Single-Instruction-Multiple-Data Instruction-Set-Based Heat Ranking Optimization for Massive Network Flow
In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch a...
Saved in:
| Published in | Electronics (Basel) Vol. 12; no. 24; p. 5026 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics12245026 |
Cover
| Abstract | In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch algorithm and proposes a method to estimate the flow heat from massive network traffic using the Sketch algorithm and identify the kth flow with the highest heat by using a bitonic sort algorithm. In view of the performance difficulties of applying multiple hash functions in the implementation of the Sketch algorithm, the Single-Instruction-Multiple-Data (SIMD) instruction set is adopted to improve the performance of the Sketch algorithm so that SIMD instructions can process multiple fragments of data in a single step, implement multiple hash operations at the same time, compare and sort multiple flow tables at the same time. Thus, the throughput of the execution task is improved. Firstly, the elements of data flow are described and stored in the form of vectors, while the construction, analysis, and operation of data vectors are realized by SIMD instructions. Secondly, the multi-hash operation is simplified into a single vector operation, which reduces the CPU computing resource consumption of the Sketch algorithm. At the same time, the SIMD instruction set is used to optimize the parallel comparison operation of the flow table in a bitonic sort algorithm. Finally, the SIMD instruction set is used to optimize the functions in the Sketch algorithm and top-k sorting algorithm program, and the optimized code is tested and analyzed. The experimental results show that the time consumed by the advanced vector extensions (AVX)-instructions-optimized version has a significant reduction compared to the original version. When the length of KEY is 96 bytes, the instructions consumed by multiple hash functions account for less in the entire Sketch algorithm, and the time consumed by the optimized version of AVX is about 67.2% of that in the original version. As the length of KEY gradually increases to 256 bytes, the time consumed by the optimized version of AVX decreases to 53.8% of the original version. The simulation results show that the AVX optimization algorithm is effective in improving the measurement efficiency of network flow. |
|---|---|
| AbstractList | In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch algorithm and proposes a method to estimate the flow heat from massive network traffic using the Sketch algorithm and identify the kth flow with the highest heat by using a bitonic sort algorithm. In view of the performance difficulties of applying multiple hash functions in the implementation of the Sketch algorithm, the Single-Instruction-Multiple-Data (SIMD) instruction set is adopted to improve the performance of the Sketch algorithm so that SIMD instructions can process multiple fragments of data in a single step, implement multiple hash operations at the same time, compare and sort multiple flow tables at the same time. Thus, the throughput of the execution task is improved. Firstly, the elements of data flow are described and stored in the form of vectors, while the construction, analysis, and operation of data vectors are realized by SIMD instructions. Secondly, the multi-hash operation is simplified into a single vector operation, which reduces the CPU computing resource consumption of the Sketch algorithm. At the same time, the SIMD instruction set is used to optimize the parallel comparison operation of the flow table in a bitonic sort algorithm. Finally, the SIMD instruction set is used to optimize the functions in the Sketch algorithm and top-k sorting algorithm program, and the optimized code is tested and analyzed. The experimental results show that the time consumed by the advanced vector extensions (AVX)-instructions-optimized version has a significant reduction compared to the original version. When the length of KEY is 96 bytes, the instructions consumed by multiple hash functions account for less in the entire Sketch algorithm, and the time consumed by the optimized version of AVX is about 67.2% of that in the original version. As the length of KEY gradually increases to 256 bytes, the time consumed by the optimized version of AVX decreases to 53.8% of the original version. The simulation results show that the AVX optimization algorithm is effective in improving the measurement efficiency of network flow. |
| Author | Tan, Lingling Yi, Junkai Yang, Fei Wang, Yongyue |
| Author_xml | – sequence: 1 givenname: Lingling orcidid: 0000-0003-3957-600X surname: Tan fullname: Tan, Lingling – sequence: 2 givenname: Yongyue surname: Wang fullname: Wang, Yongyue – sequence: 3 givenname: Junkai orcidid: 0000-0003-3629-1957 surname: Yi fullname: Yi, Junkai – sequence: 4 givenname: Fei surname: Yang fullname: Yang, Fei |
| BookMark | eNqNkFtLAzEQhYNUsNb-Al8WfF7NZS_Jo9ZLC60Fq89LzM5K2m2yJlmL_nq31ociIs7LDDPnOwznGPWMNYDQKcHnjAl8ATWo4KzRyhNKkxTT7AD1Kc5FLKigvb35CA29X-KuBGGc4T7SC21eaognxgfXqqCtiWdtHXTTLa9lkNH-ZQEhvpIeymgMMkQP0qw6PJo3Qa_1h9xqosq6aCa9128Q3UPYWLeKbmu7OUGHlaw9DL_7AD3d3jyOxvF0fjcZXU5jxSgNMc9pxUhOVMaeucozqAiIFIMq0wyyVGY0SzOesDyRRIqSlBiwTDmlwBNeEsEGKNn5tqaR7xtZ10Xj9Fq694LgYptY8UtiHXa2wxpnX1vwoVja1pnu04IKnHDGicCdiu1UylnvHVT_9BY_KKXDV1rBSV3_yX4C87KWBA |
| CitedBy_id | crossref_primary_10_3390_info15080429 |
| Cites_doi | 10.1109/DSD.2016.27 10.1007/s11107-019-00874-8 10.1109/PDP59025.2023.00032 10.1109/TNET.2019.2943939 10.1109/TNSM.2021.3068604 10.1007/978-3-540-24698-5_7 10.1109/ICDE.2019.00112 10.1109/INFOCOM.2019.8737499 10.1109/TNET.2020.3011798 10.1016/j.comnet.2020.107168 10.1109/TNET.2022.3199506 10.1109/ALLERTON.2008.4797609 10.1109/MCOM.2015.7081073 10.1016/j.asoc.2023.110216 10.1016/j.compeleceng.2016.11.029 10.36244/ICJ.2019.3.6 10.1109/BigDataService.2018.00040 10.1007/s10878-015-9893-7 10.1007/s11280-018-0546-5 10.1016/j.compeleceng.2017.09.027 10.1007/s10586-020-03204-0 10.1109/TNET.2022.3203561 10.1002/cpe.5891 10.1145/3394486.3403208 10.1109/ICMTMA.2016.47 10.1145/1868447.1868448 10.3390/jlpea7010005 10.1587/comex.2017XBL0032 10.1016/j.jpdc.2019.09.012 10.4208/aamm.OA-2019-0147 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/electronics12245026 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics12245026 10_3390_electronics12245026 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-872f3171c63b8c76ef1e950ecd56e65a6265684374a1a9d1d0e0a5822e848d193 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Mon Oct 27 02:09:41 EDT 2025 Sat Jul 26 00:45:50 EDT 2025 Thu Oct 16 04:24:41 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-872f3171c63b8c76ef1e950ecd56e65a6265684374a1a9d1d0e0a5822e848d193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3957-600X 0000-0003-3629-1957 |
| OpenAccessLink | https://www.proquest.com/docview/2904838190?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2904838190 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics12245026 proquest_journals_2904838190 crossref_primary_10_3390_electronics12245026 crossref_citationtrail_10_3390_electronics12245026 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mu (ref_19) 2015; 40 ref_36 Zhu (ref_20) 2020; 1 ref_35 ref_33 Wei (ref_5) 2023; 139 Khan (ref_17) 2018; 66 ref_30 Amiri (ref_34) 2020; 135 Zhang (ref_31) 2020; 39 Wu (ref_3) 2017; 57 ref_18 ref_16 Deng (ref_24) 2021; 24 ref_15 Pan (ref_13) 2022; 33 Hosseini (ref_2) 2020; 173 Zhang (ref_7) 2016; 32 Huang (ref_12) 2023; 31 Alawadi (ref_10) 2019; 6 Yang (ref_29) 2019; 27 Kos (ref_32) 2013; 9 ref_25 ref_21 Yang (ref_23) 2019; 22 Rottenstreich (ref_28) 2021; 18 Kong (ref_4) 2023; 31 Akhunzada (ref_1) 2015; 53 ref_27 ref_26 ref_9 Liu (ref_14) 2020; 12 ref_8 Yoshioka (ref_22) 2017; 6 ref_6 Tang (ref_11) 2020; 28 |
| References_xml | – ident: ref_15 doi: 10.1109/DSD.2016.27 – volume: 39 start-page: 129 year: 2020 ident: ref_31 article-title: Implementing bitonic sorting on optical network-on-chip with bus topology publication-title: Photonic Netw. Commun. doi: 10.1007/s11107-019-00874-8 – ident: ref_16 doi: 10.1109/PDP59025.2023.00032 – volume: 27 start-page: 2236 year: 2019 ident: ref_29 article-title: Adaptive Measurements Using One Elastic Sketch publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2019.2943939 – volume: 18 start-page: 3662 year: 2021 ident: ref_28 article-title: Avoiding Flow Size Overestimation in the Count-Min Sketch with Bloom Filter Constructions publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2021.3068604 – volume: 40 start-page: 553 year: 2015 ident: ref_19 article-title: The implementation and optimization of Bitonic sort algorithm based on CUDA publication-title: Comput. Sci. – ident: ref_26 doi: 10.1007/978-3-540-24698-5_7 – ident: ref_21 doi: 10.1109/ICDE.2019.00112 – ident: ref_30 doi: 10.1109/INFOCOM.2019.8737499 – volume: 28 start-page: 2350 year: 2020 ident: ref_11 article-title: A Fast and Compact Invertible Sketch for Network-Wide Heavy Flow Detection publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2020.3011798 – volume: 173 start-page: 107168 year: 2020 ident: ref_2 article-title: New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107168 – volume: 31 start-page: 738 year: 2023 ident: ref_12 article-title: ChainSketch: An efffcient and accurate sketch for heavy flow detection publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2022.3199506 – ident: ref_35 doi: 10.1109/ALLERTON.2008.4797609 – volume: 53 start-page: 36 year: 2015 ident: ref_1 article-title: Securing software defined networks: Taxonomy, requirements, and open issues publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2015.7081073 – volume: 139 start-page: 110216 year: 2023 ident: ref_5 article-title: Multi-objective evolving long—Short term memory networks with attention for network intrusion detection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110216 – volume: 57 start-page: 266 year: 2017 ident: ref_3 article-title: Topology-aware network fault influence domain analysis publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2016.11.029 – volume: 6 start-page: 34 year: 2019 ident: ref_10 article-title: Methods for Predicting Behavior of Elephant Flows in Data Center Networks publication-title: Infocommun. J. doi: 10.36244/ICJ.2019.3.6 – ident: ref_27 doi: 10.1109/BigDataService.2018.00040 – ident: ref_25 – volume: 32 start-page: 696 year: 2016 ident: ref_7 article-title: Robustness of power-law networks: Its assessment and optimization publication-title: J. Comb. Optim. doi: 10.1007/s10878-015-9893-7 – ident: ref_33 – volume: 22 start-page: 2675 year: 2019 ident: ref_23 article-title: FID-sketch: An accurate sketch to store frequencies in data streams publication-title: World Wide Web doi: 10.1007/s11280-018-0546-5 – volume: 66 start-page: 14 year: 2018 ident: ref_17 article-title: A high performance processor architecture for multimedia applications publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.09.027 – volume: 24 start-page: 1505 year: 2021 ident: ref_24 article-title: An efficient policy evaluation engine with locomotive algorithm publication-title: Clust. Comput. doi: 10.1007/s10586-020-03204-0 – volume: 31 start-page: 904 year: 2023 ident: ref_4 article-title: Combination Attacks and Defenses on SDN Topology Discovery publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2022.3203561 – volume: 33 start-page: 3015 year: 2022 ident: ref_13 article-title: G-SLIDE: A GPU-Based Sub-Linear Deep Learning Engine via LSH Sparsification publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 1 start-page: e5891 year: 2020 ident: ref_20 article-title: SA Sketch: A self-adaption sketch framework for high-speed network: NA publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5891 – volume: 9 start-page: 5 year: 2013 ident: ref_32 article-title: Bitonic Merge Sort Implementation on the Maxeler Dataflow Supercomputing System publication-title: IPSI BgD Trans. Internet Res. – ident: ref_9 doi: 10.1145/3394486.3403208 – ident: ref_6 doi: 10.1109/ICMTMA.2016.47 – ident: ref_8 doi: 10.1145/1868447.1868448 – ident: ref_36 – ident: ref_18 doi: 10.3390/jlpea7010005 – volume: 6 start-page: 399 year: 2017 ident: ref_22 article-title: Performance evaluation of sketch schemes on traffic anomaly detection accuracy publication-title: IEICE Commun. Express doi: 10.1587/comex.2017XBL0032 – volume: 135 start-page: 83 year: 2020 ident: ref_34 article-title: SIMD programming using Intel vector extensions publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2019.09.012 – volume: 12 start-page: 1247 year: 2020 ident: ref_14 article-title: Performance comparison on parallel CPU and GPU algorithms for two dimensional unified gas-kinetic scheme publication-title: Adv. Appl. Math. Mech. doi: 10.4208/aamm.OA-2019-0147 |
| SSID | ssj0000913830 |
| Score | 2.2841437 |
| Snippet | In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5026 |
| SubjectTerms | Algorithms Communications traffic Data processing Hash based algorithms Optimization Performance enhancement Power SIMD (computers) Sorting algorithms Statistics Traffic control |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDurBbyOKpgePFrextusRPwiagEYkwdPStSUxzkHCCNG_3lc2PjRq8LTD2mXpa9_7_dL3fg-hM88TSjtMEE6VIj5nikgmKFAVOHoRtyr6k2yLFmt0_Lsu7eY627YWZuH-vgp0_GLeDGZo74AoUIZVVGQUgHcBFTuth9qzbR_ncEEg0HuZrtBvM7_GnjmgXBslA_k-lnG8EFvqW1nR9nAiSWhTSl4rozSqqI9vgo1L_vY22swxJq5lm2IHrZhkF20sKA_uoZc2PGJDbucCsqSZ5xaSa5lKvPimbVJyCeFO4wa4bvwoJ_0W8D24m7e8jhMD-MVNQOLgPXEryy3H9bg_3ked-s3TVYPkXReIgsOdgnv0egAqXMWqUaA4Mz3XCOoYpSkzjEpgQJQFfpX70pVCu9oxjqSAM0zgBxrw4AEqJP3EHCKsHKMN5zrSAHOM4wlXB8qTxtXAK6nhJeRN7RGqXJLcdsaIQ6Amdh3DH9axhM5nkwaZIsffw8tTQ4f58RyGnrBK-hYMlRCZGX-Zzx39c_wxWrcN6rMEmDIqgOXMCcCYNDrNt-8nlSfzFQ priority: 102 providerName: Unpaywall |
| Title | Single-Instruction-Multiple-Data Instruction-Set-Based Heat Ranking Optimization for Massive Network Flow |
| URI | https://www.proquest.com/docview/2904838190 https://doi.org/10.3390/electronics12245026 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH7hx0E9GEWNKJIePNq4jbXbDsaAgmjCJCoJnpbSlsRkAgYM8eLf7ut-AAdjPHbrethr3_te-_p9AOeOE0hl8YB6TErqelxSwQOGqQouvZFnWPSTaouQdwfuw5ANCxDmd2FMWWXuExNHrabS7JFfOoEhPzfx63r2QY1qlDldzSU0RCatoK4SirEilB3DjFWCcqsd9p9Wuy6GBdNvWCn9UAPz_cu12szcHDKxhGZhM0StcefW52QmvpYijjdCUGcPdjPsSJqpsfehoCcV2NlgFKzAtgGPKffyAbw947NY0_s1SyztZQWE9FYsBNl886wXtIUxTZEu-mfyJBJRBfKIPuU9u6xJEOGSHsJtdJEkTAvISSeeLg9h0Gm_3HRpJq1AJa7gBfpAZ4zIwZa8MfKlx_XY1gGztFSMa84EpjmM-27Dc4UtAmUrS1uCIZjQvusrBH1HUJpMJ_oYiLS00p6nRgqxjLacwFa-dIS2FSaPTHtVcPK_GcmMd9zIX8QR5h_GBNEvJqjCxeqjWUq78Xf3Wm6mKFuD82g9Y6pAV6b7z3Anfw93CttGdD4taqlBCQ2lzxCaLEZ1KPqdu3o267DV-25jaxD2m68_4BbqUQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hOEAPFdBWTaHgQ3urxa537V0fUFUeUVJIWvGQuG0de5CQtkmqBEX8OX5bx7veJAeEuHDdhw-e8Xwz9vj7AL4Ioa2LlOaZtJanmbLcKC2pVKGlN8g8i37VbdFXnev05428WYHH5i6Mb6tsYmIVqN3I-j3yA6E9-bnHr-_jf9yrRvnT1UZCwwRpBXdYUYyFix1n-DCjEm5y2D0he38Von16ddzhQWWAW3LmKYUDcUsgGluVDHKbKbyNUcsIrZMKlTSU8UuVp0mWmthoF7sIIyMJVzFPcxd7MiaCgLU0STUVf2tHp_3fF_NdHs-6mSdRTXeUJDo6WKjbTPyhlqxoHZYhcZHnrt8Px-ZhZspyCfLam_A25KrsR-1cW7CCw214s8RguA0bPlmtuZ7fwd0lPSuRdxestLwXGhb5iZkatvzmEqf8iDDUsQ7hAbswlYgD-0Ux7G-4HMooo2Y9Su8pJLN-3bDO2uVo9h6uX2WSP8DqcDTEj8BshA6zzA0c5U4YCR273AqDsaNiVWLWAtHMZmEDz7mX2ygLqne8CYonTNCCb_OfxjXNx_Of7zZmKsKanxQLD20Bn5vuJcN9en64fVjvXPXOi_Nu_2wHNrzgfd1QswurZDT8TGnRdLAXfI_Bn9d29_9uayHv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB0hKhV6qFqgIpRSH-CGxa53be8eqqol3SYFAoIicVsceyIhbZOgpIry1_rrOt6PJIcK9cJ1P6zVzvPMG3v8BuBQiNS6QKVcS2t5rJXlRqWSUhWaen3tVfTLaoue6tzGP-7k3Rr8ac7C-LLKxieWjtqNrF8jPxGpFz_38etkUJdFXLWzz-NH7jtI-Z3Wpp1GBZEznM8ofZt86rbJ1kdCZN9-nnZ43WGAWwLylFyBGFAADa2K-onVCgchpjJA66RCJQ2xfamSONKxCU3qQhdgYCTFVEzixIVeiInc_wvtVdz9KfXs-2J9x-ttJlFQCR1FEX32sq_NxG9nyVLQYTUYLhnuxu_h2MxnpihWgl32Bl7XLJV9qWD1FtZwuAWvVrQLt2DT09RK5XkbHm7oWoG8u9Sj5Rd1qSJvm6lhq3ducMq_UvR0rEORgF2bsn0DuyTv9as-FsqIS7MLIvbkjFmvKlVnWTGa7cDts_zid7A-HA1xF5gN0KHWru-INWEg0tAlVhgMHaWpEnULRPM3c1srnPtGG0VOmY43Qf4PE7TgePHSuBL4ePrx_cZMeT3bJ_kSmy3gC9P9z3B7Tw_3EV4SyPPzbu_sPWz6TvdVJc0-rJPN8APxoWn_oAQeg_vnRvpfjs8fiQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDurBbyOKpgePFrextusRPwiagEYkwdPStSUxzkHCCNG_3lc2PjRq8LTD2mXpa9_7_dL3fg-hM88TSjtMEE6VIj5nikgmKFAVOHoRtyr6k2yLFmt0_Lsu7eY627YWZuH-vgp0_GLeDGZo74AoUIZVVGQUgHcBFTuth9qzbR_ncEEg0HuZrtBvM7_GnjmgXBslA_k-lnG8EFvqW1nR9nAiSWhTSl4rozSqqI9vgo1L_vY22swxJq5lm2IHrZhkF20sKA_uoZc2PGJDbucCsqSZ5xaSa5lKvPimbVJyCeFO4wa4bvwoJ_0W8D24m7e8jhMD-MVNQOLgPXEryy3H9bg_3ked-s3TVYPkXReIgsOdgnv0egAqXMWqUaA4Mz3XCOoYpSkzjEpgQJQFfpX70pVCu9oxjqSAM0zgBxrw4AEqJP3EHCKsHKMN5zrSAHOM4wlXB8qTxtXAK6nhJeRN7RGqXJLcdsaIQ6Amdh3DH9axhM5nkwaZIsffw8tTQ4f58RyGnrBK-hYMlRCZGX-Zzx39c_wxWrcN6rMEmDIqgOXMCcCYNDrNt-8nlSfzFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Instruction-Multiple-Data+Instruction-Set-Based+Heat+Ranking+Optimization+for+Massive+Network+Flow&rft.jtitle=Electronics+%28Basel%29&rft.au=Tan%2C+Lingling&rft.au=Wang%2C+Yongyue&rft.au=Yi%2C+Junkai&rft.au=Yang%2C+Fei&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=24&rft.spage=5026&rft_id=info:doi/10.3390%2Felectronics12245026&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |