Single-Instruction-Multiple-Data Instruction-Set-Based Heat Ranking Optimization for Massive Network Flow

In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch a...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 24; p. 5026
Main Authors Tan, Lingling, Wang, Yongyue, Yi, Junkai, Yang, Fei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12245026

Cover

Abstract In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch algorithm and proposes a method to estimate the flow heat from massive network traffic using the Sketch algorithm and identify the kth flow with the highest heat by using a bitonic sort algorithm. In view of the performance difficulties of applying multiple hash functions in the implementation of the Sketch algorithm, the Single-Instruction-Multiple-Data (SIMD) instruction set is adopted to improve the performance of the Sketch algorithm so that SIMD instructions can process multiple fragments of data in a single step, implement multiple hash operations at the same time, compare and sort multiple flow tables at the same time. Thus, the throughput of the execution task is improved. Firstly, the elements of data flow are described and stored in the form of vectors, while the construction, analysis, and operation of data vectors are realized by SIMD instructions. Secondly, the multi-hash operation is simplified into a single vector operation, which reduces the CPU computing resource consumption of the Sketch algorithm. At the same time, the SIMD instruction set is used to optimize the parallel comparison operation of the flow table in a bitonic sort algorithm. Finally, the SIMD instruction set is used to optimize the functions in the Sketch algorithm and top-k sorting algorithm program, and the optimized code is tested and analyzed. The experimental results show that the time consumed by the advanced vector extensions (AVX)-instructions-optimized version has a significant reduction compared to the original version. When the length of KEY is 96 bytes, the instructions consumed by multiple hash functions account for less in the entire Sketch algorithm, and the time consumed by the optimized version of AVX is about 67.2% of that in the original version. As the length of KEY gradually increases to 256 bytes, the time consumed by the optimized version of AVX decreases to 53.8% of the original version. The simulation results show that the AVX optimization algorithm is effective in improving the measurement efficiency of network flow.
AbstractList In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch algorithm and proposes a method to estimate the flow heat from massive network traffic using the Sketch algorithm and identify the kth flow with the highest heat by using a bitonic sort algorithm. In view of the performance difficulties of applying multiple hash functions in the implementation of the Sketch algorithm, the Single-Instruction-Multiple-Data (SIMD) instruction set is adopted to improve the performance of the Sketch algorithm so that SIMD instructions can process multiple fragments of data in a single step, implement multiple hash operations at the same time, compare and sort multiple flow tables at the same time. Thus, the throughput of the execution task is improved. Firstly, the elements of data flow are described and stored in the form of vectors, while the construction, analysis, and operation of data vectors are realized by SIMD instructions. Secondly, the multi-hash operation is simplified into a single vector operation, which reduces the CPU computing resource consumption of the Sketch algorithm. At the same time, the SIMD instruction set is used to optimize the parallel comparison operation of the flow table in a bitonic sort algorithm. Finally, the SIMD instruction set is used to optimize the functions in the Sketch algorithm and top-k sorting algorithm program, and the optimized code is tested and analyzed. The experimental results show that the time consumed by the advanced vector extensions (AVX)-instructions-optimized version has a significant reduction compared to the original version. When the length of KEY is 96 bytes, the instructions consumed by multiple hash functions account for less in the entire Sketch algorithm, and the time consumed by the optimized version of AVX is about 67.2% of that in the original version. As the length of KEY gradually increases to 256 bytes, the time consumed by the optimized version of AVX decreases to 53.8% of the original version. The simulation results show that the AVX optimization algorithm is effective in improving the measurement efficiency of network flow.
Author Tan, Lingling
Yi, Junkai
Yang, Fei
Wang, Yongyue
Author_xml – sequence: 1
  givenname: Lingling
  orcidid: 0000-0003-3957-600X
  surname: Tan
  fullname: Tan, Lingling
– sequence: 2
  givenname: Yongyue
  surname: Wang
  fullname: Wang, Yongyue
– sequence: 3
  givenname: Junkai
  orcidid: 0000-0003-3629-1957
  surname: Yi
  fullname: Yi, Junkai
– sequence: 4
  givenname: Fei
  surname: Yang
  fullname: Yang, Fei
BookMark eNqNkFtLAzEQhYNUsNb-Al8WfF7NZS_Jo9ZLC60Fq89LzM5K2m2yJlmL_nq31ociIs7LDDPnOwznGPWMNYDQKcHnjAl8ATWo4KzRyhNKkxTT7AD1Kc5FLKigvb35CA29X-KuBGGc4T7SC21eaognxgfXqqCtiWdtHXTTLa9lkNH-ZQEhvpIeymgMMkQP0qw6PJo3Qa_1h9xqosq6aCa9128Q3UPYWLeKbmu7OUGHlaw9DL_7AD3d3jyOxvF0fjcZXU5jxSgNMc9pxUhOVMaeucozqAiIFIMq0wyyVGY0SzOesDyRRIqSlBiwTDmlwBNeEsEGKNn5tqaR7xtZ10Xj9Fq694LgYptY8UtiHXa2wxpnX1vwoVja1pnu04IKnHDGicCdiu1UylnvHVT_9BY_KKXDV1rBSV3_yX4C87KWBA
CitedBy_id crossref_primary_10_3390_info15080429
Cites_doi 10.1109/DSD.2016.27
10.1007/s11107-019-00874-8
10.1109/PDP59025.2023.00032
10.1109/TNET.2019.2943939
10.1109/TNSM.2021.3068604
10.1007/978-3-540-24698-5_7
10.1109/ICDE.2019.00112
10.1109/INFOCOM.2019.8737499
10.1109/TNET.2020.3011798
10.1016/j.comnet.2020.107168
10.1109/TNET.2022.3199506
10.1109/ALLERTON.2008.4797609
10.1109/MCOM.2015.7081073
10.1016/j.asoc.2023.110216
10.1016/j.compeleceng.2016.11.029
10.36244/ICJ.2019.3.6
10.1109/BigDataService.2018.00040
10.1007/s10878-015-9893-7
10.1007/s11280-018-0546-5
10.1016/j.compeleceng.2017.09.027
10.1007/s10586-020-03204-0
10.1109/TNET.2022.3203561
10.1002/cpe.5891
10.1145/3394486.3403208
10.1109/ICMTMA.2016.47
10.1145/1868447.1868448
10.3390/jlpea7010005
10.1587/comex.2017XBL0032
10.1016/j.jpdc.2019.09.012
10.4208/aamm.OA-2019-0147
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/electronics12245026
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics12245026
10_3390_electronics12245026
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-872f3171c63b8c76ef1e950ecd56e65a6265684374a1a9d1d0e0a5822e848d193
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Mon Oct 27 02:09:41 EDT 2025
Sat Jul 26 00:45:50 EDT 2025
Thu Oct 16 04:24:41 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-872f3171c63b8c76ef1e950ecd56e65a6265684374a1a9d1d0e0a5822e848d193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3957-600X
0000-0003-3629-1957
OpenAccessLink https://www.proquest.com/docview/2904838190?pq-origsite=%requestingapplication%&accountid=15518
PQID 2904838190
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics12245026
proquest_journals_2904838190
crossref_primary_10_3390_electronics12245026
crossref_citationtrail_10_3390_electronics12245026
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mu (ref_19) 2015; 40
ref_36
Zhu (ref_20) 2020; 1
ref_35
ref_33
Wei (ref_5) 2023; 139
Khan (ref_17) 2018; 66
ref_30
Amiri (ref_34) 2020; 135
Zhang (ref_31) 2020; 39
Wu (ref_3) 2017; 57
ref_18
ref_16
Deng (ref_24) 2021; 24
ref_15
Pan (ref_13) 2022; 33
Hosseini (ref_2) 2020; 173
Zhang (ref_7) 2016; 32
Huang (ref_12) 2023; 31
Alawadi (ref_10) 2019; 6
Yang (ref_29) 2019; 27
Kos (ref_32) 2013; 9
ref_25
ref_21
Yang (ref_23) 2019; 22
Rottenstreich (ref_28) 2021; 18
Kong (ref_4) 2023; 31
Akhunzada (ref_1) 2015; 53
ref_27
ref_26
ref_9
Liu (ref_14) 2020; 12
ref_8
Yoshioka (ref_22) 2017; 6
ref_6
Tang (ref_11) 2020; 28
References_xml – ident: ref_15
  doi: 10.1109/DSD.2016.27
– volume: 39
  start-page: 129
  year: 2020
  ident: ref_31
  article-title: Implementing bitonic sorting on optical network-on-chip with bus topology
  publication-title: Photonic Netw. Commun.
  doi: 10.1007/s11107-019-00874-8
– ident: ref_16
  doi: 10.1109/PDP59025.2023.00032
– volume: 27
  start-page: 2236
  year: 2019
  ident: ref_29
  article-title: Adaptive Measurements Using One Elastic Sketch
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2019.2943939
– volume: 18
  start-page: 3662
  year: 2021
  ident: ref_28
  article-title: Avoiding Flow Size Overestimation in the Count-Min Sketch with Bloom Filter Constructions
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2021.3068604
– volume: 40
  start-page: 553
  year: 2015
  ident: ref_19
  article-title: The implementation and optimization of Bitonic sort algorithm based on CUDA
  publication-title: Comput. Sci.
– ident: ref_26
  doi: 10.1007/978-3-540-24698-5_7
– ident: ref_21
  doi: 10.1109/ICDE.2019.00112
– ident: ref_30
  doi: 10.1109/INFOCOM.2019.8737499
– volume: 28
  start-page: 2350
  year: 2020
  ident: ref_11
  article-title: A Fast and Compact Invertible Sketch for Network-Wide Heavy Flow Detection
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2020.3011798
– volume: 173
  start-page: 107168
  year: 2020
  ident: ref_2
  article-title: New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107168
– volume: 31
  start-page: 738
  year: 2023
  ident: ref_12
  article-title: ChainSketch: An efffcient and accurate sketch for heavy flow detection
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2022.3199506
– ident: ref_35
  doi: 10.1109/ALLERTON.2008.4797609
– volume: 53
  start-page: 36
  year: 2015
  ident: ref_1
  article-title: Securing software defined networks: Taxonomy, requirements, and open issues
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2015.7081073
– volume: 139
  start-page: 110216
  year: 2023
  ident: ref_5
  article-title: Multi-objective evolving long—Short term memory networks with attention for network intrusion detection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110216
– volume: 57
  start-page: 266
  year: 2017
  ident: ref_3
  article-title: Topology-aware network fault influence domain analysis
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2016.11.029
– volume: 6
  start-page: 34
  year: 2019
  ident: ref_10
  article-title: Methods for Predicting Behavior of Elephant Flows in Data Center Networks
  publication-title: Infocommun. J.
  doi: 10.36244/ICJ.2019.3.6
– ident: ref_27
  doi: 10.1109/BigDataService.2018.00040
– ident: ref_25
– volume: 32
  start-page: 696
  year: 2016
  ident: ref_7
  article-title: Robustness of power-law networks: Its assessment and optimization
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-015-9893-7
– ident: ref_33
– volume: 22
  start-page: 2675
  year: 2019
  ident: ref_23
  article-title: FID-sketch: An accurate sketch to store frequencies in data streams
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0546-5
– volume: 66
  start-page: 14
  year: 2018
  ident: ref_17
  article-title: A high performance processor architecture for multimedia applications
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.09.027
– volume: 24
  start-page: 1505
  year: 2021
  ident: ref_24
  article-title: An efficient policy evaluation engine with locomotive algorithm
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03204-0
– volume: 31
  start-page: 904
  year: 2023
  ident: ref_4
  article-title: Combination Attacks and Defenses on SDN Topology Discovery
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2022.3203561
– volume: 33
  start-page: 3015
  year: 2022
  ident: ref_13
  article-title: G-SLIDE: A GPU-Based Sub-Linear Deep Learning Engine via LSH Sparsification
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 1
  start-page: e5891
  year: 2020
  ident: ref_20
  article-title: SA Sketch: A self-adaption sketch framework for high-speed network: NA
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5891
– volume: 9
  start-page: 5
  year: 2013
  ident: ref_32
  article-title: Bitonic Merge Sort Implementation on the Maxeler Dataflow Supercomputing System
  publication-title: IPSI BgD Trans. Internet Res.
– ident: ref_9
  doi: 10.1145/3394486.3403208
– ident: ref_6
  doi: 10.1109/ICMTMA.2016.47
– ident: ref_8
  doi: 10.1145/1868447.1868448
– ident: ref_36
– ident: ref_18
  doi: 10.3390/jlpea7010005
– volume: 6
  start-page: 399
  year: 2017
  ident: ref_22
  article-title: Performance evaluation of sketch schemes on traffic anomaly detection accuracy
  publication-title: IEICE Commun. Express
  doi: 10.1587/comex.2017XBL0032
– volume: 135
  start-page: 83
  year: 2020
  ident: ref_34
  article-title: SIMD programming using Intel vector extensions
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2019.09.012
– volume: 12
  start-page: 1247
  year: 2020
  ident: ref_14
  article-title: Performance comparison on parallel CPU and GPU algorithms for two dimensional unified gas-kinetic scheme
  publication-title: Adv. Appl. Math. Mech.
  doi: 10.4208/aamm.OA-2019-0147
SSID ssj0000913830
Score 2.2841437
Snippet In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5026
SubjectTerms Algorithms
Communications traffic
Data processing
Hash based algorithms
Optimization
Performance enhancement
Power
SIMD (computers)
Sorting algorithms
Statistics
Traffic control
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDurBbyOKpgePFrextusRPwiagEYkwdPStSUxzkHCCNG_3lc2PjRq8LTD2mXpa9_7_dL3fg-hM88TSjtMEE6VIj5nikgmKFAVOHoRtyr6k2yLFmt0_Lsu7eY627YWZuH-vgp0_GLeDGZo74AoUIZVVGQUgHcBFTuth9qzbR_ncEEg0HuZrtBvM7_GnjmgXBslA_k-lnG8EFvqW1nR9nAiSWhTSl4rozSqqI9vgo1L_vY22swxJq5lm2IHrZhkF20sKA_uoZc2PGJDbucCsqSZ5xaSa5lKvPimbVJyCeFO4wa4bvwoJ_0W8D24m7e8jhMD-MVNQOLgPXEryy3H9bg_3ked-s3TVYPkXReIgsOdgnv0egAqXMWqUaA4Mz3XCOoYpSkzjEpgQJQFfpX70pVCu9oxjqSAM0zgBxrw4AEqJP3EHCKsHKMN5zrSAHOM4wlXB8qTxtXAK6nhJeRN7RGqXJLcdsaIQ6Amdh3DH9axhM5nkwaZIsffw8tTQ4f58RyGnrBK-hYMlRCZGX-Zzx39c_wxWrcN6rMEmDIqgOXMCcCYNDrNt-8nlSfzFQ
  priority: 102
  providerName: Unpaywall
Title Single-Instruction-Multiple-Data Instruction-Set-Based Heat Ranking Optimization for Massive Network Flow
URI https://www.proquest.com/docview/2904838190
https://doi.org/10.3390/electronics12245026
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH7hx0E9GEWNKJIePNq4jbXbDsaAgmjCJCoJnpbSlsRkAgYM8eLf7ut-AAdjPHbrethr3_te-_p9AOeOE0hl8YB6TErqelxSwQOGqQouvZFnWPSTaouQdwfuw5ANCxDmd2FMWWXuExNHrabS7JFfOoEhPzfx63r2QY1qlDldzSU0RCatoK4SirEilB3DjFWCcqsd9p9Wuy6GBdNvWCn9UAPz_cu12szcHDKxhGZhM0StcefW52QmvpYijjdCUGcPdjPsSJqpsfehoCcV2NlgFKzAtgGPKffyAbw947NY0_s1SyztZQWE9FYsBNl886wXtIUxTZEu-mfyJBJRBfKIPuU9u6xJEOGSHsJtdJEkTAvISSeeLg9h0Gm_3HRpJq1AJa7gBfpAZ4zIwZa8MfKlx_XY1gGztFSMa84EpjmM-27Dc4UtAmUrS1uCIZjQvusrBH1HUJpMJ_oYiLS00p6nRgqxjLacwFa-dIS2FSaPTHtVcPK_GcmMd9zIX8QR5h_GBNEvJqjCxeqjWUq78Xf3Wm6mKFuD82g9Y6pAV6b7z3Anfw93CttGdD4taqlBCQ2lzxCaLEZ1KPqdu3o267DV-25jaxD2m68_4BbqUQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hOEAPFdBWTaHgQ3urxa537V0fUFUeUVJIWvGQuG0de5CQtkmqBEX8OX5bx7veJAeEuHDdhw-e8Xwz9vj7AL4Ioa2LlOaZtJanmbLcKC2pVKGlN8g8i37VbdFXnev05428WYHH5i6Mb6tsYmIVqN3I-j3yA6E9-bnHr-_jf9yrRvnT1UZCwwRpBXdYUYyFix1n-DCjEm5y2D0he38Von16ddzhQWWAW3LmKYUDcUsgGluVDHKbKbyNUcsIrZMKlTSU8UuVp0mWmthoF7sIIyMJVzFPcxd7MiaCgLU0STUVf2tHp_3fF_NdHs-6mSdRTXeUJDo6WKjbTPyhlqxoHZYhcZHnrt8Px-ZhZspyCfLam_A25KrsR-1cW7CCw214s8RguA0bPlmtuZ7fwd0lPSuRdxestLwXGhb5iZkatvzmEqf8iDDUsQ7hAbswlYgD-0Ux7G-4HMooo2Y9Su8pJLN-3bDO2uVo9h6uX2WSP8DqcDTEj8BshA6zzA0c5U4YCR273AqDsaNiVWLWAtHMZmEDz7mX2ygLqne8CYonTNCCb_OfxjXNx_Of7zZmKsKanxQLD20Bn5vuJcN9en64fVjvXPXOi_Nu_2wHNrzgfd1QswurZDT8TGnRdLAXfI_Bn9d29_9uayHv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB0hKhV6qFqgIpRSH-CGxa53be8eqqol3SYFAoIicVsceyIhbZOgpIry1_rrOt6PJIcK9cJ1P6zVzvPMG3v8BuBQiNS6QKVcS2t5rJXlRqWSUhWaen3tVfTLaoue6tzGP-7k3Rr8ac7C-LLKxieWjtqNrF8jPxGpFz_38etkUJdFXLWzz-NH7jtI-Z3Wpp1GBZEznM8ofZt86rbJ1kdCZN9-nnZ43WGAWwLylFyBGFAADa2K-onVCgchpjJA66RCJQ2xfamSONKxCU3qQhdgYCTFVEzixIVeiInc_wvtVdz9KfXs-2J9x-ttJlFQCR1FEX32sq_NxG9nyVLQYTUYLhnuxu_h2MxnpihWgl32Bl7XLJV9qWD1FtZwuAWvVrQLt2DT09RK5XkbHm7oWoG8u9Sj5Rd1qSJvm6lhq3ducMq_UvR0rEORgF2bsn0DuyTv9as-FsqIS7MLIvbkjFmvKlVnWTGa7cDts_zid7A-HA1xF5gN0KHWru-INWEg0tAlVhgMHaWpEnULRPM3c1srnPtGG0VOmY43Qf4PE7TgePHSuBL4ePrx_cZMeT3bJ_kSmy3gC9P9z3B7Tw_3EV4SyPPzbu_sPWz6TvdVJc0-rJPN8APxoWn_oAQeg_vnRvpfjs8fiQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDurBbyOKpgePFrextusRPwiagEYkwdPStSUxzkHCCNG_3lc2PjRq8LTD2mXpa9_7_dL3fg-hM88TSjtMEE6VIj5nikgmKFAVOHoRtyr6k2yLFmt0_Lsu7eY627YWZuH-vgp0_GLeDGZo74AoUIZVVGQUgHcBFTuth9qzbR_ncEEg0HuZrtBvM7_GnjmgXBslA_k-lnG8EFvqW1nR9nAiSWhTSl4rozSqqI9vgo1L_vY22swxJq5lm2IHrZhkF20sKA_uoZc2PGJDbucCsqSZ5xaSa5lKvPimbVJyCeFO4wa4bvwoJ_0W8D24m7e8jhMD-MVNQOLgPXEryy3H9bg_3ked-s3TVYPkXReIgsOdgnv0egAqXMWqUaA4Mz3XCOoYpSkzjEpgQJQFfpX70pVCu9oxjqSAM0zgBxrw4AEqJP3EHCKsHKMN5zrSAHOM4wlXB8qTxtXAK6nhJeRN7RGqXJLcdsaIQ6Amdh3DH9axhM5nkwaZIsffw8tTQ4f58RyGnrBK-hYMlRCZGX-Zzx39c_wxWrcN6rMEmDIqgOXMCcCYNDrNt-8nlSfzFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Instruction-Multiple-Data+Instruction-Set-Based+Heat+Ranking+Optimization+for+Massive+Network+Flow&rft.jtitle=Electronics+%28Basel%29&rft.au=Tan%2C+Lingling&rft.au=Wang%2C+Yongyue&rft.au=Yi%2C+Junkai&rft.au=Yang%2C+Fei&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=24&rft.spage=5026&rft_id=info:doi/10.3390%2Felectronics12245026&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon