Research on fNIRS Recognition Method of Upper Limb Movement Intention
This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the system, and gradually extends the analysis and recognition method of the movement intention in the cerebra...
Saved in:
| Published in | Electronics (Basel) Vol. 10; no. 11; p. 1239 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics10111239 |
Cover
| Abstract | This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the system, and gradually extends the analysis and recognition method of the movement intention in the cerebral blood oxygen signal to the actual brain-computer interface system. Fifty subjects completed four upper limb movement paradigms: Lifting-up, putting down, pulling back, and pushing forward. Then, their near-infrared data and movement trigger signals were collected. In terms of the recognition algorithm for detecting the initial intention of upper limb movements, gradient boosting tree (GBDT) and random forest (RF) were selected for classification experiments. Finally, RF classifier with better comprehensive indicators was selected as the final classification algorithm. The best offline recognition rate was 94.4% (151/160). The ReliefF algorithm based on distance measurement and the genetic algorithm proposed in the genetic theory were used to select features. In terms of upper limb motion state recognition algorithms, logistic regression (LR), support vector machine (SVM), naive Bayes (NB), and linear discriminant analysis (LDA) were selected for experiments. Kappa coefficient was used as the classification index to evaluate the performance of the classifier. Finally, SVM classification got the best performance, and the four-class recognition accuracy rate was 84.4%. The results show that RF and SVM can achieve high recognition accuracy in motion intentions and the upper limb rehabilitation system designed in this paper has great application significance. |
|---|---|
| AbstractList | This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the system, and gradually extends the analysis and recognition method of the movement intention in the cerebral blood oxygen signal to the actual brain-computer interface system. Fifty subjects completed four upper limb movement paradigms: Lifting-up, putting down, pulling back, and pushing forward. Then, their near-infrared data and movement trigger signals were collected. In terms of the recognition algorithm for detecting the initial intention of upper limb movements, gradient boosting tree (GBDT) and random forest (RF) were selected for classification experiments. Finally, RF classifier with better comprehensive indicators was selected as the final classification algorithm. The best offline recognition rate was 94.4% (151/160). The ReliefF algorithm based on distance measurement and the genetic algorithm proposed in the genetic theory were used to select features. In terms of upper limb motion state recognition algorithms, logistic regression (LR), support vector machine (SVM), naive Bayes (NB), and linear discriminant analysis (LDA) were selected for experiments. Kappa coefficient was used as the classification index to evaluate the performance of the classifier. Finally, SVM classification got the best performance, and the four-class recognition accuracy rate was 84.4%. The results show that RF and SVM can achieve high recognition accuracy in motion intentions and the upper limb rehabilitation system designed in this paper has great application significance. |
| Author | He, Liujin Zhu, Yue Sun, Lining Kuang, Shaolong Xu, Yongliang Li, Chunguang |
| Author_xml | – sequence: 1 givenname: Chunguang surname: Li fullname: Li, Chunguang – sequence: 2 givenname: Yongliang orcidid: 0000-0002-1162-7840 surname: Xu fullname: Xu, Yongliang – sequence: 3 givenname: Liujin surname: He fullname: He, Liujin – sequence: 4 givenname: Yue surname: Zhu fullname: Zhu, Yue – sequence: 5 givenname: Shaolong surname: Kuang fullname: Kuang, Shaolong – sequence: 6 givenname: Lining surname: Sun fullname: Sun, Lining |
| BookMark | eNqNkM1LAzEQxYNUsNb-BV4Cnqv52I_OUUrVQqtQ7XlJshO7ZZus2VTpf--WehARcS5vGN7vMbxz0nPeISGXnF1LCewGazQxeFeZljPOuZBwQvqC5TACAaL3bT8jw7bdsG6Ay7FkfTJdYosqmDX1jtrH2fKZLtH4V1fFqrssMK59Sb2lq6bBQOfVVtOFf8ctukhnLnbS-S7IqVV1i8MvHZDV3fRl8jCaP93PJrfzkZFCxFEOmckYB0wEz60SqDPQEnWepKLMQelSWg6QaWltmTPNZcYMlwJskhqQWg5IcszduUbtP1RdF02otirsC86KQxvFL2102NURa4J_22Ebi43fBdd9WohUQiZENk47lzy6TPBtG9D-Mxt-UKaK6lBKDKqq_2Q_AbRriCg |
| CitedBy_id | crossref_primary_10_1142_S0218001422500410 crossref_primary_10_1155_2023_8812844 crossref_primary_10_3390_electronics11142247 crossref_primary_10_1080_27706710_2024_2335886 crossref_primary_10_3390_s23073714 crossref_primary_10_1155_2022_3893866 crossref_primary_10_3390_jcm12185781 crossref_primary_10_1016_j_bspc_2024_106448 crossref_primary_10_1016_j_heliyon_2022_e11102 crossref_primary_10_3389_fpubh_2023_1256895 |
| Cites_doi | 10.1109/TNSRE.2012.2214789 10.1016/j.measurement.2007.07.007 10.1109/ACCESS.2016.2637409 10.3389/fnhum.2018.00246 10.1002/ima.22236 10.1016/j.neuroimage.2006.10.043 10.17148/IJARCCE.2014.31031 10.1016/j.neulet.2014.12.029 10.1109/IHMSC.2017.134 10.1109/HSI.2017.8005032 10.1016/j.neulet.2021.135907 10.1016/j.bandl.2010.07.008 10.1016/j.jneumeth.2018.11.010 10.1088/1741-2552/abe39b 10.1109/CSPA.2015.7225637 10.3390/s20216116 10.1038/nrneurol.2016.113 10.1088/1741-2552/abf187 10.3389/fnhum.2015.00308 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics10111239 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics10111239 10_3390_electronics10111239 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS PUEGO ADTOC IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-796c6019e4217fa2eb69b3eb7452d79abd3f1996b3ffd70b1360c1329f45c93b3 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:12:57 EDT 2025 Sun Sep 07 03:50:25 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 Thu Oct 16 04:44:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-796c6019e4217fa2eb69b3eb7452d79abd3f1996b3ffd70b1360c1329f45c93b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1162-7840 |
| OpenAccessLink | https://www.proquest.com/docview/2539622685?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2539622685 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics10111239 proquest_journals_2539622685 crossref_primary_10_3390_electronics10111239 crossref_citationtrail_10_3390_electronics10111239 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Bhateja (ref_13) 2013; 3 Hong (ref_10) 2018; 12 Wang (ref_23) 2020; 45 Rota (ref_5) 2011; 117 Chaudhary (ref_18) 2016; 12 ref_14 Chowdhury (ref_6) 2019; 15 Durgabai (ref_19) 2014; 3 Myrden (ref_2) 2015; 9 Kus (ref_20) 2012; 20 Wu (ref_17) 2008; 41 Trakoolwilaiwan (ref_22) 2018; 5 ref_1 Suzuki (ref_8) 2021; 755 Tsuzuki (ref_11) 2007; 34 Ma (ref_21) 2021; 18 ref_3 ref_16 Noman (ref_24) 2015; 587 ref_9 Zhai (ref_7) 2019; 3 Yang (ref_15) 2021; 18 Ge (ref_4) 2017; 5 Saha (ref_12) 2014; 27 |
| References_xml | – volume: 20 start-page: 823 year: 2012 ident: ref_20 article-title: Asynchronous BCI Based on Motor Imagery with Automated Calibration and Neurofeedback Training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2214789 – ident: ref_3 – volume: 41 start-page: 618 year: 2008 ident: ref_17 article-title: EEG feature extraction based on wavelet packet decomposition for brain-computer interface publication-title: Measurement doi: 10.1016/j.measurement.2007.07.007 – volume: 5 start-page: 208 year: 2017 ident: ref_4 article-title: A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2637409 – volume: 12 start-page: 246 year: 2018 ident: ref_10 article-title: Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00246 – volume: 27 start-page: 333 year: 2014 ident: ref_12 article-title: EEG source localization using a sparsity prior based on Brodmann areas publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22236 – volume: 34 start-page: 1506 year: 2007 ident: ref_11 article-title: Virtual spatial registration of stand-alone fNIRS data to MNI space publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.043 – volume: 3 start-page: 8215 year: 2014 ident: ref_19 article-title: Feature selection using ReliefF algorithm publication-title: Int. J. Adv. Res. Comput. Commun. Eng. doi: 10.17148/IJARCCE.2014.31031 – volume: 587 start-page: 87 year: 2015 ident: ref_24 article-title: Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.12.029 – ident: ref_1 doi: 10.1109/IHMSC.2017.134 – ident: ref_14 doi: 10.1109/HSI.2017.8005032 – volume: 755 start-page: 135907 year: 2021 ident: ref_8 article-title: Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2021.135907 – volume: 117 start-page: 123 year: 2011 ident: ref_5 article-title: Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing publication-title: Brain Lang. doi: 10.1016/j.bandl.2010.07.008 – volume: 15 start-page: 1 year: 2019 ident: ref_6 article-title: An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation publication-title: Neurosci. Methods doi: 10.1016/j.jneumeth.2018.11.010 – volume: 18 start-page: 036022 year: 2021 ident: ref_15 article-title: A novel motor imagery EEG decoding method based on feature separation publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abe39b – ident: ref_16 doi: 10.1109/CSPA.2015.7225637 – volume: 3 start-page: 269 year: 2019 ident: ref_7 article-title: Brain computer interface system research of upper limb rehabilitation training robot publication-title: Res. Biomed. Eng. – ident: ref_9 doi: 10.3390/s20216116 – volume: 5 start-page: 011008 year: 2018 ident: ref_22 article-title: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: Three-class classification of rest, right-, and left-hand motor execution publication-title: Neurophotonics – volume: 45 start-page: 74 year: 2020 ident: ref_23 article-title: Identification of One—Hand Sign Language Based on fNIRS publication-title: J. Kunming Univ. Sci. Technol. (Nat. Sci.) – volume: 12 start-page: 513 year: 2016 ident: ref_18 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.113 – volume: 18 start-page: 056019 year: 2021 ident: ref_21 article-title: CNN-based classification of fNIRS signals in motor imagery BCI system publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abf187 – volume: 9 start-page: 308 year: 2015 ident: ref_2 article-title: Effects of user mental state on EEG-BCI performance publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00308 – volume: 3 start-page: 46 year: 2013 ident: ref_13 article-title: A Non-Linear Approach to ECG Signal Processing using Morphological Filters publication-title: Int. J. Meas. Technol. Instrum. Eng. (IJMTIE) |
| SSID | ssj0000913830 |
| Score | 2.3049545 |
| Snippet | This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1239 |
| SubjectTerms | Accuracy Blood Brain research Classification Classifiers Corrosion Discriminant analysis Distance measurement Experiments Feature selection Genetic algorithms Headgear Hemoglobin Human-computer interface Noise Paradigms Performance evaluation Rehabilitation Robots Signal processing Support vector machines Training |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20HtSD32K1yh48mjbZzUf3JEVaqtgi1UI9hWyyC8WahjZV9Nc7mya2iIjiJYcwGxJmZ2dm8_Y9gHP9b8pikht1HtiGzZQ0Ai_AizADEUWeEBnFRqfrtvv2zcAZLJ3i17BKbMWH2SJNTY8bmL8pxnbNsmq4yvJaEqnLl3wvyXI1ATm362wV1lwHq_ESrPW7d41HrSlXjJ6TDTHs7msLbZmppVXWqRYJX05IiypzfRYnwdtrMBotJZzWNgTFq85xJk_VWSqq4fsXFsf_fMsObOXVKGnMp88urMh4DzaXOAr3oVlg88g4Jqp73bsnvQJ0hHc6mQI1GSvSTxI5IbfDZ0E644yFPCUZQF7bHUC_1Xy4ahu59oIRYoinhsfdEHs1Lm3sWVRApXC5YFJ4tkMjj6MfmdIAZsGUijxTWMw1Qy1ar2wn5EywQyjF41geAVFKYNCb2ApLagvm1KMQqxB9ANgKqXJUGWjhAD_Micm1PsbIxwZFe83_xmtluPgclMx5OX42rxSe9fMgnfrUYdzF8rPulMH49PZvHnf8R_sT2KAaC5Pt3lSglE5m8hSLmVSc5fP1A9Vm8Ek priority: 102 providerName: Unpaywall |
| Title | Research on fNIRS Recognition Method of Upper Limb Movement Intention |
| URI | https://www.proquest.com/docview/2539622685 https://www.mdpi.com/2079-9292/10/11/1239/pdf?version=1621829483 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_s46AexE-czpGDR8u6pJ8HkSmdU2wZ08I8laZNQJht3TrEi3-7SdduO8jwUkhJcnjJS95Lfvn9AK7k3VSPMFux7FBTNMKZEpqh-FA1pHFsUlpQbLieMfS1p4k-qYFXvYWRsMpqTSwW6jiN5Bl5F-vENkSsYOm32aciVaPk7WoloRGW0grxTUExVocmlsxYDWjeOd5ovDp1kSyYFlGX9ENE5PvdtdrMvCd117GUDd_cotZx584iycLvr3A63diCBgewX8aOqL8c7EOoseQI9jYYBY_BqZB0KE0Q9x7HL2hcQYTEH7fQi0YpR36WsRl6fv-gyE0LzvAcFXB2We8E_IHzej9USqUEJRIOmSumbUQis7KZJjIMHmJGDZsSRk1Nx7FpC6sTLuHGlHAemyrtEUONpMQ81_TIJpScQiNJE3YGiHMqXFQVVmJYo0S34kjEDPK5bi_CXOctwJVxgqikEZdqFtNApBPSosEfFm3B9apRtmTR2F69XVk9KF1qHqwnQAuU1Uj8p7vz7d1dwC6WQJXiaKUNjXy2YJci0shpB-rW4KFTTiJRcn8cUfK9Uf_tF3LD2NU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VOhQGxFMUCniAjYjEdh4eEOJR1NKHUKESW4gTW0IqSehDiD_Hb8NOk7YDQixdMkT2KTpfznf23fcBnOq7KYsIZngsoAYlUhiBG6gHNwMeRS7nGcRGp-s0-vThxX4pwXfRC6PLKgufmDnqKAn1GfkFtglzVKzg2Vfph6FZo_TtakGhEeTUCtFlBjGWN3a0xNenSuFGl807td5nGN_Xn28bRs4yYITKmMeGy5xQZSVMUBWdywAL7jBOBHepjSOXqS8mUpfqciJl5JrcIo4Zanp2Se2QEU6U3BUoU0KZSv7KN_XuY292yqNRNz1iTuGOCGHmxZzdZmRpnnesacoXt8R5nFuZxGnw9RkMBgtb3v0mbOSxKrqeGtcWlES8DesLCIY7UC8q91ASI9lt9p5QryhJUm86GT81SiTqp6kYovbbO0edJMMoH6OsfF6P24X-UnS2B6txEot9QFJy5RJMpSWBKSe2F4UqRtHtwVaIpS2rgAvl-GEOW67ZMwa-Sl-0Rv1fNFqF89mkdIra8ffwWqF1P_-FR_7c4KpgzFbiP-IO_hZ3ApXGc6ftt5vd1iGsYV0kkx3r1GB1PJyIIxXljPlxbkoIXpdtvT_9NBGH |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwFHyCIrEcEKsoFPABbkRN7Sz1ASFEKS1dhIBK3EKc2BJSSUIXIX6Nr8MvTdoeUMWFSw6RbUXPE_vZHs8AnOHZVIVJblS5bxkWU9LwXV8_hOmLMHSFSCU2Ol2n0bPuX-yXJfjO78IgrTIfE9OBOowD3CMvU5txR-cKVbusMlrEQ61-lXwY6CCFJ625ncYEIi359amXb8PLZk339Tml9dvnm4aROQwYgQbyyHC5E-gVCZeWzsyVT6VwuGBSuJZNQ5frr2UKabqCKRW6pqgwxwzQml1ZdsCZYLrdZVhxUcUdb6nX76b7O6i3WWXmROiIMW6WZ742wwo6vFM0KJ-fDGcZ7to4SvyvT7_fn5vs6luwmWWp5HoCq21YktEObMxpF-7Cbc7ZI3FEVLf5-EQeczKSftNJnalJrEgvSeSAtN_eBenEqTr5iKTEeSy3B71_idg-FKI4kgdAlBJ6MDB1lCS1BLOrYaCzE7wYXAmoslURaB4cL8gEy9E3o-_phQtG1PslokW4mFZKJnodi4uX8qh72c879GZQK4Ix7Ym_NHe4uLlTWNWY9drNbusI1imyY9L9nBIURoOxPNbpzUicpDgi8PrfwP0BiI4PIQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20HtSD32K1yh48mjbZzUf3JEVaqtgi1UI9hWyyC8WahjZV9Nc7mya2iIjiJYcwGxJmZ2dm8_Y9gHP9b8pikht1HtiGzZQ0Ai_AizADEUWeEBnFRqfrtvv2zcAZLJ3i17BKbMWH2SJNTY8bmL8pxnbNsmq4yvJaEqnLl3wvyXI1ATm362wV1lwHq_ESrPW7d41HrSlXjJ6TDTHs7msLbZmppVXWqRYJX05IiypzfRYnwdtrMBotJZzWNgTFq85xJk_VWSqq4fsXFsf_fMsObOXVKGnMp88urMh4DzaXOAr3oVlg88g4Jqp73bsnvQJ0hHc6mQI1GSvSTxI5IbfDZ0E644yFPCUZQF7bHUC_1Xy4ahu59oIRYoinhsfdEHs1Lm3sWVRApXC5YFJ4tkMjj6MfmdIAZsGUijxTWMw1Qy1ar2wn5EywQyjF41geAVFKYNCb2ApLagvm1KMQqxB9ANgKqXJUGWjhAD_Micm1PsbIxwZFe83_xmtluPgclMx5OX42rxSe9fMgnfrUYdzF8rPulMH49PZvHnf8R_sT2KAaC5Pt3lSglE5m8hSLmVSc5fP1A9Vm8Ek |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+fNIRS+Recognition+Method+of+Upper+Limb+Movement+Intention&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Chunguang&rft.au=Xu%2C+Yongliang&rft.au=He%2C+Liujin&rft.au=Zhu%2C+Yue&rft.date=2021-06-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=11&rft.spage=1239&rft_id=info:doi/10.3390%2Felectronics10111239&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10111239 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |