Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging
Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The co...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 637; p. A99 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/201935109 |
Cover
Abstract | Context.
High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The combination of ground layer adaptive optics (GLAO) and speckle imaging is appealing with regard to a simplification of the correction and the high resolution of the reconstruction. The speckle transfer functions (STFs) used in the speckle image reconstruction mainly determine the photometric accuracy of the recovered result. The STF model proposed by Friedrich Wöger and Oskar von der Lühe in the classical AO condition is generic enough to accommodate the GLAO condition if correct inputs are given. Thus, the precisely calculated inputs to the model STF are essential for the final results. The necessary input for the model STF is the correction efficiency which can be calculated simply with the assumption of one layer turbulence. The method for calculating the correction efficiency for the classical AO condition should also be improved to suit the GLAO condition. The generic average height of the turbulence layer used by Friedrich Wöger and Oskar von der Lühe in the classic AO correction may lead to reduced accuracy and should be revised to improve photometric accuracy.
Aims.
This study is aimed at obtaining quantitative photometric reconstructed images in the GLAO condition. We propose methods for extracting the appropriate inputs for the STF model.
Methods.
In this paper, the telemetry data of the GLAO system was used to extract the correction efficiency and the equivalent height of the turbulence. To analyze the photometric accuracy of the method, the influence resulting from the distribution of the atmospheric turbulence profile and the extension of the guide stars are investigated by simulations. At those simulations, we computed the STF from the wavefront phases and convolved it with the high-resolution numerical simulations of the solar photosphere. We then deconvolved them with the model STF calculated from the correction efficiency and the equivalent height to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. We reconstructed the solar images taken by the GLAO prototype system at the New Vacuum Solar Telescope of the Yunnan Astronomical Observatory using this method and analyzed the results.
Results.
These simulations and ensuing analysis demonstrate that high photometric precision can be obtained for speckle amplitude reconstruction using the inputs for the model STF derived from the telemetry data of the GLAO system. |
---|---|
AbstractList | Context.
High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The combination of ground layer adaptive optics (GLAO) and speckle imaging is appealing with regard to a simplification of the correction and the high resolution of the reconstruction. The speckle transfer functions (STFs) used in the speckle image reconstruction mainly determine the photometric accuracy of the recovered result. The STF model proposed by Friedrich Wöger and Oskar von der Lühe in the classical AO condition is generic enough to accommodate the GLAO condition if correct inputs are given. Thus, the precisely calculated inputs to the model STF are essential for the final results. The necessary input for the model STF is the correction efficiency which can be calculated simply with the assumption of one layer turbulence. The method for calculating the correction efficiency for the classical AO condition should also be improved to suit the GLAO condition. The generic average height of the turbulence layer used by Friedrich Wöger and Oskar von der Lühe in the classic AO correction may lead to reduced accuracy and should be revised to improve photometric accuracy.
Aims.
This study is aimed at obtaining quantitative photometric reconstructed images in the GLAO condition. We propose methods for extracting the appropriate inputs for the STF model.
Methods.
In this paper, the telemetry data of the GLAO system was used to extract the correction efficiency and the equivalent height of the turbulence. To analyze the photometric accuracy of the method, the influence resulting from the distribution of the atmospheric turbulence profile and the extension of the guide stars are investigated by simulations. At those simulations, we computed the STF from the wavefront phases and convolved it with the high-resolution numerical simulations of the solar photosphere. We then deconvolved them with the model STF calculated from the correction efficiency and the equivalent height to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. We reconstructed the solar images taken by the GLAO prototype system at the New Vacuum Solar Telescope of the Yunnan Astronomical Observatory using this method and analyzed the results.
Results.
These simulations and ensuing analysis demonstrate that high photometric precision can be obtained for speckle amplitude reconstruction using the inputs for the model STF derived from the telemetry data of the GLAO system. Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based observations are often subject to adaptive optics (AO) correction and post-facto reconstruction techniques to improve the spatial resolution. The combination of ground layer adaptive optics (GLAO) and speckle imaging is appealing with regard to a simplification of the correction and the high resolution of the reconstruction. The speckle transfer functions (STFs) used in the speckle image reconstruction mainly determine the photometric accuracy of the recovered result. The STF model proposed by Friedrich Wöger and Oskar von der Lühe in the classical AO condition is generic enough to accommodate the GLAO condition if correct inputs are given. Thus, the precisely calculated inputs to the model STF are essential for the final results. The necessary input for the model STF is the correction efficiency which can be calculated simply with the assumption of one layer turbulence. The method for calculating the correction efficiency for the classical AO condition should also be improved to suit the GLAO condition. The generic average height of the turbulence layer used by Friedrich Wöger and Oskar von der Lühe in the classic AO correction may lead to reduced accuracy and should be revised to improve photometric accuracy. Aims. This study is aimed at obtaining quantitative photometric reconstructed images in the GLAO condition. We propose methods for extracting the appropriate inputs for the STF model. Methods. In this paper, the telemetry data of the GLAO system was used to extract the correction efficiency and the equivalent height of the turbulence. To analyze the photometric accuracy of the method, the influence resulting from the distribution of the atmospheric turbulence profile and the extension of the guide stars are investigated by simulations. At those simulations, we computed the STF from the wavefront phases and convolved it with the high-resolution numerical simulations of the solar photosphere. We then deconvolved them with the model STF calculated from the correction efficiency and the equivalent height to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. We reconstructed the solar images taken by the GLAO prototype system at the New Vacuum Solar Telescope of the Yunnan Astronomical Observatory using this method and analyzed the results. Results. These simulations and ensuing analysis demonstrate that high photometric precision can be obtained for speckle amplitude reconstruction using the inputs for the model STF derived from the telemetry data of the GLAO system. |
Author | Zhong, Libo Zhu, Lei Rao, Changhui Zhang, Lanqiang Rao, Xuejun Shi, Zhendong Tian, Yu Kong, Lin Guo, Youming Bao, Hua |
Author_xml | – sequence: 1 givenname: Libo orcidid: 0000-0002-4531-9803 surname: Zhong fullname: Zhong, Libo – sequence: 2 givenname: Lanqiang surname: Zhang fullname: Zhang, Lanqiang – sequence: 3 givenname: Zhendong surname: Shi fullname: Shi, Zhendong – sequence: 4 givenname: Yu surname: Tian fullname: Tian, Yu – sequence: 5 givenname: Youming surname: Guo fullname: Guo, Youming – sequence: 6 givenname: Lin surname: Kong fullname: Kong, Lin – sequence: 7 givenname: Xuejun surname: Rao fullname: Rao, Xuejun – sequence: 8 givenname: Hua surname: Bao fullname: Bao, Hua – sequence: 9 givenname: Lei surname: Zhu fullname: Zhu, Lei – sequence: 10 givenname: Changhui surname: Rao fullname: Rao, Changhui |
BookMark | eNp9UMtOwzAQtBBItIUv4GKJK6Z-5OEcUcVLqsQBEMfITjapSxoHO2lVvh63RT1w4LSa2ZldzYzRaWtbQOiK0VtGYzallEYkEQmbcsoyETOanaARiwQnNI2SUzQ6Ks7R2PtlgJxJMULfH6YEXBloSmIrsjawucELUy-IA2-boTe2xa-2UQ5b7cGt1Z4xLS7sSpv2ADemX-Da2aEtcaO24LAqVdebNWAbRuGxChvfQfHZADYrVZu2vkBnlWo8XP7OCXp_uH-bPZH5y-Pz7G5OCsF5T9IqqrjIZCQSKlKhdaJkYCDLdFaJSMcQJVxJnVIIUqpVChJSLishQSvOxQRdH-52zn4N4Pt8aQfXhpc5j2TKmJQ0DqrsoCqc9d5BlRem36frnTJNzmi-qzrfFZnvisyPVQev-OPtXAjptv-6fgBT34QJ |
CitedBy_id | crossref_primary_10_3847_1538_3881_ac7234 crossref_primary_10_3847_1538_3881_ac7f2e crossref_primary_10_1016_j_chinastron_2021_11_005 crossref_primary_10_1134_S1024856024701197 crossref_primary_10_1016_j_chinastron_2021_02_007 crossref_primary_10_1134_S1024856022030149 crossref_primary_10_3847_1538_4357_ac7f40 crossref_primary_10_3390_atmos12020159 crossref_primary_10_3847_1538_4357_ac5e2d crossref_primary_10_1016_j_optlaseng_2024_108188 crossref_primary_10_1364_OE_548122 crossref_primary_10_1051_0004_6361_202244904 crossref_primary_10_1088_1674_4527_ad21d4 crossref_primary_10_1093_mnras_stac2988 crossref_primary_10_3847_1538_4365_ac886a crossref_primary_10_1051_0004_6361_202244224 crossref_primary_10_3847_1538_4357_ac75b9 crossref_primary_10_1088_1674_4527_ac77e4 crossref_primary_10_1134_S1024856022030137 crossref_primary_10_1088_1538_3873_ad96e3 crossref_primary_10_3390_atmos12121614 crossref_primary_10_3847_2041_8213_ad65cf crossref_primary_10_3847_1538_4357_ad83d5 crossref_primary_10_1088_1538_3873_ac6445 crossref_primary_10_3847_1538_4357_ac7723 crossref_primary_10_3847_PSJ_ac6cf0 crossref_primary_10_29026_oea_2022_200082 crossref_primary_10_3390_s22207902 crossref_primary_10_1007_s11433_022_2107_4 crossref_primary_10_3390_atmos15010038 |
Cites_doi | 10.1007/BF00149990 10.1007/s11207-005-1108-4 10.1117/12.548929 10.1117/12.856982 10.1016/0030-4018(77)90077-3 10.1364/JOSA.56.001372 10.1016/j.crhy.2005.09.007 10.1117/12.363602 10.1364/JOSA.66.000207 10.1086/509266 10.1117/12.454786 10.1007/s11207-006-0069-6 10.1051/0004-6361/201629970 10.1051/0004-6361/201731275 10.1364/OE.22.029249 10.1117/12.925242 10.1063/1.883053 10.1364/AO.46.008015 10.1007/BF00153485 10.1117/12.176121 10.1088/0150-536X/13/2/002 10.1086/181627 10.1364/AO.49.000G95 10.1117/12.671129 10.1007/s11207-015-0676-1 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/201935109 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_201935109 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M |
ID | FETCH-LOGICAL-c322t-7f4f23984360373bb6a84f2e99b9f34b5e462a8b70e7f40ba7e8e728f38eba223 |
ISSN | 0004-6361 |
IngestDate | Sun Jun 29 12:45:48 EDT 2025 Tue Jul 01 03:59:27 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-7f4f23984360373bb6a84f2e99b9f34b5e462a8b70e7f40ba7e8e728f38eba223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4531-9803 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2020/05/aa35109-19.pdf |
PQID | 2487118805 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2487118805 crossref_citationtrail_10_1051_0004_6361_201935109 crossref_primary_10_1051_0004_6361_201935109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2020 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Kong (R11) 2017; 9 Denker (R5) 2005; 227 Femenia (R6) 2002; 4494 Ricort (R22) 1982; 75 Peter (R20) 2010; 7736 Knox (R9) 1974; 193 Korkiakoski (R12) 2006; 6272 Weigelt (R30) 1977; 21 Deng (R4) 2015; 290 R23 Paxman (R17) 1999; 3763 Noll (R16) 1976; 66 Zhong (R33) 2014; 22 Schmidt (R27) 2017; 597 Kong (R10) 2016; 14 Mikurda (R15) 2006; 235 Wilken (R31) 1997; 325 Langlois (R14) 2004; 5490 Berkefeld (R2) 2005; 5903 Roddier (R26) 1982; 13 Andersen (R1) 2006; 118 Cortes (R3) 2012; 8447 Pehlemann (R19) 1989; 216 Wallner (R29) 1994; 2201 Fried (R7) 1966; 56 Rimmele (R24) 2010; 49 Hardy (R8) 2000; 53 Wöger (R32) 2007; 46 Ricort (R21) 1981; 69 Labeyrie (R13) 1970; 6 von der Lühe (R28) 2005; 6 Peck (R18) 2017; 607 Rimmele (R25) 2011; 8 |
References_xml | – volume: 69 start-page: 223 year: 1981 ident: R21 publication-title: Sol. Phys. doi: 10.1007/BF00149990 – volume: 227 start-page: 217 year: 2005 ident: R5 publication-title: Sol. Phys. doi: 10.1007/s11207-005-1108-4 – volume: 5490 start-page: 59 year: 2004 ident: R14 publication-title: Proc. SPIE doi: 10.1117/12.548929 – volume: 7736 start-page: , 77364R year: 2010 ident: R20 publication-title: Proc. SPIE doi: 10.1117/12.856982 – volume: 5903 start-page: 219 year: 2005 ident: R2 publication-title: Proc. SPIE – volume: 21 start-page: 55 year: 1977 ident: R30 publication-title: Opt. Commun. doi: 10.1016/0030-4018(77)90077-3 – volume: 8 start-page: 2 year: 2011 ident: R25 publication-title: Liv. Rev. Sol. Phys. – volume: 56 start-page: 1372 year: 1966 ident: R7 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.56.001372 – ident: R23 – volume: 6 start-page: 1139 year: 2005 ident: R28 publication-title: C.R. Phys. doi: 10.1016/j.crhy.2005.09.007 – volume: 3763 start-page: 2 year: 1999 ident: R17 publication-title: Proc. SPIE doi: 10.1117/12.363602 – volume: 66 start-page: 207 year: 1976 ident: R16 publication-title: J. Opt. Soc. Am. (1917–1983) doi: 10.1364/JOSA.66.000207 – volume: 118 start-page: 1574 year: 2006 ident: R1 publication-title: PASP doi: 10.1086/509266 – volume: 4494 start-page: 132 year: 2002 ident: R6 publication-title: Proc. SPIE doi: 10.1117/12.454786 – volume: 235 start-page: 31 year: 2006 ident: R15 publication-title: Sol. Phys. doi: 10.1007/s11207-006-0069-6 – volume: 597 start-page: L8 year: 2017 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/201629970 – volume: 607 start-page: A83 year: 2017 ident: R18 publication-title: A&A doi: 10.1051/0004-6361/201731275 – volume: 22 start-page: 29249 year: 2014 ident: R33 publication-title: Opt. Express doi: 10.1364/OE.22.029249 – volume: 6 start-page: 85 year: 1970 ident: R13 publication-title: A&A – volume: 8447 start-page: 84475T year: 2012 ident: R3 publication-title: Proc. SPIE doi: 10.1117/12.925242 – volume: 325 start-page: 819 year: 1997 ident: R31 publication-title: A&A – volume: 53 start-page: 69 year: 2000 ident: R8 publication-title: Phys. Today doi: 10.1063/1.883053 – volume: 46 start-page: 8015 year: 2007 ident: R32 publication-title: Appl. Opt. doi: 10.1364/AO.46.008015 – volume: 75 start-page: 377 year: 1982 ident: R22 publication-title: Sol. Phys. doi: 10.1007/BF00153485 – volume: 2201 start-page: 110 year: 1994 ident: R29 publication-title: Proc. SPIE doi: 10.1117/12.176121 – volume: 13 start-page: 63 year: 1982 ident: R26 publication-title: J. Opt. doi: 10.1088/0150-536X/13/2/002 – volume: 216 start-page: 337 year: 1989 ident: R19 publication-title: A&A – volume: 193 start-page: L45 year: 1974 ident: R9 publication-title: AJ doi: 10.1086/181627 – volume: 49 start-page: G95 year: 2010 ident: R24 publication-title: Appl. Opt. doi: 10.1364/AO.49.000G95 – volume: 9 start-page: 2662326 year: 2017 ident: R11 publication-title: IEEE Photonics J. – volume: 6272 start-page: 62725A year: 2006 ident: R12 publication-title: Proc. SPIE doi: 10.1117/12.671129 – volume: 290 start-page: 1479 year: 2015 ident: R4 publication-title: Sol. Phys. doi: 10.1007/s11207-015-0676-1 – volume: 14 start-page: 6 year: 2016 ident: R10 publication-title: Chin. Opt. Lett. |
SSID | ssj0002183 |
Score | 2.4240472 |
Snippet | Context.
High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based... Context. High angular resolution images at a wide field of view are required for investigating Solar physics and predicting space weather. Ground-based... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | A99 |
SubjectTerms | Accuracy Adaptive optics Angular resolution Atmospheric turbulence Celestial bodies Computational efficiency Computing time Efficiency Equivalence Field of view Ground-based observation High resolution Image reconstruction Mathematical models Photometry Photosphere Simulation Solar physics Spatial resolution Telemetry Transfer functions Wave fronts |
Title | Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging |
URI | https://www.proquest.com/docview/2487118805 |
Volume | 637 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIXBAO0wUA-IC6ZtzR2fh2rsWmgakwiFWWXyE7sLaJLCm0vO3DgL-fZTtyUoQm4RImbOlK_r8_vvbz3GaE3PpUKVglBVBHEhFEWEc79lISlX8aRUJQqUyB7Fp1O2IdpOB0MfvaqllZLcVDc_LGv5H9QhTHAVXfJ_gOyblIYgHPAF46AMBz_CuPPVSk9U4NGGkWsLOyRpxWICUTR7aO9Tzp69Rrh8q-erT2HmNhemlysbu-oS2_GwQf3eMnnpqaomTsZZ92T-XUmverabGzU92pHC51Qb66tlhPXVzZjYlK6VlGrl3K4uGrrgMeVaG5lrse8_gacvXS5H7PtsHdxJfXGI244q2zq9suqn7gI_HWZoM2mvTvv7Ndiw0IzElEr0H4grVFmVFfItqnK1mpHVivm1goARsaWTNppdMMLeLEUTE-6XvK61_xnH_OTyXicZ8fT7B66H8Tgf-mG8fc_3GquXUgbQtkJO-WqcHjoxg7dIza9m83F3Xgs2WP0qA018Mjy5gkayHob7Tis8Fs86iG1jR6c27On6EYTC28Qax__RitsaIV7tMJVjXu0wppW2NIKG1rhjlbY0goDW3BLK9zS6hmanBxnR6ek3aSDFLAWLEmsmNIakoxGPo2pEBFPYESmqUgVZSKULAp4ImJfwq2-4LFMZBwkiiZScHBOn6OtuqnlDsJBKvy4AGB54jOeyDRR5ZAWnLGElzQKd1HQ_bh50SrY641UZrmppAiHupKC5RqR3CGyi_bdl-ZWwOXu2_c61PL2n77IA4jqh1q4MHxx98cv0cM10_fQ1vL7Sr4Cp3UpXhtW_QJ1YpcB |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+field-of-view%2C+high-resolution+Solar+observation+in+combination+with+ground+layer+adaptive+optics+and+speckle+imaging&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Zhong%2C+Libo&rft.au=Zhang%2C+Lanqiang&rft.au=Shi%2C+Zhendong&rft.au=Tian%2C+Yu&rft.date=2020-05-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=637&rft_id=info:doi/10.1051%2F0004-6361%2F201935109&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |