Fluid simulations of glow discharges: Effect of metastable atoms in argon
A one-dimensional fluid simulation of a 13.56 MHz argon glow discharge including metastable species was performed as an example of a coupled glow-discharge/neutral-transport-reaction system. Due to the slow response time of metastables (∼10 ms) direct time integration of the coupled system requires...
Saved in:
Published in | Journal of applied physics Vol. 73; no. 8; pp. 3668 - 3679 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Woodbury, NY
American Institute of Physics
15.04.1993
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/1.352926 |
Cover
Abstract | A one-dimensional fluid simulation of a 13.56 MHz argon glow discharge including metastable species was performed as an example of a coupled glow-discharge/neutral-transport-reaction system. Due to the slow response time of metastables (∼10 ms) direct time integration of the coupled system requires ∼105 rf cycles to converge. This translates to prohibitively long computation time. An ‘‘acceleration’’ scheme was employed using the Newton–Raphson method to speed up convergence, thereby reducing the computation time by orders of magnitude. For a pressure of 1 Torr, metastables were found to play a major role in the discharge despite the fact that their mole fraction was less than 10−5. In particular, metastable (two-step) ionization was the main mechanism for electron production to sustain the discharge. Bulk electric field and electron energy were lower, and a smaller fraction of power was dissipated in the bulk plasma when compared to the case without metastables. These results suggest that neutral transport and reaction must be considered in a self-consistent manner in glow discharge simulations, even in noble gas discharges. |
---|---|
AbstractList | A one-dimensional fluid simulation of a 13.56 MHz argon glow discharge including metastable species was performed as an example of a coupled glow-discharge/neutral-transport-reaction system. Due to the slow response time of metastables (∼10 ms) direct time integration of the coupled system requires ∼105 rf cycles to converge. This translates to prohibitively long computation time. An ‘‘acceleration’’ scheme was employed using the Newton–Raphson method to speed up convergence, thereby reducing the computation time by orders of magnitude. For a pressure of 1 Torr, metastables were found to play a major role in the discharge despite the fact that their mole fraction was less than 10−5. In particular, metastable (two-step) ionization was the main mechanism for electron production to sustain the discharge. Bulk electric field and electron energy were lower, and a smaller fraction of power was dissipated in the bulk plasma when compared to the case without metastables. These results suggest that neutral transport and reaction must be considered in a self-consistent manner in glow discharge simulations, even in noble gas discharges. |
Author | Lymberopoulos, Dimitris P. Economou, Demetre J. |
Author_xml | – sequence: 1 givenname: Dimitris P. surname: Lymberopoulos fullname: Lymberopoulos, Dimitris P. – sequence: 2 givenname: Demetre J. surname: Economou fullname: Economou, Demetre J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4807735$$DView record in Pascal Francis |
BookMark | eNplkE9LAzEUxINUsK2CHyEHD1625o_ZJN6kWC0UvOg5ZLN5NZLdLUmK-O3dWr3oaeDNbwbezNCkH3qP0CUlC0pqfkMXXDDN6hM0pUTpSgpBJmhKCKOV0lKfoVnO74RQqrieovUq7kOLc-j20ZYw9BkPgLdx-MBtyO7Npq3Pd_gBwLtysDpfbC62iR7bMnQZhx6P0NCfo1OwMfuLH52j19XDy_Kp2jw_rpf3m8pxxkolwSkGuhVAnRQA4xVqph0BqetW8oa4RlArpHRM6JrXnBOnqIBGglWe8jm6OvbubHY2QrK9C9nsUuhs-jS3ikjJxYgtjphLQ87Jg3GhfH9Ykg3RUGIOexlqjnuNges_gd_Kf-gXHL5rYw |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1088_0022_3727_40_17_024 crossref_primary_10_1088_0022_3727_49_42_425201 crossref_primary_10_1103_PhysRevE_58_7823 crossref_primary_10_1088_0963_0252_21_5_055027 crossref_primary_10_1088_1361_6595_ac3ba1 crossref_primary_10_1002_ppap_200500118 crossref_primary_10_1063_1_4974762 crossref_primary_10_1088_0963_0252_12_3_302 crossref_primary_10_1088_1674_1056_21_7_075202 crossref_primary_10_1016_S0040_6090_99_01056_1 crossref_primary_10_1002_ctpp_202300176 crossref_primary_10_1063_1_4791652 crossref_primary_10_5757_ASCT_2020_29_6_157 crossref_primary_10_1088_1755_1315_107_1_012097 crossref_primary_10_1063_5_0202078 crossref_primary_10_1541_ieejfms_125_223 crossref_primary_10_1088_1361_6463_ad4a88 crossref_primary_10_1109_TPS_2014_2319106 crossref_primary_10_1088_1674_4926_34_6_066004 crossref_primary_10_1007_s10891_024_02915_0 crossref_primary_10_1088_0256_307X_30_3_035201 crossref_primary_10_5757_ASCT_2020_29_2_023 crossref_primary_10_1007_s11090_014_9549_x crossref_primary_10_1088_0963_0252_6_1_009 crossref_primary_10_1088_1361_6463_aaf627 crossref_primary_10_1063_1_871867 crossref_primary_10_1063_1_2749235 crossref_primary_10_1016_0009_2614_94_00990_2 crossref_primary_10_1063_1_5031221 crossref_primary_10_1016_S0040_6090_98_01513_2 crossref_primary_10_1088_2058_6272_ac0718 crossref_primary_10_1063_1_3368862 crossref_primary_10_1088_1748_0221_20_01_P01001 crossref_primary_10_5757_ASCT_2020_29_6_162 crossref_primary_10_1139_cjp_2015_0692 crossref_primary_10_1088_2058_6272_ab4722 crossref_primary_10_1063_1_371441 crossref_primary_10_12677_MOS_2023_122111 crossref_primary_10_1063_1_357351 crossref_primary_10_1063_5_0049041 crossref_primary_10_1088_0022_3727_43_27_275203 crossref_primary_10_1002_ppap_202000243 crossref_primary_10_1134_S106373971306005X crossref_primary_10_1016_j_tsf_2007_11_088 crossref_primary_10_1116_1_1312370 crossref_primary_10_1088_1361_6463_ab5338 crossref_primary_10_7498_aps_68_20190734 crossref_primary_10_1109_TPS_2024_3429355 crossref_primary_10_1002_ppap_200400091 crossref_primary_10_1088_1361_6595_adb885 crossref_primary_10_1116_6_0003366 crossref_primary_10_1088_0963_0252_13_2_016 crossref_primary_10_1116_1_1868572 crossref_primary_10_1088_1361_6595_aac95f crossref_primary_10_1143_JJAP_33_4258 crossref_primary_10_1007_s11090_022_10249_z crossref_primary_10_1116_1_581561 crossref_primary_10_1063_1_359193 crossref_primary_10_1109_TPS_2003_820682 crossref_primary_10_1103_PhysRevLett_103_055004 crossref_primary_10_1116_1_581324 crossref_primary_10_1051_jp3_1997133 crossref_primary_10_1088_1674_1056_26_12_125201 crossref_primary_10_1103_PhysRevE_49_2302 crossref_primary_10_1063_1_3261836 crossref_primary_10_3390_app132212248 crossref_primary_10_1016_j_matpr_2021_01_542 crossref_primary_10_1016_j_vacuum_2006_01_019 crossref_primary_10_1063_1_1337593 crossref_primary_10_1063_1_5009416 crossref_primary_10_1007_s10582_006_0264_6 crossref_primary_10_1088_1361_6595_aab870 crossref_primary_10_1088_2058_6272_ac125e crossref_primary_10_1088_0022_3727_45_1_015201 crossref_primary_10_1088_1742_6596_1158_4_042044 crossref_primary_10_1063_1_4817526 crossref_primary_10_1109_94_879364 crossref_primary_10_1088_0022_3727_37_16_002 crossref_primary_10_1007_s11090_019_09994_5 crossref_primary_10_1088_0963_0252_3_2_009 crossref_primary_10_1103_PhysRevE_88_023104 crossref_primary_10_1109_TPS_2022_3180728 crossref_primary_10_1063_5_0078222 crossref_primary_10_7498_aps_63_095206 crossref_primary_10_1007_s11090_017_9849_z crossref_primary_10_1063_1_2150599 crossref_primary_10_1016_j_vacuum_2021_110466 crossref_primary_10_1016_S0257_8972_00_00736_2 crossref_primary_10_1063_1_1373679 crossref_primary_10_1063_1_1517751 crossref_primary_10_1134_S1995080217060154 crossref_primary_10_1063_1_4904216 crossref_primary_10_1088_0963_0252_21_2_025008 crossref_primary_10_1088_1009_0630_16_8_06 crossref_primary_10_1103_PhysRevA_52_3743 crossref_primary_10_2494_photopolymer_32_535 crossref_primary_10_1063_1_1456551 crossref_primary_10_1088_0963_0252_21_2_025010 crossref_primary_10_1143_JJAP_33_4271 crossref_primary_10_1063_1_2401659 crossref_primary_10_1103_PhysRevE_80_036405 crossref_primary_10_1080_15361055_2022_2136924 crossref_primary_10_1088_1361_6463_ab9f68 crossref_primary_10_1103_PhysRevE_108_065209 crossref_primary_10_1063_1_2193535 crossref_primary_10_1016_S0169_4332_02_00018_1 crossref_primary_10_1088_0963_0252_4_3_012 crossref_primary_10_1088_1361_6463_aba068 crossref_primary_10_1016_j_surfcoat_2023_130360 crossref_primary_10_1109_TPS_2010_2055166 crossref_primary_10_1007_s12648_012_0238_4 crossref_primary_10_7567_JJAP_54_06GA01 crossref_primary_10_1063_5_0152887 crossref_primary_10_35848_1347_4065_ab85de crossref_primary_10_7567_JJAP_54_01AC03 crossref_primary_10_1088_1361_6595_aa6f9c crossref_primary_10_1088_1757_899X_158_1_012024 crossref_primary_10_1063_1_2918660 crossref_primary_10_1063_1_4983678 crossref_primary_10_1134_S1063780X23601876 crossref_primary_10_1063_5_0146533 crossref_primary_10_1063_1_1849816 crossref_primary_10_3390_app11125358 crossref_primary_10_1063_1_4894223 crossref_primary_10_1063_1_4870858 crossref_primary_10_1088_1742_6596_406_1_012031 crossref_primary_10_1109_27_467986 crossref_primary_10_1088_0963_0252_4_3_001 crossref_primary_10_1007_s11090_019_10020_x crossref_primary_10_1063_1_2137883 crossref_primary_10_1116_1_4928033 crossref_primary_10_1007_s11090_019_10027_4 crossref_primary_10_7567_JJAP_54_116201 crossref_primary_10_1063_1_360793 crossref_primary_10_1088_1361_6463_aad537 crossref_primary_10_7498_aps_73_20240392 crossref_primary_10_1088_1742_6596_774_1_012167 crossref_primary_10_1063_1_1383260 crossref_primary_10_1109_TPS_2023_3336867 crossref_primary_10_1063_1_4872000 crossref_primary_10_1063_1_4990429 crossref_primary_10_1109_TPS_2009_2015949 crossref_primary_10_1116_1_591284 crossref_primary_10_1088_0963_0252_11_3_315 crossref_primary_10_1088_1361_6595_ad75b6 crossref_primary_10_1088_0963_0252_7_4_009 crossref_primary_10_1155_2019_7120217 crossref_primary_10_1088_1742_6596_1158_4_042013 crossref_primary_10_1063_1_5020983 crossref_primary_10_1017_S0022377812000566 crossref_primary_10_1063_1_5118762 crossref_primary_10_1134_S1063780X19040081 crossref_primary_10_1007_s11090_018_9941_z crossref_primary_10_1088_1361_6463_acbfc7 crossref_primary_10_1088_0963_0252_20_6_065001 crossref_primary_10_1063_1_4997615 crossref_primary_10_1109_TPS_2022_3147853 crossref_primary_10_1088_1361_6595_ac2a17 crossref_primary_10_1109_TPS_2018_2818164 crossref_primary_10_1088_1757_899X_158_1_012009 crossref_primary_10_1088_1009_0630_15_4_06 crossref_primary_10_1016_j_cap_2022_07_008 crossref_primary_10_1088_0963_0252_12_3_307 crossref_primary_10_1088_1742_6596_789_1_012004 crossref_primary_10_1063_1_3690943 crossref_primary_10_1063_5_0214367 crossref_primary_10_1063_1_110454 crossref_primary_10_1134_S1063776113030151 crossref_primary_10_1063_1_110456 crossref_primary_10_1007_s11664_016_4529_y crossref_primary_10_1109_TPS_2022_3174401 crossref_primary_10_1016_S0009_2509_96_80008_X crossref_primary_10_1002_tee_21993 crossref_primary_10_1088_1009_0630_18_4_11 crossref_primary_10_1541_ieejfms_123_1253 crossref_primary_10_1103_PhysRevE_74_066401 crossref_primary_10_1088_0953_4075_33_20_323 crossref_primary_10_1063_1_5016354 crossref_primary_10_1063_1_3640518 crossref_primary_10_1088_1361_6595_acd6b4 crossref_primary_10_1109_TDEI_2013_6633691 crossref_primary_10_1088_0953_4075_29_3_018 crossref_primary_10_1088_1361_6595_acd6b5 crossref_primary_10_1063_1_2214591 crossref_primary_10_1002_ctpp_201200072 crossref_primary_10_1016_S0040_6090_98_00958_4 crossref_primary_10_1063_5_0090423 crossref_primary_10_7498_aps_61_245201 crossref_primary_10_1109_ACCESS_2021_3070335 crossref_primary_10_1063_1_1497445 crossref_primary_10_1103_PhysRevLett_123_265001 crossref_primary_10_1002_eej_20295 crossref_primary_10_1016_j_cpc_2023_108837 crossref_primary_10_5757_JKVS_2008_17_5_400 crossref_primary_10_1088_1361_6463_adbfa3 crossref_primary_10_1088_0963_0252_10_4_308 crossref_primary_10_1007_s12206_014_1030_5 crossref_primary_10_1088_1361_6595_ada8d8 crossref_primary_10_1088_0256_307X_25_7_065 crossref_primary_10_1109_TPS_2017_2780919 crossref_primary_10_1016_j_ijhydene_2017_04_040 crossref_primary_10_1088_1402_4896_acb330 crossref_primary_10_1088_0022_3727_48_44_445201 crossref_primary_10_1088_0963_0252_11_4_312 crossref_primary_10_3938_jkps_64_1819 crossref_primary_10_1088_1361_6463_abc210 crossref_primary_10_1103_PhysRevE_85_056404 crossref_primary_10_1063_1_4868734 crossref_primary_10_1088_1674_1056_27_2_025201 crossref_primary_10_1007_s11090_022_10283_x crossref_primary_10_1088_0022_3727_45_48_485204 crossref_primary_10_1063_5_0211714 crossref_primary_10_1063_1_5127555 crossref_primary_10_1063_5_0256430 crossref_primary_10_1063_1_1644043 crossref_primary_10_1063_1_3530578 crossref_primary_10_1134_S1063784217020050 crossref_primary_10_1063_1_368628 crossref_primary_10_1088_1674_1056_25_1_015204 crossref_primary_10_1063_1_1452772 crossref_primary_10_1088_0022_3727_28_4_016 crossref_primary_10_1088_0963_0252_12_2_308 crossref_primary_10_1088_0963_0252_5_3_021 crossref_primary_10_1002_ppap_201600124 crossref_primary_10_1002_ppap_201700188 crossref_primary_10_1088_0963_0252_3_2_011 crossref_primary_10_1088_2058_6272_abd45e crossref_primary_10_1063_1_1929857 crossref_primary_10_1109_TPS_2006_875843 crossref_primary_10_1088_1674_4926_31_3_032004 crossref_primary_10_1103_PhysRevE_51_1376 crossref_primary_10_1088_0022_3727_41_3_035206 crossref_primary_10_1088_1757_899X_1171_1_012007 crossref_primary_10_7567_JJAP_52_05EA03 crossref_primary_10_1016_S0584_8547_02_00047_2 crossref_primary_10_1088_1361_6595_ac7748 crossref_primary_10_1063_1_367123 crossref_primary_10_1103_PhysRevE_60_6016 crossref_primary_10_1116_1_582268 crossref_primary_10_1088_0022_3727_48_45_455201 crossref_primary_10_1063_1_1594276 crossref_primary_10_5207_JIEIE_2005_19_4_001 crossref_primary_10_1016_0925_9635_95_00279_0 crossref_primary_10_1063_5_0100913 crossref_primary_10_1088_0268_1242_23_9_095023 crossref_primary_10_3390_plasma5010003 crossref_primary_10_1088_1361_6595_ac1b22 crossref_primary_10_1063_5_0244613 crossref_primary_10_1088_0256_307X_32_2_025101 crossref_primary_10_1088_1361_6463_ad4e42 crossref_primary_10_1134_S1990793121040242 crossref_primary_10_1007_s12200_015_0523_x crossref_primary_10_1016_S1369_8001_99_00015_3 crossref_primary_10_1088_1361_6463_ac08cc crossref_primary_10_1103_PhysRevE_79_036409 crossref_primary_10_1017_S0022377821000258 crossref_primary_10_1007_s11090_016_9770_x crossref_primary_10_1063_1_1540246 crossref_primary_10_1088_0022_3727_44_20_205204 crossref_primary_10_1016_S0584_8547_96_01578_9 crossref_primary_10_1143_JJAP_36_4605 crossref_primary_10_1109_TPS_2003_815479 crossref_primary_10_1063_1_356340 crossref_primary_10_1088_0022_3727_37_20_009 crossref_primary_10_1088_1361_6595_aacd70 crossref_primary_10_1088_0022_3727_34_12_324 crossref_primary_10_1063_1_4895714 crossref_primary_10_1088_0963_0252_21_5_055005 crossref_primary_10_1063_1_366019 crossref_primary_10_1109_TPS_2002_1003969 crossref_primary_10_1002_smll_201102350 crossref_primary_10_1088_0963_0252_23_2_025010 crossref_primary_10_1088_1742_6596_441_1_012013 crossref_primary_10_1063_1_354708 crossref_primary_10_1016_j_proeng_2016_07_211 crossref_primary_10_1088_1674_1056_20_6_065205 crossref_primary_10_1063_1_4907225 crossref_primary_10_1063_1_1285843 crossref_primary_10_1063_1_873342 crossref_primary_10_1116_1_581072 crossref_primary_10_1088_1674_1056_26_11_115201 crossref_primary_10_7498_aps_62_115203 crossref_primary_10_1016_j_rineng_2022_100696 crossref_primary_10_1088_0963_0252_4_1_007 crossref_primary_10_1088_1009_0630_17_5_04 crossref_primary_10_1088_1361_6595_ab067d crossref_primary_10_1140_epjp_i2018_12187_6 crossref_primary_10_1088_0022_3727_45_32_325201 crossref_primary_10_1088_1361_6463_aaca64 crossref_primary_10_1088_1361_6463_ad8bd5 crossref_primary_10_1109_TPS_2021_3079340 crossref_primary_10_1063_1_360139 crossref_primary_10_1063_1_3663876 crossref_primary_10_3938_jkps_75_131 crossref_primary_10_1088_1361_6595_ab2184 crossref_primary_10_1063_1_5009337 |
Cites_doi | 10.1116/1.576219 10.1103/PhysRev.112.1852 10.1109/27.106804 10.1080/10408438908244626 10.1063/1.332763 10.1116/1.576781 10.1063/1.350472 10.1109/27.106808 10.1016/0021-9991(88)90156-8 10.1063/1.346277 10.1063/1.335400 10.1063/1.347451 10.1063/1.339111 10.1149/1.2085881 10.1063/1.345360 10.1063/1.351074 10.1149/1.2069419 10.1149/1.2086999 10.1109/27.106815 10.1063/1.341287 10.1063/1.352250 10.1109/27.106807 10.1116/1.578249 10.1088/0022-3727/16/9/008 10.1109/27.106826 10.1116/1.578250 10.1149/1.2097012 10.1103/PhysRevA.45.1098 10.1103/PhysRevA.41.5626 10.1103/PhysRevA.45.2520 10.1109/27.106805 10.1109/27.106803 10.1109/27.106800 10.1063/1.350477 10.1063/1.99327 10.1109/27.87232 10.1103/PhysRevA.36.2782 10.1063/1.350476 10.1063/1.351196 10.1063/1.352251 10.1063/1.349843 10.1109/27.106810 |
ContentType | Journal Article |
Copyright | 1993 INIST-CNRS |
Copyright_xml | – notice: 1993 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1063/1.352926 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
EndPage | 3679 |
ExternalDocumentID | 4807735 10_1063_1_352926 |
GroupedDBID | -DZ -~X .DC .GJ 0ZJ 186 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AABDS AAGWI AAIKC AAMNW AAPUP AAYIH AAYJJ AAYXX ABFTF ABJGX ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACNCT ADMLS AEGXH AEJMO AENEX AFFNX AFHCQ AGKCL AGLKD AGMXG AI. AIAGR AIDUJ ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE BPZLN CITATION CS3 D0L DU5 EBS EJD F5P FDOHQ M6X M71 M73 N9A NEUPN NPSNA OHT P2P RDFOP RIP RNS RQS RXW SC5 TAE TN5 TWZ UHB UPT VH1 VOH WH7 XJT XOL YQT YYP YZZ ZCA ZCG ZY4 ~02 2WC 3O- 41~ 6TJ AAAAW ABDPE ABRJW ABTAH ACKIV ACLYJ ACZLF ADCTM AETEA AFATG AGTJO AHSDT AJJCW AJQPL ALEPV AWQPM BDMKI FA8 FFFMQ HAM IQODW MVM NEJ NHB O-B P0- ROL UKR XSW XXG |
ID | FETCH-LOGICAL-c322t-7fc82f9d5f1c75ffc32f629c0f796d73b0cb51a577c259636330c815fb7fa8e13 |
ISSN | 0021-8979 |
IngestDate | Wed Apr 02 07:25:31 EDT 2025 Tue Jul 01 02:34:55 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Monoatomic gas Metastable state Glow discharge One dimensional model Fluid model Theoretical study Numerical simulation Argon Radiofrequency Electric discharge |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-7fc82f9d5f1c75ffc32f629c0f796d73b0cb51a577c259636330c815fb7fa8e13 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_4807735 crossref_citationtrail_10_1063_1_352926 crossref_primary_10_1063_1_352926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1993-04-15 |
PublicationDateYYYYMMDD | 1993-04-15 |
PublicationDate_xml | – month: 04 year: 1993 text: 1993-04-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | Woodbury, NY |
PublicationPlace_xml | – name: Woodbury, NY |
PublicationTitle | Journal of applied physics |
PublicationYear | 1993 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2024020416363927400_r47) 1988; 64 (2024020416363927400_r14) 1992; 10 (2024020416363927400_r32) 1992; 45 (2024020416363927400_r37) 1991; 19 (2024020416363927400_r48) 1983; 16 (2024020416363927400_r39) 1992; 45 (2024020416363927400_r12) 1989; 7 (2024020416363927400_r16) 1990; 67 (2024020416363927400_r9) 1987; 62 (2024020416363927400_r34) 1991; 19 (2024020416363927400_r33) 1991; 43 (2024020416363927400_r51) 1958; 112 (2024020416363927400_r26) 1991; 19 (2024020416363927400_r50) 1992; 25 (2024020416363927400_r5) 1990; 8 (2024020416363927400_r7) 1990; 137 (2024020416363927400_r17a) 1992; 71 (2024020416363927400_r52) 1981; 51 (2024020416363927400_r38) 1991; 19 2024020416363927400_r44 2024020416363927400_r45 (2024020416363927400_r30) 1992; 71 2024020416363927400_r42 2024020416363927400_r43 (2024020416363927400_r13a) 1987; 36 (2024020416363927400_r19a) 1988; 77 2024020416363927400_r40 2024020416363927400_r41 (2024020416363927400_r24) 1992; 71 (2024020416363927400_r21c) 1992; 10 (2024020416363927400_r8) 1986; PS-14 (2024020416363927400_r17) 1992; 71 (2024020416363927400_r21) 1991; 69 (2024020416363927400_r29a) 1992; 72 (2024020416363927400_r22) 1990; 8 2024020416363927400_r46 2024020416363927400_r31 (2024020416363927400_r4) 1992; 139 (2024020416363927400_r49) 1985; 57 (2024020416363927400_r19) 1986; 61 (2024020416363927400_r10a) 1990 (2024020416363927400_r25) 1991; 70 (2024020416363927400_r28) 1991; 19 (2024020416363927400_r35) 1983; 54 2024020416363927400_r1 (2024020416363927400_r2) 1989; 16 (2024020416363927400_r18) 1988; 52 (2024020416363927400_r29) 1992; 72 (2024020416363927400_r13) 1991; 19 (2024020416363927400_r21b) 1992; 71 (2024020416363927400_r11) 1988; 50 (2024020416363927400_r23) 1989; 7 (2024020416363927400_r6) 1989; 136 (2024020416363927400_r36) 1991; 19 (2024020416363927400_r45a) 1977; SC-12 (2024020416363927400_r3) 1991; 138 (2024020416363927400_r20) 1991; 19 (2024020416363927400_r15) 1990; 41 (2024020416363927400_r27) 1991; 19 (2024020416363927400_r10) 1990; 68 (2024020416363927400_r21a) 1991; 19 |
References_xml | – volume: 7 start-page: 1001 year: 1989 ident: 2024020416363927400_r12 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.576219 – volume: 112 start-page: 1852 year: 1958 ident: 2024020416363927400_r51 publication-title: Phys. Rev. doi: 10.1103/PhysRev.112.1852 – volume: 19 start-page: 113 year: 1991 ident: 2024020416363927400_r26 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106804 – ident: 2024020416363927400_r41 – ident: 2024020416363927400_r45 – volume: 50 start-page: 492 year: 1988 ident: 2024020416363927400_r11 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 1 year: 1989 ident: 2024020416363927400_r2 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408438908244626 – volume: SC-12 start-page: 243 year: 1977 ident: 2024020416363927400_r45a publication-title: IEEE J. Solid-State Circuits – volume: 43 start-page: 4453 year: 1991 ident: 2024020416363927400_r33 publication-title: Phys. Rev. A – volume: 54 start-page: 4958 year: 1983 ident: 2024020416363927400_r35 publication-title: J. Appl. Phys. doi: 10.1063/1.332763 – volume: 8 start-page: 1654 year: 1990 ident: 2024020416363927400_r22 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.576781 – ident: 2024020416363927400_r1 – volume: 71 start-page: 5783 year: 1992 ident: 2024020416363927400_r24 publication-title: J. Appl. Phys. doi: 10.1063/1.350472 – volume: PS-14 start-page: 78 year: 1986 ident: 2024020416363927400_r8 publication-title: IEEE Trans. Plasma Sci. – ident: 2024020416363927400_r40 – volume: 19 start-page: 144 year: 1991 ident: 2024020416363927400_r37 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106808 – ident: 2024020416363927400_r44 – volume: 77 start-page: 53 year: 1988 ident: 2024020416363927400_r19a publication-title: J. Comp. Phys. doi: 10.1016/0021-9991(88)90156-8 – volume: 68 start-page: 3904 year: 1990 ident: 2024020416363927400_r10 publication-title: J. Appl. Phys. doi: 10.1063/1.346277 – volume: 57 start-page: 82 year: 1985 ident: 2024020416363927400_r49 publication-title: J. Appl. Phys. doi: 10.1063/1.335400 – volume: 69 start-page: 8047 year: 1991 ident: 2024020416363927400_r21 publication-title: J. Appl. Phys. doi: 10.1063/1.347451 – volume: 62 start-page: 88 year: 1987 ident: 2024020416363927400_r9 publication-title: J. Appl. Phys. doi: 10.1063/1.339111 – ident: 2024020416363927400_r43 – volume: 138 start-page: 1831 year: 1991 ident: 2024020416363927400_r3 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2085881 – volume: 51 start-page: 316 year: 1981 ident: 2024020416363927400_r52 publication-title: Opt. Spectrosc. – volume: 67 start-page: 3264 year: 1990 ident: 2024020416363927400_r16 publication-title: J. Appl. Phys. doi: 10.1063/1.345360 – volume: 71 start-page: 2574 year: 1992 ident: 2024020416363927400_r21b publication-title: J. Appl. Phys. doi: 10.1063/1.351074 – volume: 139 start-page: 1396 year: 1992 ident: 2024020416363927400_r4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2069419 – volume: 137 start-page: 2624 year: 1990 ident: 2024020416363927400_r7 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086999 – volume: 61 start-page: 81 year: 1986 ident: 2024020416363927400_r19 publication-title: J. Appl. Phys. – volume: 19 start-page: 204 year: 1991 ident: 2024020416363927400_r36 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106815 – volume: 7 start-page: 1007 year: 1989 ident: 2024020416363927400_r23 publication-title: J. Vac. Sci. Technol. A – volume: 64 start-page: 4384 year: 1988 ident: 2024020416363927400_r47 publication-title: J. Appl. Phys. doi: 10.1063/1.341287 – volume: 72 start-page: 3971 year: 1992 ident: 2024020416363927400_r29 publication-title: J. Appl. Phys. doi: 10.1063/1.352250 – volume: 19 start-page: 141 year: 1991 ident: 2024020416363927400_r20 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106807 – volume: 10 start-page: 1339 year: 1992 ident: 2024020416363927400_r14 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.578249 – volume: 16 start-page: 1611 year: 1983 ident: 2024020416363927400_r48 publication-title: J. Phys. D:Appl. Phys. doi: 10.1088/0022-3727/16/9/008 – volume: 19 start-page: 286 year: 1991 ident: 2024020416363927400_r13 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106826 – volume: 10 start-page: 1344 year: 1992 ident: 2024020416363927400_r21c publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.578250 – volume: 136 start-page: 1781 year: 1989 ident: 2024020416363927400_r6 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2097012 – volume: 45 start-page: 1098 year: 1992 ident: 2024020416363927400_r32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.1098 – volume: 41 start-page: 5626 year: 1990 ident: 2024020416363927400_r15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.41.5626 – volume: 45 start-page: 2520 year: 1992 ident: 2024020416363927400_r39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.2520 – volume: 19 start-page: 122 year: 1991 ident: 2024020416363927400_r21a publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106805 – volume: 19 start-page: 102 year: 1991 ident: 2024020416363927400_r28 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106803 – volume: 19 start-page: 65 year: 1991 ident: 2024020416363927400_r38 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106800 – volume: 71 start-page: 5826 year: 1992 ident: 2024020416363927400_r17a publication-title: J. Appl. Phys. doi: 10.1063/1.350477 – volume: 52 start-page: 21 year: 1988 ident: 2024020416363927400_r18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.99327 – volume: 19 start-page: 520 year: 1991 ident: 2024020416363927400_r34 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.87232 – volume: 8 start-page: 1648 year: 1990 ident: 2024020416363927400_r5 publication-title: J. Vac. Sci. Technol. A – volume: 36 start-page: 2782 year: 1987 ident: 2024020416363927400_r13a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.36.2782 – ident: 2024020416363927400_r46 – ident: 2024020416363927400_r42 – volume: 71 start-page: 5820 year: 1992 ident: 2024020416363927400_r17 publication-title: J. Appl. Phys. doi: 10.1063/1.350476 – volume: 71 start-page: 1654 year: 1992 ident: 2024020416363927400_r30 publication-title: J. Appl. Phys. doi: 10.1063/1.351196 – ident: 2024020416363927400_r31 – volume: 25 start-page: 410 year: 1992 ident: 2024020416363927400_r50 publication-title: J. Phys. D:Appl. Phys. – start-page: 4888 year: 1990 ident: 2024020416363927400_r10a publication-title: J. Appl. Phys. – volume: 72 start-page: 3988 year: 1992 ident: 2024020416363927400_r29a publication-title: J. Appl. Phys. doi: 10.1063/1.352251 – volume: 70 start-page: 6694 year: 1991 ident: 2024020416363927400_r25 publication-title: J. Appl. Phys. doi: 10.1063/1.349843 – volume: 19 start-page: 163 year: 1991 ident: 2024020416363927400_r27 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.106810 |
SSID | ssj0011839 |
Score | 1.9267195 |
Snippet | A one-dimensional fluid simulation of a 13.56 MHz argon glow discharge including metastable species was performed as an example of a coupled... |
SourceID | pascalfrancis crossref |
SourceType | Index Database Enrichment Source |
StartPage | 3668 |
SubjectTerms | Electric discharges Exact sciences and technology Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges |
Title | Fluid simulations of glow discharges: Effect of metastable atoms in argon |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFA96Q1CG6FSccxJB8MOR2jZt0u7bcI45Nhm4wb4daZrIwe16bC1j_vV7yeu13XYfpl9KyaUp1_fr6y_Je79HyBdVyiwHosEMOH-WKJuyjOsCiJyN4BojuNfSO_4lDs6Sw_P0vC-X6rNL6iLQf1fmlfyPVaEN7OqyZP_Bst2g0ADnYF84goXh-Cgb78-aaTm-ml40g4i2P7Pq2u27eA0kjHhrJYr9VnqtgA-6dCmYbV_4YFjo1trmIUlVLUnFBZCOfx_duDoi1aJqZhimt-fypMBfjE-CjqP7lOeqQa8GN74048OgX2XAmL6EYZ5lF_UfsSzHwi-BQWcZZjmTKQrHLr0pFiZpUZMNXCMXWD-n_cxygWM9cOHAmdxqQgDMMI9XqGTf-3p1MYV-N13wSTTBK5-StVgCnxqRtd2946Pf3d6S44QY-IP_aClJLPi35V3vkJT1hbqC98VioZMB-zh9RV62FqG7iIHX5ImZb5AXAzHJDfLsBG30hvz0uKADXNDKUocL2uNihyIq3E89KqhHBZ3OqUfFW3K2_-P0-wFrS2YwDZ65ZtLqLLZ5mdpIy9RaaLUiznVoZS5KyYtQF2mkUik1zHsFF5yHOotSW0irMhPxd2Q0r-bmPaF5JrmNSphxhmVScJiYizKOFU9saZIiUpvk6_IZTXSrJ-_Kmswm9y2xST53PReoobKiz_adx9x1dJIHkqcfHjHGFnneQ_cjGdWXjdkGylgXn1oM3AKNr2vx |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+simulations+of+glow+discharges%3A+Effect+of+metastable+atoms+in+argon&rft.jtitle=Journal+of+applied+physics&rft.au=Lymberopoulos%2C+Dimitris+P.&rft.au=Economou%2C+Demetre+J.&rft.date=1993-04-15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=73&rft.issue=8&rft.spage=3668&rft.epage=3679&rft_id=info:doi/10.1063%2F1.352926&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_352926 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |