid: 823712 – fundername: Stiftung der Deutschen Wirtschaft funderid: 10.13039/501100015754 – fundername: Stiftung der Deutschen Wirtschaft; Foundation of German Business funderid: 10.13039/501100015754 – fundername: Royal Society grantid: URF\R1\221314 funderid: 10.13039/501100000288 – fundername: British Heart Foundation grantid: PG/20/21/35082  | 
    
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8  | 
    
| ID | FETCH-LOGICAL-c322t-928ccd78de8269e5bde466aa3badb98078fe06163f6582d82d9db3a47624d0cd3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2168-2194 2168-2208  | 
    
| IngestDate | Sat Sep 27 17:13:06 EDT 2025 Mon Jul 21 05:51:31 EDT 2025 Wed Oct 01 03:40:10 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 Wed Aug 27 01:57:02 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c322t-928ccd78de8269e5bde466aa3badb98078fe06163f6582d82d9db3a47624d0cd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0009-0004-5239-9313 0000-0001-8139-3480 0000-0001-8198-5128  | 
    
| PMID | 38648144 | 
    
| PQID | 3045115103 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3045115103 crossref_primary_10_1109_JBHI_2024_3389871 crossref_citationtrail_10_1109_JBHI_2024_3389871 ieee_primary_10506522 pubmed_primary_38648144  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | IEEE journal of biomedical and health informatics | 
    
| PublicationTitleAbbrev | JBHI | 
    
| PublicationTitleAlternate | IEEE J Biomed Health Inform | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 Adams (ref41) 2023 ref6 ref5 ref40 Jackson (ref42) 2022 ref35 ref34 ref37 ref36 ref31 ref30 ref33 Ossenberg-Engels (ref32) 2019 ref2 ref39 ref38 Petersen (ref53) 2015; 18 Qi (ref58) 2017 Glass (ref1) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Qi (ref57) 2017 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref9 doi: 10.1002/9781118574362.ch9 – ident: ref51 doi: 10.1109/ISBI52829.2022.9761590 – ident: ref24 doi: 10.1109/TMI.2022.3154599 – ident: ref7 doi: 10.1098/rsfs.2015.0083 – ident: ref15 doi: 10.1109/TMI.2002.804441 – ident: ref44 doi: 10.1109/ISBI48211.2021.9434040 – ident: ref43 doi: 10.1007/978-3-030-32251-9_4 – ident: ref52 doi: 10.1007/978-3-031-23443-9_34 – ident: ref40 doi: 10.1007/978-3-031-43907-0_47 – year: 2023 ident: ref41 article-title: Point2SSM: Learning morphological variations of anatomies from point cloud – ident: ref6 doi: 10.1186/s12938-015-0033-5 – ident: ref29 doi: 10.3389/fcvm.2021.730316 – ident: ref28 doi: 10.1007/978-3-030-00934-2_53 – ident: ref17 doi: 10.1038/s41598-020-75525-4 – ident: ref5 doi: 10.1016/j.jcp.2012.09.015 – ident: ref54 doi: 10.1186/1532-429X-15-46 – ident: ref34 doi: 10.1007/978-3-030-78710-3_26 – ident: ref33 doi: 10.1007/978-3-030-68107-4_6 – ident: ref10 doi: 10.1109/TMI.2017.2714343 – ident: ref48 doi: 10.1007/978-3-030-93722-5_24 – volume-title: Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function year: 2012 ident: ref1 – ident: ref26 doi: 10.1007/978-3-030-39074-7_19 – ident: ref21 doi: 10.1007/s11263-010-0405-z – ident: ref27 doi: 10.1038/s42256-019-0019-2 – ident: ref39 doi: 10.11159/icsta21.127 – ident: ref2 doi: 10.1016/j.jcmg.2021.11.027 – start-page: 5099 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref58 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space – ident: ref16 doi: 10.1002/mp.14341 – ident: ref14 doi: 10.1016/j.cma.2020.112869 – ident: ref30 doi: 10.1007/978-3-319-59448-4_46 – ident: ref35 doi: 10.1007/978-3-031-16446-0_24 – ident: ref31 doi: 10.1148/ryai.2019180080 – start-page: 109 volume-title: Proc. Int. Workshop Stat. Atlases Comput. Models Heart year: 2019 ident: ref32 article-title: Conditional generative adversarial networks for the prediction of cardiac contraction from individual frames – ident: ref56 doi: 10.1016/j.media.2023.102975 – ident: ref55 doi: 10.1038/s41591-020-1009-y – ident: ref50 doi: 10.3389/fphys.2022.886723 – start-page: 652 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2017 ident: ref57 article-title: PointNet: Deep learning on point sets for 3D classification and segmentation – ident: ref22 doi: 10.3389/fcvm.2019.00190 – ident: ref45 doi: 10.1007/978-3-031-23443-9_26 – ident: ref37 doi: 10.3389/fcvm.2022.983868 – ident: ref8 doi: 10.1007/s10237-019-01168-8 – ident: ref61 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: ref23 doi: 10.1007/s10439-022-02967-4 – ident: ref19 doi: 10.1007/978-3-642-31340-0_21 – year: 2022 ident: ref42 article-title: Building representations of different brain areas through hierarchical point cloud networks publication-title: Med. Imag. Deep Learn. – ident: ref20 doi: 10.1016/j.media.2011.10.006 – ident: ref59 doi: 10.1109/CVPR.2018.00029 – ident: ref13 doi: 10.1007/s10237-019-01175-9 – ident: ref4 doi: 10.1016/j.pbiomolbio.2012.07.001 – ident: ref60 doi: 10.1109/3DV.2018.00088 – ident: ref38 doi: 10.1007/978-3-031-23443-9_27 – ident: ref46 doi: 10.1016/j.neucom.2020.08.030 – ident: ref49 doi: 10.1007/978-3-030-93722-5_9 – ident: ref25 doi: 10.1016/j.media.2021.102278 – ident: ref36 doi: 10.1007/978-3-031-23443-9_23 – ident: ref3 doi: 10.1109/JBHI.2017.2652449 – ident: ref47 doi: 10.1109/EMBC40787.2023.10340878 – ident: ref12 doi: 10.1007/s12206-015-0232-9 – ident: ref11 doi: 10.1016/j.compmedimag.2009.05.002 – ident: ref18 doi: 10.1007/978-3-642-04271-3_41 – ident: ref62 doi: 10.1001/jama.1982.03320430047030 – volume: 18 start-page: 1 issue: 1 year: 2015 ident: ref53 article-title: U.K. biobanks cardiovascular magnetic resonance protocol publication-title: J. Cardiovasc. Magn. Reson.  | 
    
| SSID | ssj0000816896 | 
    
| Score | 2.4487858 | 
    
| Snippet | Global single-valued biomarkers, such as ejection fraction, are widely used in clinical practice to assess cardiac function. However, they only approximate the... | 
    
| SourceID | proquest pubmed crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 4810 | 
    
| SubjectTerms | Anatomy Cardiac disease Cardiac mechanics cardiac motion cine MRI Deep Learning Deformable models Deformation geometric deep learning Heart - diagnostic imaging Heart - physiology Humans Imaging, Three-Dimensional - methods Magnetic resonance imaging Male Models, Cardiovascular Myocardial Contraction - physiology myocardial infarction Point cloud compression point clouds Shape subpopulation-specific 3D deformation survival analysis Three-dimensional displays  | 
    
| Title | Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks | 
    
| URI | https://ieeexplore.ieee.org/document/10506522 https://www.ncbi.nlm.nih.gov/pubmed/38648144 https://www.proquest.com/docview/3045115103  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAA-qllAJloVRG4lQpSx5OYh_bpavtSqw4gMotsj1edQVKECQS4tczY2dXBYkKKQcf7Dw8M5lvPC_GThJRQgY6j0SZm0jYGCKjhIxK1Bax1LpMHCU4n8-KyZWYXufXfbK6z4VxzvngMzekofflQ2M7OipDCc9RY6b4x10vZRGStVYHKr6DhO_HleIgQkkUvRczidXp9OfkN1qDqRiiTYZ2NnWIyWQhJBoUL1SS77HyNtz0ame8xWbLFw7RJjfDrjVD-_SqluO7v-gT-9gDUP4jcMw2W3P1Z7Z53rvYd9gldUejHHWenfGR5x_LqYbVfUiB4LoGTiF0j56m_M-i_csvmkXd8tFt0wE_c6uESD4LQeYPu-xq_OtyNIn61guRRQlvI5VKa6GU4ND8UC434ERRaJ0ZDUZRjfq5QyRQZHNEMCngpcBkWuCvVUBsIdtjG3VTu33GFajUFYjsBBgh5zhRyQISS4UKyyTRAxYvd7-yfV1yao9xW3n7JFYV0a4i2lU97Qbs-2rJXSjK8b_Ju7Tv_0wMWz5gx0saVyhS5CfRtWu6h4qcxwiUkzgbsC-B-KvVS545eOOuh-wDPTyECH5lG-19544QtrTmm2fXZ6w1470 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB5KCm0vfSVNt08Vcip464f80DHZNGzS7JLDhuZmJI2WhAQ7JDaE_vrOSN4lLaQUfNBBMrZmRvON5gWwk8gSM9R5JMvcRNLGGBklq6gkbRFXWpeJ4wTn2byYnsqjs_xsSFb3uTDOOR985sY89L58bG3PV2Uk4TlpzJRO3Me5lDIP6VrrKxXfQ8J35EppEJEsysGPmcTq29He9JDswVSOySojS5t7xGRVISsyKf5QSr7LysOA0yuegxcwX31yiDe5HPedGdtff1Vz_O9_egnPBwgqdgPPvIJHrnkNT2aDk30TFtwfjbPURbYvJp6DrOAqVjchCULoBgUH0d15qoqfF925OGkvmk5Mrtoexb5bp0SKeQgzv92C04Pvi8k0GpovRJZkvItUWlmLZYWODBDlcoNOFoXWmdFoFFepXzrCAkW2JAyTIj0KTaYlHa4SY4vZG9ho2sa9BaFQpa4gbCfRyGpJE1VVYGK5VGGZJHoE8Wr3aztUJucGGVe1t1BiVTPtaqZdPdBuBF_XS65DWY5_Td7ifb83MWz5CL6saFyTULGnRDeu7W9rdh8TVE7ibATbgfjr1SueeffAWz_D0-lidlwfH85_vIdn_CEhYPADbHQ3vftIIKYznzzr_gbE0-cK | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+3D+Cardiac+Contraction+and+Relaxation+With+Point+Cloud+Deformation+Networks&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Beetz%2C+Marcel&rft.au=Banerjee%2C+Abhirup&rft.au=Grau%2C+Vicente&rft.date=2024-08-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4810&rft.epage=4819&rft_id=info:doi/10.1109%2FJBHI.2024.3389871&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2024_3389871 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |