Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging

Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The co...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 637; p. A99
Main Authors Zhong, Libo, Zhang, Lanqiang, Shi, Zhendong, Tian, Yu, Guo, Youming, Kong, Lin, Rao, Xuejun, Bao, Hua, Zhu, Lei, Rao, Changhui
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.05.2020
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/201935109

Cover

Abstract Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The combination of ground layer adaptive optics (GLAO) and speckle imaging is appealing with regard to a simplification of the correction and the high resolution of the reconstruction. The speckle transfer functions (STFs) used in the speckle image reconstruction mainly determine the photometric accuracy of the recovered result. The STF model proposed by Friedrich Wöger and Oskar von der Lühe in the classical AO condition is generic enough to accommodate the GLAO condition if correct inputs are given. Thus, the precisely calculated inputs to the model STF are essential for the final results. The necessary input for the model STF is the correction efficiency which can be calculated simply with the assumption of one layer turbulence. The method for calculating the correction efficiency for the classical AO condition should also be improved to suit the GLAO condition. The generic average height of the turbulence layer used by Friedrich Wöger and Oskar von der Lühe in the classic AO correction may lead to reduced accuracy and should be revised to improve photometric accuracy. Aims. This study is aimed at obtaining quantitative photometric reconstructed images in the GLAO condition. We propose methods for extracting the appropriate inputs for the STF model. Methods. In this paper, the telemetry data of the GLAO system was used to extract the correction efficiency and the equivalent height of the turbulence. To analyze the photometric accuracy of the method, the influence resulting from the distribution of the atmospheric turbulence profile and the extension of the guide stars are investigated by simulations. At those simulations, we computed the STF from the wavefront phases and convolved it with the high-resolution numerical simulations of the solar photosphere. We then deconvolved them with the model STF calculated from the correction efficiency and the equivalent height to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. We reconstructed the solar images taken by the GLAO prototype system at the New Vacuum Solar Telescope of the Yunnan Astronomical Observatory using this method and analyzed the results. Results. These simulations and ensuing analysis demonstrate that high photometric precision can be obtained for speckle amplitude reconstruction using the inputs for the model STF derived from the telemetry data of the GLAO system.
AbstractList Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The combination of ground layer adaptive optics (GLAO) and speckle imaging is appealing with regard to a simplification of the correction and the high resolution of the reconstruction. The speckle transfer functions (STFs) used in the speckle image reconstruction mainly determine the photometric accuracy of the recovered result. The STF model proposed by Friedrich Wöger and Oskar von der Lühe in the classical AO condition is generic enough to accommodate the GLAO condition if correct inputs are given. Thus, the precisely calculated inputs to the model STF are essential for the final results. The necessary input for the model STF is the correction efficiency which can be calculated simply with the assumption of one layer turbulence. The method for calculating the correction efficiency for the classical AO condition should also be improved to suit the GLAO condition. The generic average height of the turbulence layer used by Friedrich Wöger and Oskar von der Lühe in the classic AO correction may lead to reduced accuracy and should be revised to improve photometric accuracy. Aims. This study is aimed at obtaining quantitative photometric reconstructed images in the GLAO condition. We propose methods for extracting the appropriate inputs for the STF model. Methods. In this paper, the telemetry data of the GLAO system was used to extract the correction efficiency and the equivalent height of the turbulence. To analyze the photometric accuracy of the method, the influence resulting from the distribution of the atmospheric turbulence profile and the extension of the guide stars are investigated by simulations. At those simulations, we computed the STF from the wavefront phases and convolved it with the high-resolution numerical simulations of the solar photosphere. We then deconvolved them with the model STF calculated from the correction efficiency and the equivalent height to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. We reconstructed the solar images taken by the GLAO prototype system at the New Vacuum Solar Telescope of the Yunnan Astronomical Observatory using this method and analyzed the results. Results. These simulations and ensuing analysis demonstrate that high photometric precision can be obtained for speckle amplitude reconstruction using the inputs for the model STF derived from the telemetry data of the GLAO system.
Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The combination of ground layer adaptive optics (GLAO) and speckle imaging is appealing with regard to a simplification of the correction and the high resolution of the reconstruction. The speckle transfer functions (STFs) used in the speckle image reconstruction mainly determine the photometric accuracy of the recovered result. The STF model proposed by Friedrich Wöger and Oskar von der Lühe in the classical AO condition is generic enough to accommodate the GLAO condition if correct inputs are given. Thus, the precisely calculated inputs to the model STF are essential for the final results. The necessary input for the model STF is the correction efficiency which can be calculated simply with the assumption of one layer turbulence. The method for calculating the correction efficiency for the classical AO condition should also be improved to suit the GLAO condition. The generic average height of the turbulence layer used by Friedrich Wöger and Oskar von der Lühe in the classic AO correction may lead to reduced accuracy and should be revised to improve photometric accuracy. Aims. This study is aimed at obtaining quantitative photometric reconstructed images in the GLAO condition. We propose methods for extracting the appropriate inputs for the STF model. Methods. In this paper, the telemetry data of the GLAO system was used to extract the correction efficiency and the equivalent height of the turbulence. To analyze the photometric accuracy of the method, the influence resulting from the distribution of the atmospheric turbulence profile and the extension of the guide stars are investigated by simulations. At those simulations, we computed the STF from the wavefront phases and convolved it with the high-resolution numerical simulations of the solar photosphere. We then deconvolved them with the model STF calculated from the correction efficiency and the equivalent height to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. We reconstructed the solar images taken by the GLAO prototype system at the New Vacuum Solar Telescope of the Yunnan Astronomical Observatory using this method and analyzed the results. Results. These simulations and ensuing analysis demonstrate that high photometric precision can be obtained for speckle amplitude reconstruction using the inputs for the model STF derived from the telemetry data of the GLAO system.
Author Zhong, Libo
Zhu, Lei
Rao, Changhui
Zhang, Lanqiang
Rao, Xuejun
Shi, Zhendong
Tian, Yu
Kong, Lin
Guo, Youming
Bao, Hua
Author_xml – sequence: 1
  givenname: Libo
  orcidid: 0000-0002-4531-9803
  surname: Zhong
  fullname: Zhong, Libo
– sequence: 2
  givenname: Lanqiang
  surname: Zhang
  fullname: Zhang, Lanqiang
– sequence: 3
  givenname: Zhendong
  surname: Shi
  fullname: Shi, Zhendong
– sequence: 4
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
– sequence: 5
  givenname: Youming
  surname: Guo
  fullname: Guo, Youming
– sequence: 6
  givenname: Lin
  surname: Kong
  fullname: Kong, Lin
– sequence: 7
  givenname: Xuejun
  surname: Rao
  fullname: Rao, Xuejun
– sequence: 8
  givenname: Hua
  surname: Bao
  fullname: Bao, Hua
– sequence: 9
  givenname: Lei
  surname: Zhu
  fullname: Zhu, Lei
– sequence: 10
  givenname: Changhui
  surname: Rao
  fullname: Rao, Changhui
BookMark eNp9UMtOwzAQtBBItIUv4GKJK6Z-5OEcUcVLqsQBEMfITjapSxoHO2lVvh63RT1w4LSa2ZldzYzRaWtbQOiK0VtGYzallEYkEQmbcsoyETOanaARiwQnNI2SUzQ6Ks7R2PtlgJxJMULfH6YEXBloSmIrsjawucELUy-IA2-boTe2xa-2UQ5b7cGt1Z4xLS7sSpv2ADemX-Da2aEtcaO24LAqVdebNWAbRuGxChvfQfHZADYrVZu2vkBnlWo8XP7OCXp_uH-bPZH5y-Pz7G5OCsF5T9IqqrjIZCQSKlKhdaJkYCDLdFaJSMcQJVxJnVIIUqpVChJSLishQSvOxQRdH-52zn4N4Pt8aQfXhpc5j2TKmJQ0DqrsoCqc9d5BlRem36frnTJNzmi-qzrfFZnvisyPVQev-OPtXAjptv-6fgBT34QJ
CitedBy_id crossref_primary_10_3847_1538_3881_ac7234
crossref_primary_10_3847_1538_3881_ac7f2e
crossref_primary_10_1016_j_chinastron_2021_11_005
crossref_primary_10_1134_S1024856024701197
crossref_primary_10_1016_j_chinastron_2021_02_007
crossref_primary_10_1134_S1024856022030149
crossref_primary_10_3847_1538_4357_ac7f40
crossref_primary_10_3390_atmos12020159
crossref_primary_10_3847_1538_4357_ac5e2d
crossref_primary_10_1016_j_optlaseng_2024_108188
crossref_primary_10_1364_OE_548122
crossref_primary_10_1051_0004_6361_202244904
crossref_primary_10_1088_1674_4527_ad21d4
crossref_primary_10_1093_mnras_stac2988
crossref_primary_10_3847_1538_4365_ac886a
crossref_primary_10_1051_0004_6361_202244224
crossref_primary_10_3847_1538_4357_ac75b9
crossref_primary_10_1088_1674_4527_ac77e4
crossref_primary_10_1134_S1024856022030137
crossref_primary_10_1088_1538_3873_ad96e3
crossref_primary_10_3390_atmos12121614
crossref_primary_10_3847_2041_8213_ad65cf
crossref_primary_10_3847_1538_4357_ad83d5
crossref_primary_10_1088_1538_3873_ac6445
crossref_primary_10_3847_1538_4357_ac7723
crossref_primary_10_3847_PSJ_ac6cf0
crossref_primary_10_29026_oea_2022_200082
crossref_primary_10_3390_s22207902
crossref_primary_10_1007_s11433_022_2107_4
crossref_primary_10_3390_atmos15010038
Cites_doi 10.1007/BF00149990
10.1007/s11207-005-1108-4
10.1117/12.548929
10.1117/12.856982
10.1016/0030-4018(77)90077-3
10.1364/JOSA.56.001372
10.1016/j.crhy.2005.09.007
10.1117/12.363602
10.1364/JOSA.66.000207
10.1086/509266
10.1117/12.454786
10.1007/s11207-006-0069-6
10.1051/0004-6361/201629970
10.1051/0004-6361/201731275
10.1364/OE.22.029249
10.1117/12.925242
10.1063/1.883053
10.1364/AO.46.008015
10.1007/BF00153485
10.1117/12.176121
10.1088/0150-536X/13/2/002
10.1086/181627
10.1364/AO.49.000G95
10.1117/12.671129
10.1007/s11207-015-0676-1
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/201935109
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_201935109
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
ID FETCH-LOGICAL-c322t-7f4f23984360373bb6a84f2e99b9f34b5e462a8b70e7f40ba7e8e728f38eba223
ISSN 0004-6361
IngestDate Sun Jun 29 12:45:48 EDT 2025
Tue Jul 01 03:59:27 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-7f4f23984360373bb6a84f2e99b9f34b5e462a8b70e7f40ba7e8e728f38eba223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4531-9803
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2020/05/aa35109-19.pdf
PQID 2487118805
PQPubID 1796397
ParticipantIDs proquest_journals_2487118805
crossref_citationtrail_10_1051_0004_6361_201935109
crossref_primary_10_1051_0004_6361_201935109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2020
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Kong (R11) 2017; 9
Denker (R5) 2005; 227
Femenia (R6) 2002; 4494
Ricort (R22) 1982; 75
Peter (R20) 2010; 7736
Knox (R9) 1974; 193
Korkiakoski (R12) 2006; 6272
Weigelt (R30) 1977; 21
Deng (R4) 2015; 290
R23
Paxman (R17) 1999; 3763
Noll (R16) 1976; 66
Zhong (R33) 2014; 22
Schmidt (R27) 2017; 597
Kong (R10) 2016; 14
Mikurda (R15) 2006; 235
Wilken (R31) 1997; 325
Langlois (R14) 2004; 5490
Berkefeld (R2) 2005; 5903
Roddier (R26) 1982; 13
Andersen (R1) 2006; 118
Cortes (R3) 2012; 8447
Pehlemann (R19) 1989; 216
Wallner (R29) 1994; 2201
Fried (R7) 1966; 56
Rimmele (R24) 2010; 49
Hardy (R8) 2000; 53
Wöger (R32) 2007; 46
Ricort (R21) 1981; 69
Labeyrie (R13) 1970; 6
von der Lühe (R28) 2005; 6
Peck (R18) 2017; 607
Rimmele (R25) 2011; 8
References_xml – volume: 69
  start-page: 223
  year: 1981
  ident: R21
  publication-title: Sol. Phys.
  doi: 10.1007/BF00149990
– volume: 227
  start-page: 217
  year: 2005
  ident: R5
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-005-1108-4
– volume: 5490
  start-page: 59
  year: 2004
  ident: R14
  publication-title: Proc. SPIE
  doi: 10.1117/12.548929
– volume: 7736
  start-page: , 77364R
  year: 2010
  ident: R20
  publication-title: Proc. SPIE
  doi: 10.1117/12.856982
– volume: 5903
  start-page: 219
  year: 2005
  ident: R2
  publication-title: Proc. SPIE
– volume: 21
  start-page: 55
  year: 1977
  ident: R30
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(77)90077-3
– volume: 8
  start-page: 2
  year: 2011
  ident: R25
  publication-title: Liv. Rev. Sol. Phys.
– volume: 56
  start-page: 1372
  year: 1966
  ident: R7
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.56.001372
– ident: R23
– volume: 6
  start-page: 1139
  year: 2005
  ident: R28
  publication-title: C.R. Phys.
  doi: 10.1016/j.crhy.2005.09.007
– volume: 3763
  start-page: 2
  year: 1999
  ident: R17
  publication-title: Proc. SPIE
  doi: 10.1117/12.363602
– volume: 66
  start-page: 207
  year: 1976
  ident: R16
  publication-title: J. Opt. Soc. Am. (1917–1983)
  doi: 10.1364/JOSA.66.000207
– volume: 118
  start-page: 1574
  year: 2006
  ident: R1
  publication-title: PASP
  doi: 10.1086/509266
– volume: 4494
  start-page: 132
  year: 2002
  ident: R6
  publication-title: Proc. SPIE
  doi: 10.1117/12.454786
– volume: 235
  start-page: 31
  year: 2006
  ident: R15
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-006-0069-6
– volume: 597
  start-page: L8
  year: 2017
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/201629970
– volume: 607
  start-page: A83
  year: 2017
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201731275
– volume: 22
  start-page: 29249
  year: 2014
  ident: R33
  publication-title: Opt. Express
  doi: 10.1364/OE.22.029249
– volume: 6
  start-page: 85
  year: 1970
  ident: R13
  publication-title: A&A
– volume: 8447
  start-page: 84475T
  year: 2012
  ident: R3
  publication-title: Proc. SPIE
  doi: 10.1117/12.925242
– volume: 325
  start-page: 819
  year: 1997
  ident: R31
  publication-title: A&A
– volume: 53
  start-page: 69
  year: 2000
  ident: R8
  publication-title: Phys. Today
  doi: 10.1063/1.883053
– volume: 46
  start-page: 8015
  year: 2007
  ident: R32
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.008015
– volume: 75
  start-page: 377
  year: 1982
  ident: R22
  publication-title: Sol. Phys.
  doi: 10.1007/BF00153485
– volume: 2201
  start-page: 110
  year: 1994
  ident: R29
  publication-title: Proc. SPIE
  doi: 10.1117/12.176121
– volume: 13
  start-page: 63
  year: 1982
  ident: R26
  publication-title: J. Opt.
  doi: 10.1088/0150-536X/13/2/002
– volume: 216
  start-page: 337
  year: 1989
  ident: R19
  publication-title: A&A
– volume: 193
  start-page: L45
  year: 1974
  ident: R9
  publication-title: AJ
  doi: 10.1086/181627
– volume: 49
  start-page: G95
  year: 2010
  ident: R24
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.000G95
– volume: 9
  start-page: 2662326
  year: 2017
  ident: R11
  publication-title: IEEE Photonics J.
– volume: 6272
  start-page: 62725A
  year: 2006
  ident: R12
  publication-title: Proc. SPIE
  doi: 10.1117/12.671129
– volume: 290
  start-page: 1479
  year: 2015
  ident: R4
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-015-0676-1
– volume: 14
  start-page: 6
  year: 2016
  ident: R10
  publication-title: Chin. Opt. Lett.
SSID ssj0002183
Score 2.4240472
Snippet Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based...
Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage A99
SubjectTerms Accuracy
Adaptive optics
Angular resolution
Atmospheric turbulence
Celestial bodies
Computational efficiency
Computing time
Efficiency
Equivalence
Field of view
Ground-based observation
High resolution
Image reconstruction
Mathematical models
Photometry
Photosphere
Simulation
Solar physics
Spatial resolution
Telemetry
Transfer functions
Wave fronts
Title Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging
URI https://www.proquest.com/docview/2487118805
Volume 637
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXBAO0wUA-IC6ZtzR2fh2rsWmgakwiFWWXyE7sLaJLCm0vO3DgL-fZTtyUoQm4RImbOlK_r8_vvbz3GaE3PpUKVglBVBHEhFEWEc79lISlX8aRUJQqUyB7Fp1O2IdpOB0MfvaqllZLcVDc_LGv5H9QhTHAVXfJ_gOyblIYgHPAF46AMBz_CuPPVSk9U4NGGkWsLOyRpxWICUTR7aO9Tzp69Rrh8q-erT2HmNhemlysbu-oS2_GwQf3eMnnpqaomTsZZ92T-XUmverabGzU92pHC51Qb66tlhPXVzZjYlK6VlGrl3K4uGrrgMeVaG5lrse8_gacvXS5H7PtsHdxJfXGI244q2zq9suqn7gI_HWZoM2mvTvv7Ndiw0IzElEr0H4grVFmVFfItqnK1mpHVivm1goARsaWTNppdMMLeLEUTE-6XvK61_xnH_OTyXicZ8fT7B66H8Tgf-mG8fc_3GquXUgbQtkJO-WqcHjoxg7dIza9m83F3Xgs2WP0qA018Mjy5gkayHob7Tis8Fs86iG1jR6c27On6EYTC28Qax__RitsaIV7tMJVjXu0wppW2NIKG1rhjlbY0goDW3BLK9zS6hmanBxnR6ek3aSDFLAWLEmsmNIakoxGPo2pEBFPYESmqUgVZSKULAp4ImJfwq2-4LFMZBwkiiZScHBOn6OtuqnlDsJBKvy4AGB54jOeyDRR5ZAWnLGElzQKd1HQ_bh50SrY641UZrmppAiHupKC5RqR3CGyi_bdl-ZWwOXu2_c61PL2n77IA4jqh1q4MHxx98cv0cM10_fQ1vL7Sr4Cp3UpXhtW_QJ1YpcB
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+field-of-view%2C+high-resolution+Solar+observation+in+combination+with+ground+layer+adaptive+optics+and+speckle+imaging&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Zhong%2C+Libo&rft.au=Zhang%2C+Lanqiang&rft.au=Shi%2C+Zhendong&rft.au=Tian%2C+Yu&rft.date=2020-05-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=637&rft_id=info:doi/10.1051%2F0004-6361%2F201935109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon