Research on fNIRS Recognition Method of Upper Limb Movement Intention

This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the system, and gradually extends the analysis and recognition method of the movement intention in the cerebra...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 10; no. 11; p. 1239
Main Authors Li, Chunguang, Xu, Yongliang, He, Liujin, Zhu, Yue, Kuang, Shaolong, Sun, Lining
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics10111239

Cover

Abstract This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the system, and gradually extends the analysis and recognition method of the movement intention in the cerebral blood oxygen signal to the actual brain-computer interface system. Fifty subjects completed four upper limb movement paradigms: Lifting-up, putting down, pulling back, and pushing forward. Then, their near-infrared data and movement trigger signals were collected. In terms of the recognition algorithm for detecting the initial intention of upper limb movements, gradient boosting tree (GBDT) and random forest (RF) were selected for classification experiments. Finally, RF classifier with better comprehensive indicators was selected as the final classification algorithm. The best offline recognition rate was 94.4% (151/160). The ReliefF algorithm based on distance measurement and the genetic algorithm proposed in the genetic theory were used to select features. In terms of upper limb motion state recognition algorithms, logistic regression (LR), support vector machine (SVM), naive Bayes (NB), and linear discriminant analysis (LDA) were selected for experiments. Kappa coefficient was used as the classification index to evaluate the performance of the classifier. Finally, SVM classification got the best performance, and the four-class recognition accuracy rate was 84.4%. The results show that RF and SVM can achieve high recognition accuracy in motion intentions and the upper limb rehabilitation system designed in this paper has great application significance.
AbstractList This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the system, and gradually extends the analysis and recognition method of the movement intention in the cerebral blood oxygen signal to the actual brain-computer interface system. Fifty subjects completed four upper limb movement paradigms: Lifting-up, putting down, pulling back, and pushing forward. Then, their near-infrared data and movement trigger signals were collected. In terms of the recognition algorithm for detecting the initial intention of upper limb movements, gradient boosting tree (GBDT) and random forest (RF) were selected for classification experiments. Finally, RF classifier with better comprehensive indicators was selected as the final classification algorithm. The best offline recognition rate was 94.4% (151/160). The ReliefF algorithm based on distance measurement and the genetic algorithm proposed in the genetic theory were used to select features. In terms of upper limb motion state recognition algorithms, logistic regression (LR), support vector machine (SVM), naive Bayes (NB), and linear discriminant analysis (LDA) were selected for experiments. Kappa coefficient was used as the classification index to evaluate the performance of the classifier. Finally, SVM classification got the best performance, and the four-class recognition accuracy rate was 84.4%. The results show that RF and SVM can achieve high recognition accuracy in motion intentions and the upper limb rehabilitation system designed in this paper has great application significance.
Author He, Liujin
Zhu, Yue
Sun, Lining
Kuang, Shaolong
Xu, Yongliang
Li, Chunguang
Author_xml – sequence: 1
  givenname: Chunguang
  surname: Li
  fullname: Li, Chunguang
– sequence: 2
  givenname: Yongliang
  orcidid: 0000-0002-1162-7840
  surname: Xu
  fullname: Xu, Yongliang
– sequence: 3
  givenname: Liujin
  surname: He
  fullname: He, Liujin
– sequence: 4
  givenname: Yue
  surname: Zhu
  fullname: Zhu, Yue
– sequence: 5
  givenname: Shaolong
  surname: Kuang
  fullname: Kuang, Shaolong
– sequence: 6
  givenname: Lining
  surname: Sun
  fullname: Sun, Lining
BookMark eNqNkM1LAzEQxYNUsNb-BV4Cnqv52I_OUUrVQqtQ7XlJshO7ZZus2VTpf--WehARcS5vGN7vMbxz0nPeISGXnF1LCewGazQxeFeZljPOuZBwQvqC5TACAaL3bT8jw7bdsG6Ay7FkfTJdYosqmDX1jtrH2fKZLtH4V1fFqrssMK59Sb2lq6bBQOfVVtOFf8ctukhnLnbS-S7IqVV1i8MvHZDV3fRl8jCaP93PJrfzkZFCxFEOmckYB0wEz60SqDPQEnWepKLMQelSWg6QaWltmTPNZcYMlwJskhqQWg5IcszduUbtP1RdF02otirsC86KQxvFL2102NURa4J_22Ebi43fBdd9WohUQiZENk47lzy6TPBtG9D-Mxt-UKaK6lBKDKqq_2Q_AbRriCg
CitedBy_id crossref_primary_10_1142_S0218001422500410
crossref_primary_10_1155_2023_8812844
crossref_primary_10_3390_electronics11142247
crossref_primary_10_1080_27706710_2024_2335886
crossref_primary_10_3390_s23073714
crossref_primary_10_1155_2022_3893866
crossref_primary_10_3390_jcm12185781
crossref_primary_10_1016_j_bspc_2024_106448
crossref_primary_10_1016_j_heliyon_2022_e11102
crossref_primary_10_3389_fpubh_2023_1256895
Cites_doi 10.1109/TNSRE.2012.2214789
10.1016/j.measurement.2007.07.007
10.1109/ACCESS.2016.2637409
10.3389/fnhum.2018.00246
10.1002/ima.22236
10.1016/j.neuroimage.2006.10.043
10.17148/IJARCCE.2014.31031
10.1016/j.neulet.2014.12.029
10.1109/IHMSC.2017.134
10.1109/HSI.2017.8005032
10.1016/j.neulet.2021.135907
10.1016/j.bandl.2010.07.008
10.1016/j.jneumeth.2018.11.010
10.1088/1741-2552/abe39b
10.1109/CSPA.2015.7225637
10.3390/s20216116
10.1038/nrneurol.2016.113
10.1088/1741-2552/abf187
10.3389/fnhum.2015.00308
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics10111239
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics10111239
10_3390_electronics10111239
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c322t-796c6019e4217fa2eb69b3eb7452d79abd3f1996b3ffd70b1360c1329f45c93b3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Oct 26 04:12:57 EDT 2025
Sun Sep 07 03:50:25 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Thu Oct 16 04:44:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-796c6019e4217fa2eb69b3eb7452d79abd3f1996b3ffd70b1360c1329f45c93b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1162-7840
OpenAccessLink https://www.proquest.com/docview/2539622685?pq-origsite=%requestingapplication%&accountid=15518
PQID 2539622685
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics10111239
proquest_journals_2539622685
crossref_primary_10_3390_electronics10111239
crossref_citationtrail_10_3390_electronics10111239
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bhateja (ref_13) 2013; 3
Hong (ref_10) 2018; 12
Wang (ref_23) 2020; 45
Rota (ref_5) 2011; 117
Chaudhary (ref_18) 2016; 12
ref_14
Chowdhury (ref_6) 2019; 15
Durgabai (ref_19) 2014; 3
Myrden (ref_2) 2015; 9
Kus (ref_20) 2012; 20
Wu (ref_17) 2008; 41
Trakoolwilaiwan (ref_22) 2018; 5
ref_1
Suzuki (ref_8) 2021; 755
Tsuzuki (ref_11) 2007; 34
Ma (ref_21) 2021; 18
ref_3
ref_16
Noman (ref_24) 2015; 587
ref_9
Zhai (ref_7) 2019; 3
Yang (ref_15) 2021; 18
Ge (ref_4) 2017; 5
Saha (ref_12) 2014; 27
References_xml – volume: 20
  start-page: 823
  year: 2012
  ident: ref_20
  article-title: Asynchronous BCI Based on Motor Imagery with Automated Calibration and Neurofeedback Training
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2214789
– ident: ref_3
– volume: 41
  start-page: 618
  year: 2008
  ident: ref_17
  article-title: EEG feature extraction based on wavelet packet decomposition for brain-computer interface
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.007
– volume: 5
  start-page: 208
  year: 2017
  ident: ref_4
  article-title: A Brain-Computer Interface Based on a Few-Channel EEG-fNIRS Bimodal System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2637409
– volume: 12
  start-page: 246
  year: 2018
  ident: ref_10
  article-title: Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00246
– volume: 27
  start-page: 333
  year: 2014
  ident: ref_12
  article-title: EEG source localization using a sparsity prior based on Brodmann areas
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22236
– volume: 34
  start-page: 1506
  year: 2007
  ident: ref_11
  article-title: Virtual spatial registration of stand-alone fNIRS data to MNI space
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.043
– volume: 3
  start-page: 8215
  year: 2014
  ident: ref_19
  article-title: Feature selection using ReliefF algorithm
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
  doi: 10.17148/IJARCCE.2014.31031
– volume: 587
  start-page: 87
  year: 2015
  ident: ref_24
  article-title: Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.12.029
– ident: ref_1
  doi: 10.1109/IHMSC.2017.134
– ident: ref_14
  doi: 10.1109/HSI.2017.8005032
– volume: 755
  start-page: 135907
  year: 2021
  ident: ref_8
  article-title: Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2021.135907
– volume: 117
  start-page: 123
  year: 2011
  ident: ref_5
  article-title: Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2010.07.008
– volume: 15
  start-page: 1
  year: 2019
  ident: ref_6
  article-title: An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation
  publication-title: Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.11.010
– volume: 18
  start-page: 036022
  year: 2021
  ident: ref_15
  article-title: A novel motor imagery EEG decoding method based on feature separation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abe39b
– ident: ref_16
  doi: 10.1109/CSPA.2015.7225637
– volume: 3
  start-page: 269
  year: 2019
  ident: ref_7
  article-title: Brain computer interface system research of upper limb rehabilitation training robot
  publication-title: Res. Biomed. Eng.
– ident: ref_9
  doi: 10.3390/s20216116
– volume: 5
  start-page: 011008
  year: 2018
  ident: ref_22
  article-title: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: Three-class classification of rest, right-, and left-hand motor execution
  publication-title: Neurophotonics
– volume: 45
  start-page: 74
  year: 2020
  ident: ref_23
  article-title: Identification of One—Hand Sign Language Based on fNIRS
  publication-title: J. Kunming Univ. Sci. Technol. (Nat. Sci.)
– volume: 12
  start-page: 513
  year: 2016
  ident: ref_18
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.113
– volume: 18
  start-page: 056019
  year: 2021
  ident: ref_21
  article-title: CNN-based classification of fNIRS signals in motor imagery BCI system
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abf187
– volume: 9
  start-page: 308
  year: 2015
  ident: ref_2
  article-title: Effects of user mental state on EEG-BCI performance
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00308
– volume: 3
  start-page: 46
  year: 2013
  ident: ref_13
  article-title: A Non-Linear Approach to ECG Signal Processing using Morphological Filters
  publication-title: Int. J. Meas. Technol. Instrum. Eng. (IJMTIE)
SSID ssj0000913830
Score 2.3049545
Snippet This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system. This article mainly focuses on the analysis and research of the...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1239
SubjectTerms Accuracy
Blood
Brain research
Classification
Classifiers
Corrosion
Discriminant analysis
Distance measurement
Experiments
Feature selection
Genetic algorithms
Headgear
Hemoglobin
Human-computer interface
Noise
Paradigms
Performance evaluation
Rehabilitation
Robots
Signal processing
Support vector machines
Training
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20HtSD32K1yh48mjbZzUf3JEVaqtgi1UI9hWyyC8WahjZV9Nc7mya2iIjiJYcwGxJmZ2dm8_Y9gHP9b8pikht1HtiGzZQ0Ai_AizADEUWeEBnFRqfrtvv2zcAZLJ3i17BKbMWH2SJNTY8bmL8pxnbNsmq4yvJaEqnLl3wvyXI1ATm362wV1lwHq_ESrPW7d41HrSlXjJ6TDTHs7msLbZmppVXWqRYJX05IiypzfRYnwdtrMBotJZzWNgTFq85xJk_VWSqq4fsXFsf_fMsObOXVKGnMp88urMh4DzaXOAr3oVlg88g4Jqp73bsnvQJ0hHc6mQI1GSvSTxI5IbfDZ0E644yFPCUZQF7bHUC_1Xy4ahu59oIRYoinhsfdEHs1Lm3sWVRApXC5YFJ4tkMjj6MfmdIAZsGUijxTWMw1Qy1ar2wn5EywQyjF41geAVFKYNCb2ApLagvm1KMQqxB9ANgKqXJUGWjhAD_Micm1PsbIxwZFe83_xmtluPgclMx5OX42rxSe9fMgnfrUYdzF8rPulMH49PZvHnf8R_sT2KAaC5Pt3lSglE5m8hSLmVSc5fP1A9Vm8Ek
  priority: 102
  providerName: Unpaywall
Title Research on fNIRS Recognition Method of Upper Limb Movement Intention
URI https://www.proquest.com/docview/2539622685
https://www.mdpi.com/2079-9292/10/11/1239/pdf?version=1621829483
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_s46AexE-czpGDR8u6pJ8HkSmdU2wZ08I8laZNQJht3TrEi3-7SdduO8jwUkhJcnjJS95Lfvn9AK7k3VSPMFux7FBTNMKZEpqh-FA1pHFsUlpQbLieMfS1p4k-qYFXvYWRsMpqTSwW6jiN5Bl5F-vENkSsYOm32aciVaPk7WoloRGW0grxTUExVocmlsxYDWjeOd5ovDp1kSyYFlGX9ENE5PvdtdrMvCd117GUDd_cotZx584iycLvr3A63diCBgewX8aOqL8c7EOoseQI9jYYBY_BqZB0KE0Q9x7HL2hcQYTEH7fQi0YpR36WsRl6fv-gyE0LzvAcFXB2We8E_IHzej9USqUEJRIOmSumbUQis7KZJjIMHmJGDZsSRk1Nx7FpC6sTLuHGlHAemyrtEUONpMQ81_TIJpScQiNJE3YGiHMqXFQVVmJYo0S34kjEDPK5bi_CXOctwJVxgqikEZdqFtNApBPSosEfFm3B9apRtmTR2F69XVk9KF1qHqwnQAuU1Uj8p7vz7d1dwC6WQJXiaKUNjXy2YJci0shpB-rW4KFTTiJRcn8cUfK9Uf_tF3LD2NU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VOhQGxFMUCniAjYjEdh4eEOJR1NKHUKESW4gTW0IqSehDiD_Hb8NOk7YDQixdMkT2KTpfznf23fcBnOq7KYsIZngsoAYlUhiBG6gHNwMeRS7nGcRGp-s0-vThxX4pwXfRC6PLKgufmDnqKAn1GfkFtglzVKzg2Vfph6FZo_TtakGhEeTUCtFlBjGWN3a0xNenSuFGl807td5nGN_Xn28bRs4yYITKmMeGy5xQZSVMUBWdywAL7jBOBHepjSOXqS8mUpfqciJl5JrcIo4Zanp2Se2QEU6U3BUoU0KZSv7KN_XuY292yqNRNz1iTuGOCGHmxZzdZmRpnnesacoXt8R5nFuZxGnw9RkMBgtb3v0mbOSxKrqeGtcWlES8DesLCIY7UC8q91ASI9lt9p5QryhJUm86GT81SiTqp6kYovbbO0edJMMoH6OsfF6P24X-UnS2B6txEot9QFJy5RJMpSWBKSe2F4UqRtHtwVaIpS2rgAvl-GEOW67ZMwa-Sl-0Rv1fNFqF89mkdIra8ffwWqF1P_-FR_7c4KpgzFbiP-IO_hZ3ApXGc6ftt5vd1iGsYV0kkx3r1GB1PJyIIxXljPlxbkoIXpdtvT_9NBGH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwFHyCIrEcEKsoFPABbkRN7Sz1ASFEKS1dhIBK3EKc2BJSSUIXIX6Nr8MvTdoeUMWFSw6RbUXPE_vZHs8AnOHZVIVJblS5bxkWU9LwXV8_hOmLMHSFSCU2Ol2n0bPuX-yXJfjO78IgrTIfE9OBOowD3CMvU5txR-cKVbusMlrEQ61-lXwY6CCFJ625ncYEIi359amXb8PLZk339Tml9dvnm4aROQwYgQbyyHC5E-gVCZeWzsyVT6VwuGBSuJZNQ5frr2UKabqCKRW6pqgwxwzQml1ZdsCZYLrdZVhxUcUdb6nX76b7O6i3WWXmROiIMW6WZ742wwo6vFM0KJ-fDGcZ7to4SvyvT7_fn5vs6luwmWWp5HoCq21YktEObMxpF-7Cbc7ZI3FEVLf5-EQeczKSftNJnalJrEgvSeSAtN_eBenEqTr5iKTEeSy3B71_idg-FKI4kgdAlBJ6MDB1lCS1BLOrYaCzE7wYXAmoslURaB4cL8gEy9E3o-_phQtG1PslokW4mFZKJnodi4uX8qh72c879GZQK4Ix7Ym_NHe4uLlTWNWY9drNbusI1imyY9L9nBIURoOxPNbpzUicpDgi8PrfwP0BiI4PIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20HtSD32K1yh48mjbZzUf3JEVaqtgi1UI9hWyyC8WahjZV9Nc7mya2iIjiJYcwGxJmZ2dm8_Y9gHP9b8pikht1HtiGzZQ0Ai_AizADEUWeEBnFRqfrtvv2zcAZLJ3i17BKbMWH2SJNTY8bmL8pxnbNsmq4yvJaEqnLl3wvyXI1ATm362wV1lwHq_ESrPW7d41HrSlXjJ6TDTHs7msLbZmppVXWqRYJX05IiypzfRYnwdtrMBotJZzWNgTFq85xJk_VWSqq4fsXFsf_fMsObOXVKGnMp88urMh4DzaXOAr3oVlg88g4Jqp73bsnvQJ0hHc6mQI1GSvSTxI5IbfDZ0E644yFPCUZQF7bHUC_1Xy4ahu59oIRYoinhsfdEHs1Lm3sWVRApXC5YFJ4tkMjj6MfmdIAZsGUijxTWMw1Qy1ar2wn5EywQyjF41geAVFKYNCb2ApLagvm1KMQqxB9ANgKqXJUGWjhAD_Micm1PsbIxwZFe83_xmtluPgclMx5OX42rxSe9fMgnfrUYdzF8rPulMH49PZvHnf8R_sT2KAaC5Pt3lSglE5m8hSLmVSc5fP1A9Vm8Ek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+fNIRS+Recognition+Method+of+Upper+Limb+Movement+Intention&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Chunguang&rft.au=Xu%2C+Yongliang&rft.au=He%2C+Liujin&rft.au=Zhu%2C+Yue&rft.date=2021-06-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=11&rft.spage=1239&rft_id=info:doi/10.3390%2Felectronics10111239&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10111239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon